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Appetizer

Question: What is the complexity of the following search problem?

Given a finite game, and ǫ > 0, compute a vector x′ that has distance less
than ǫ to some (exact!) Nash Equilibrium.

Let’s restate this search problem more precisely:

(“Strong”) ǫ-approximation of a Nash Equilibrium:
Given a finite (normal form) game, Γ, with 3 or more players, and with
rational payoffs, and given a rational ǫ > 0, compute a rational vector x′

such that there exists some (exact!) Nash Equilibrium x∗ of Γ such that

‖x∗ − x′‖∞ < ǫ

Note: This is NOT the same thing as asking for an ǫ-Nash Equilibrium.
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Weak vs. Strong approximation of Fixed Points

The NEs of a finite game, Γ, are the Brouwer fixed points of FΓ : ∆n 7→ ∆n

(Nash, 1951).

(Recall: FΓ(x)(i,j)
.
=

xi,j+max{0,gi,j(x)}
1+

Pmi
k=1

max{0,gi,k(x)}, where gi,j(x) are polynomials in x.)

For ≥ 3 players, all NEs can be irrational. So we can’t compute one “exactly”.

Two different notions of ǫ-approximation of fixed points:

• (Weak) Given F : ∆n 7→ ∆n, compute x′ such that: ‖F (x′) − x′‖ < ǫ.

• (Strong) Given F : ∆n 7→ ∆n, compute x′ such that there exists x∗

where F (x∗) = x∗ and ‖x∗ − x′‖ < ǫ .
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some facts about the Weak vs. Strong distinction

Fact: For a large class of Brouwer functions 1

Weak ǫ-approximation is P-time reducible to Strong ǫ-approximation

Fact: For finite games, Γ, computing an ǫ-Nash Equilibrium is P-time equivalent
to computing a Weak ǫ-fixed point of Nash’s function FΓ.

Thus, to compute an ǫ-NE, apply Scarf’s algorithm (SPERNER) to FΓ.
This yields a Weak ǫ-FP of FΓ.

So, computing ǫ-NEs is in PPAD, and of course PPAD-complete ([DasGolPap’06]),
and even computing exact NEs for 2 players is PPAD-complete ([CheDen’06]).

Warning: Scarf’s algorithm does not in general yield Strong ǫ-fixed points.

1namely, all “polynomially continuous” functions. These include Nash’s functions, and the other explicit classes

of functions we will discuss.
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Scarf and Nash

Scarf’s algorithm treats F (x) as a black-box, only evaluating it at various points.
For such “oracle” algorithms, it is known that no number of “adaptive” queries
suffice to Strong ǫ-approximate some FP.

Of course, Nash’s functions are not black-box oracles.

Fact: Given game Γ and ǫ > 0, we can Strong ǫ-approximate a NE in PSPACE.

Proof: For Nash’s functions FΓ, the expression
∃x(x = FΓ(x) ∧ a ≤ x ≤ b)

can be expressed as a formula in the Existential Theory of Reals (ETR). So we
can Strong ǫ-approximate an NE, x∗ ∈ ∆n, in PSPACE, using log(1/ǫ)n queries
to a PSPACE decision procedure for ETR ([Canny’89],[Renegar’92]).

Can we do better than PSPACE?
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Why care about strong approximation of fixed points?

• It can be argued (as Scarf (1967) implicitly did) that for many applications
in economics and elsewhere Weak ǫ-fixed points of Brouwer functions are
sufficient.

• However, there are many important computational problems that boil down to
a fixed point computation, and for which Weak ǫ-FPs are USELESS, unless
they also happen to be Strong ǫ-FPs.

• Our understanding of these issues is informed by our work on
Recursive Markov Chains and Stochastic Games,....
so I will make a (brief) detour...
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And now for something completely different:

What is a Recursive Graph?

g
f

g

a b

f

Question: Is it possible to reach b from a?

Such information can easily be computed in P-time.

Recursive Graphs are abstract models of procedural programs with recursion.
They are expressively equivalent to Pushdown Systems, and there has been very
extensive work on their algorithmic analysis in verification research.
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What is a Recursive Markov Chain?

1
11/2

1/41/4
1

f

f f

a b

Question: What is the probability of eventually reaching b from a?
Is there an efficient algorithm for computing such probabilities?

• The special case of 1-exit RMCs (1-RMCs) already captures some
classic probabilistic models: Multi-Type Branching Processes and
Stochastic Context-Free Grammars.

• A restricted subclass of 1-RMCs captures Random Walks with Back-Buttons,
a model of “web surfing” studied by ([Fagin,Karlin,Kleinberg,et. al.’01]).
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Let’s calculate this termination probability

1
11/2

1/41/4
1

f

f f

a b

Let x be the (unknown) probability that starting at a (in the empty calling
context) we will eventually reach b (in the empty calling context) and terminate.

An equation for x: x = (1/2)x2 + 1/4

Note: this is a nonlinear equation with two solutions: x = 1 +
−

1√
2
.

The least solution, let’s call it the Least Fixed Point (LFP), is: x∗ = (1− 1√
2
).

Fact: This is the probability we are after.
(In particular, termination probabilities can be irrational.)
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The non-linear system associated with an RMC
Let x(f,u,z) denote the (unknown) probability that, in “component” f , starting
at u (with empty call stack) we eventually reach exit z (with empty call stack).

f

a

2/3

1/3

c

h

c
d

e

d
e

g
b1:g

z

What is x(f,z,z)? x(f,z,z) = 1
What is x(f,a,z)? x(f,a,z) = 1

3x(f,h,z) + 2
3x(f,(b1,c),z)

What is x(f,(b1,c),z)? x(f,(b1,c),z) = x(g,c,d)x(f,(b1,d),z) + x(g,c,e)x(f,(b1,e),z)

These “patterns” cover all cases, yielding a system of polynomial equations:

x = P (x)
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Basic facts about the system x = P (x)

• The coefficients in P (x) are non-negative, and P : R
n 7→ R

n defines a
monotone operator mapping D ⊆ [0, 1]n to itself.

By a Tarski-Knaster argument, P () has a Least Fixed Point, x∗ in [0, 1]n,

• Theorem: The LFP, x∗ = limk→∞ P k(0), is the vector of termination
probabilities.

• Can we compute x∗ efficiently? Again, we can express the formula:
∃x(x = P (x) ∧ a ≤ x ≤ b) in ETR. Thus, deciding exact queries about x∗,
and Strong ǫ-approximation of it, are in PSPACE.

• (We know a lot more about numerical computation of x∗..... another talk!)

• Note: Weak ǫ-FPs of P (x) are useless.
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RMCs and the Square-Root Sum problem

The square-root sum problem (Sqrt-Sum) is the following decision problem:

given (d1, . . . , dn) ∈ N
n and k ∈ N, decide whether

∑n
i=1

√
di ≤ k.

It is known to be solvable in PSPACE but it has been a major open problem
([GareyGrahamJohnson’76]) whether it is solvable even in NP.
(In particular, whether exact Euclidean-TSP is in NP hinges on this.)

Theorem: Sqrt-Sum is P-time reducible to the following problems:

1. Given a 1-exit RMC, and a rational p, decide whether x∗
(1,en,ex) ≥ p.

2. Given a 2-exit RMC, decide whether x∗
(1,en,ex1)

= 1.

3. NEW:([EY’07,unpublished]) Given a 2-exit RMC, Strong ǫ-approximate x∗.(!!)
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Let’s extend RMCs to RMDPs and RSSGs

Recursive Markov Decision Processes (RMDPs): some nodes are controlled.
Recursive Simple Stochastic Games (RSSGs): some nodes belong to Player 1
(controller), others to Player 2 (adversary).

ex2

A1

1

b1 : A2

z

u

2/3

1/3

1

en′

A2

ex′
1

ex′
2

1

3/5

b′1 : A1

b′2 : A2

v

2/5

1

1

en

ex1

RSSGs strictly generalize Condon’s finite-state Simple Stochastic Games.

Termination questions for general RMDPs and RSSGs are undecidable,
but decidable for the special case of 1-exit RMDPs and RSSGs.....
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1-exit RSSGs and nonlinear min/max equations
f

a

2/3

1/3

c

h

c

g
b1:g

z

d

d

What is x(f,z,z)? x(f,z,z) = 1
What is x(f,a,z)? x(f,a,z) = 1

3x(f,h,z) + 2
3x(f,(b1,c),z)

What is x(f,(b1,c),z)? x(f,(b1,c),z) = x(g,c,d)x(f,(b1,d),z)

What is x(f,h,z)? x(f,h,z) = max{neighbors v of h} x(g,v,z)

What is x(f,(b1,d),z)? x(f,(b1,d),z) = min{neighbors v of (b1,d)} x(g,v,z)

We get a new system: x = P (x).



14

Facts about P (x) (déjà vu)

• P : R
n 7→ R

n is monotone on [0, 1]n, and has a Least Fixed Point.

• Theorem: The LFP, x∗ = limk→∞ P k(0), is the vector of game values, for
the termination game starting at each vertex of the 1-RSSG.

Again, the formula ∃x(x = P (x) ∧ a ≤ x ≤ b) is expressible in ETR, so we
can Strong ǫ-approximate x∗, in PSPACE.

• Theorem:

1. The qualitative termination problem for 1-RSSGs, i.e., whether x∗
1 = 1, can

be decided in NP ∩ coNP.
2. It is at least as hard as Condon’s problem for finite SSGs: “Is the game

value ≥ 1/2?”. (And we do not know a reduction in the other direction.)



15

Shapley’s Stochastic Games

• As is well known, the quantitative termination problem for Condon’s finite
SSGs is reducible to that of “discounted” SSGs.

• In turn, the discounted SSG problem reduces to the problem of ǫ-approximating
the value of Shapley’s games.

• Shapley (1953) introduced discounted (finite-state) Stochastic Games, where
both players choose moves independently and “concurrently” at each state.

• The value of Shapley’s games (which can be irrational, unlike Condon’s
games) is the unique (Banach) fixed point of a map P : [0, 1]n 7→ [0, 1]n,
which can again be described in ETR, and thus ǫ-approximated in PSPACE.
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Shapley reduces to Nash, and to PPAD

Theorem: (new) ([EY’07,unpublished]) ǫ-approximation of the value of Shapley’s
games reduces to computing a Weak ǫ-fixed point of P (x), and is thereby in
PPAD. (And thus reducible to 2-Nash! )

Proof: P (x) is a “fast enough” contraction mapping. For such mappings, Weak
ǫ-fixed points are “close enough” to the actual Banach fixed point. P (x) is a
Brouwer function on a “not too big” domain.
Thus: apply Scarf’s algorithm to P (x).

Note: [Juba, Blum, and Williams, 2006, unpublished MSc. thesis] have already
observed that the quantitative decision problem for Condon’s SSGs is in PPAD.

(Their proof has a small gap, essentially because they didn’t note the distinction
between Weak vs. Strong approximate fixed points, but the gap can be patched.)
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Finally, back to our original question:

Strong ǫ-approximation of Nash Equilibria

Theorem: (NEW)[EY’07, unpublished]

1. For every ǫ > 0, Sqrt-Sum is P-time reducible to the following decision
problem. Given a 3-player (normal form) game, Γ, with the property that:

(a) in every NE, player 1 plays exactly the same strategy, and
(b) in every NE, player 1 plays its first strategy either with probability 0 or with

probability ≥ (1 − ǫ),

decide which of the two is the case (i.e., 0 or at least (1 − ǫ)?).

2. Thus, if NEs can be Strongly approximated, even in NP, then Sqrt-Sum is in
NP, and exact Euclidean-TSP is in NP, etc., etc., ....
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theorem continued.....

3. [Allender et. al.,’06] Showed that Sqrt-Sum reduces to the following more
general problem, which they showed lies in the 4th level

of the Counting Hierarchy (PPPPPPP

):

PosSLP: Given an arithmetic circuit (Straight Line Program) over basis
{+, ∗,−} with integer inputs, decide whether the output is > 0.

4. Theorem: (NEW)
PosSLP is P-time reducible to Strong ǫ-approximation of 3-player NEs.

(More precisely, it reduces to the same 0 vs. (1− ǫ) choice problem as before.)
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theorem continued.....

5. Theorem: (NEW)
Computing a (Strong ǫ-approximate) Nash Equilibrium for a 3-player game is
complete for the following class of fixed point problems:

Given a continuous function F : [0, 1]n 7→ [0, 1]n, presented as an
algebraic circuit over the basis {+, ∗,−, /,max,min}, with rational constants,
compute a (Strong ǫ-approximate) fixed point of F .

Let us call this class of fixed point search problems FIXP.

6. These functions include all the fixed point problems we have encountered:
n-NASH, SSGs, RMCs, Shapley & “Concurrent” Stochastic Games, 1-RSSGs,
1-RCSGs, and obviously much more.....

However, to get containment in FIXP requires, for each such problem, to
isolate (in P-time) the relevant fixed point (e.g., the LFP, etc.).....
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concluding remarks

Our results open up a “Pandora’s Box” of new questions:

• Can Strong approximation of NEs be done in anything better than PSPACE?

• Is Strong approximation of NEs hard for a standard complexity class like NP?

There is some reason to suspect this will not be easy to show. These
problems can be placed in the “rational fragment of ” the Blum-Shub-Smale
class NPR∩ coNPR, and nothing in that class appears known to be NP-hard.

• The following is #P-hard: given a 3-player normal form game, with the
property that player 1 plays the same strategy in all NEs, and given i ∈ N

(in binary), compute the i’th bit of the probability with which player 1 plays
strategy 1 in an NE.


