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Abstract. The present study investigates a geometrical method for op-
timizing the kernel function of a support vector machine. The method
is an improvement of the one proposed in [4, 5]. It consists of using
prior knowledge obtained from conventional SVM training to confor-
mally rescale the initial kernel function, so that the separation between
two classes of data is effectively enlarged. It turns out that the new algo-
rithm works efficiently, has few free parameters, consumes very low com-
putational cost, and overcomes the susceptibility of the original method.

1 Introduction

The support vector machine (SVM) is a general method for pattern classification
and regression proposed by Vapnik and co-authors [1]. The essential idea is to
use a kernel function to map the original input data into a high-dimensional
space so that two classes of data become, as far as possible, linearly separable
[1, 2]. Thus, the kernel is the key that determines the performance of the SVM.
From the viewpoint of regularization theory, the kernel implies a smoothness
assumption on the structure of the discriminant function. In case we have some
prior knowledge about the data, we may use it to construct a good kernel,
otherwise, the kernel has to be optimized in a data-dependent way.

Amari and Wu [4, 5] have proposed a two-stage training process to optimize
a kernel function. Their idea is based on the understanding of that the kernel
mapping induces a Riemannian metric in the original input space [3, 4] and that
a good kernel should enlarge the separation between the two classes. In their
method, the first step of training involves using a primary kernel to find out where
the separating boundary is roughly located. In the second step, the primary
kernel is conformally scaled, which magnifies the Riemannian metric around
the boundary and hence the separation between the two classes. In the original
algorithm proposed in [4], the kernel is enlarged at the positions of support
vectors (SVs), which takes into account the fact that SVs are in the vicinity
of the boundary. This approach, however, is susceptible to the distribution of
SVs, since the magnification tends to be biased towards the high density region
of SVs, and the distribution of SVs is determined by the distribution of data
points. Although a modified version was suggested in [5] to meet this difficulty,
the algorithm still suffers a certain level of susceptibility. Also the modified
algorithm is hard to apply in high dimensional cases.
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In the present study we present a new way of scaling the kernel function.
The new approach will enlarge the kernel by acting directly on the distance
measure to the boundary, instead of the positions of SVs as used before. Exper-
imental study shows that the new algorithm works robustly, and overcomes the
susceptibility of the original method.

2 Scaling the Kernel Function

The SVM solution to a binary classification problem is given by a discriminant
function of the form [1, 2]

f(x) =
∑

s∈SV

αsysK(xs,x) + b (1)

A new out-of-sample case is classified according to the sign of f(x). The support
vectors are, by definition, those xi for which αi > 0. For separable problems
each support vector xs satisfies

f(xs) = ys = ±1 .

In general, when the problem is not separable or is judged too costly to separate,
a solution can always be found by bounding the multipliers αi by the condition
αi ≤ C, for some (usually large) positive constant C.

2.1 Kernel Geometry

It has been observed that the kernel K(x,x′) induces a Riemannian metric in
the input space S [3, 4]. The metric tensor induced by K at x ∈ S is

gij(x) =
∂

∂xi

∂

∂x′
j

K(x,x′)
∣∣∣∣
x′=x

. (2)

This arises by considering K to correspond to the inner product

K(x,x′) = φ(x) · φ(x′) (3)

in some higher dimensional feature space H , where φ is a mapping of S into H .
The inner product metric in H then induces the Riemannian metric (2) in S via
the mapping φ.

The volume element in S with respect to this metric is given by

dV =
√

g(x) dx1 · · · dxn (4)

where g(x) is the determinant of the matrix whose (i, j)th element is gij(x).
The factor

√
g(x), which we call the magnification factor, expresses how a local

volume is expanded or contracted under the mapping φ. Amari and Wu [4]
suggest that it may be beneficial to increase the separation between sample
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points in S which are close to the separating boundary, by using a kernel K̃,
whose corresponding mapping φ̃ provides increased separation in H between
such samples.

The problem is that the location of the boundary is initially unknown. Amari
and Wu therefore suggest that the problem should first be solved in a standard
way using some initial kernel K. It should then be solved a second time using a
conformal transformation K̃ of the original kernel given by

K̃(x,x′) = D(x)K(x,x′)D(x′) (5)

for a suitably chosen positive function D(x). It is easy to check that K̃ satisfies
the Mercer positivity condition. It follows from (2) and (5) that the metric g̃ij(x)
induced by K̃ is related to the original gij(x) by

g̃ij(x) = D(x)2gij(x) + Di(x)K(x,x)Dj(x)

+ D(x)
{

Ki(x,x)Dj(x) + Kj(x,x)Di(x)
}

(6)

where Di(x) = ∂D(x)/∂xi and Ki(x,x) = ∂K(x,x′)/∂xi |x′=x. If gij(x) is to be
enlarged in the region of the initial class boundary, D(x) needs to be largest in
that vicinity, and its gradient needs to be small far away. Amari and Wu consider
the function

D(x) =
∑

i∈SV

e−κ‖x−xi‖2
(7)

where κ is a positive constant. The idea is that support vectors should normally
be found close to the boundary, so that a magnification in the vicinity of sup-
port vectors should implement a magnification around the boundary. A possible
difficulty of (7) is that D(x) can be rather sensitive to the distribution of SVs,
consider magnification will tend to be larger at the high density region of SVs and
lower otherwise. A modified version was proposed in [5] which consider different
κi for different SVs. κi is chosen in a way to accommodate the local density of
SVs, so that the sensitivity with respect to the distribution of SVs is diminished.
By this the modified algorithm achieves some improvement, however, the cost it
brings associated with fixing κi is huge. Also its performance in high dimensional
cases is uncertain. Here, rather than attempt further refinement of the method
embodied in (7), we shall describe a more direct way of achieving the desired
magnification.

2.2 New Approach

The idea here is to choose D so that it decays directly with distance, suitably
measured, from the boundary determined by the first-pass solution using K.
Specifically we consider

D(x) = e−κf(x)2 (8)

where f is given by (1) and κ is a positive constant. This takes its maximum
value on the separating surface where f(x) = 0, and decays to e−κ at the margins
of the separating region where f(x) = ±1.
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3 Geometry and Magnification

3.1 RBF Kernels

To proceed, we need to consider specific forms for the kernel K. Here, we consider
the Gaussian radial basis function kernel

K(x,x′) = e−‖x−x′‖2/2σ2
. (9)

It is straightforward to show that the induced metric is Euclidean with

gij(x) =
1
σ2

δij (10)

and the volume magnification is the constant

√
g(x) =

1
σn

. (11)

3.2 Conformal Kernel Transformations

For illustration, we consider a simple toy problem as shown in Fig.1(a), where
100 points have been selected at random in the square as a training set, and
classified according to whether they fall above or below the curved boundary,
which has been chosen as e−4x2

up to a linear transform. Our approach requires
a first-pass solution using conventional methods. Using a Gaussian radial basis
kernel with width 0.5 and soft-margin parameter C = 10, we obtain the solution
shown in Fig.1(b). This plots contours of the discriminant function f , which is of
the form (1). For sufficiently large samples, the zero contour in Fig.1(a) should
coincide with the curve in Fig.1(b).

To proceed with the second-pass we need to use the modified kernel given
by (5) where K is given by (9) and D is given by (8). It is interesting first to
calculate the general metric tensor g̃ij(x) when K is the Gaussian RBF kernel
(9) and K̃ is derived from K by (5). Substituting in (6), and observing that in
this case K(x,x) = 1 while Ki(x,x) = Kj(x,x) = 0, we obtain

g̃ij(x) =
D(x)2

σ2
δij + Di(x)Dj(x) . (12)

Observing that Di(x) are the components of ∇D(x) = D(x)∇ log D(x), it fol-
lows that the ratio of the new to the old magnification factors is given by

√
g̃(x)
g(x)

= D(x)n
√

1 + σ2‖∇ log D(x)‖2 . (13)

This is true for any positive scalar function D(x). Let us now use the function
given by (8) for which

log D(x) = −κf(x)2 (14)



Scaling the Kernel Function to Improve Performance 835

where f is the first-pass solution given by (1) and shown, for example, in Fig.1(b).
This gives

√
g̃(x)
g(x)

= exp
{−nκf(x)2

}√
1 + 4κ2σ2f(x)2‖∇f(x)‖2 . (15)

This means that

1. the magnification is constant on the separating surface f(x) = 0;
2. along contours of constant f(x), the magnification is greatest where the con-

tours are closest.

These two properties are illustrated in Fig.1(c).
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Fig. 1. (a) A training set of 100 random points classified according to whether they lie
above (+) or below (−) the Gaussian boundary shown. (b) First-pass SVM solution
to the problem in (a) using a Gaussian kernel. The contours show the level sets of the
discriminant function f defined by (1). (c) Contours of the magnification factor (15)
for the modified kernel using D(x) = exp{−κf(x)2} with f defined by the solution of
(b). (d) Second-pass solution using the modified kernel.

4 Simulation Results

The only free parameter in the new approach is κ. It is clear that κ is scale-
invariant and independent of the input dimension. Through experimental study,
we find that in most cases a suitable κ is approximately the reciprocal of |f |max,
the maximum of the absolute value of f(x) in the first pass solution.
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After applying the modified kernel K̃, we solve the classification problem in
Fig.1(a) again, and obtain the solution in Fig.1(d). Comparing this with the
first-pass solution of Fig.1(b), notice the steeper gradient in the vicinity of the
boundary, and the relatively flat areas remote from the boundary. We have
repeated the experiment 10000 times, with a different choice of 100 training
sites and 1000 test sites on each occasion, and have found an average of 14.5%
improvement in classification performance.

We also apply the new method for some real-world problems and obtain en-
couraging results. For instance, for the Mushroom dataset in the UCI Machine
Learning Repository, we observe the improvement as shown in Table.1 (The
misclassification rates are illustrated. The number of training and testing exam-
ples are 100 and 1000, respectively, which are both randomly chosen from the
database. The results are calculated after averaging over 100 trials.).

Before Modification After Modification
C = 10, σ = 0.6 11.20% 7.05%
C = 10, σ = 1.0 4.02% 2.95%
C = 50, σ = 0.6 10.86% 7.46%
C = 100, σ = 0.6 11.97% 7.75%

5 Conclusion

The present study investigates a data-dependent way of optimizing the kernel
functions in SVMs. The proposed algorithm is a modification of the one in [4, 5].
Compared with the original, the new algorithm achieves better performance in
term of that it is more robust with respect to the data distribution. The new
algorithm is also simple and has only one free parameter. It is therefore valuable
as a general methodology for supplementing normal SVM training to enhance
classification performance.
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