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Abstract—This paper analyzes queueing behavior in queues
with a random number of parallel flows, and not static as typically
assumed. By deriving upper and lower bounds on the queue
size distribution, the paper identifies extremal properties in such
dynamic queues. The extremal best-case distribution (minimizing
the queue) is simply the constant, whereas the worst-case distri-
bution (maximizing the queue) has a bimodal structure. From a
more practical point of view, this paper highlights an idiosyncrasy
of dynamic queues: unlike in static queues whereby capacity
dimensioning is dominated by average-values (subject to certain
safety margins), in dynamic queues the capacity dimensioning is
dominated instead by peak-values.

I. INTRODUCTION

Resource allocation is an old problem which perpetually
reincarnates itself in resource sharing systems such as the
telephone network, the Internet, or data centers. The first
influential related treatment was performed by Erlang who
essentially looked at the problem of dimensioning the tele-
phone network. One of Erlang’s main results was a formula
for the computation of the blocking probability that some
shared resource is occupied [20]; remarkably, amongst many
applications, this formula has been used for nearly a century
to dimension telephone networks.

Erlang’s seminal work triggered the development of queue-
ing theory, which has become an indispensable mathematical
framework for the performance analysis of resource sharing
based systems. Over almost a century, the exact approach to
queueing theory (a.k.a. the classical approach) has been gener-
alized to cover a broad class of networks, largely known by the
product-form property (Baskett et al. [5], Kelly [27]). Besides
its large scope, the class of product-form queueing networks is
numerically tractable using convolution (Buzen [13]) or mean
value analysis algorithms (Reiser and Lavenberg [37]).

Several alternative theories to queueing have been de-
veloped to avoid the general limitation of Poisson arrivals
of product-form networks. One is the theory of effective
bandwidth (Kelly [28], Mazumdar [35]), which relies on large
deviation techniques and provides a rather straightforward
analysis of multiplexing regimes for a broad class of arrival
processes. An extension of the effective bandwidth theory,
which can additionally deal with many scheduling algorithms
and especially multi-queue scenarios, is the stochastic net-
work calculus (Chang [14], Jiang and Liu [26], Ciucu and
Schmitt [18]). These conceivably attractive theories provide,
however, queueing metric results in terms of either exact
asymptotics or probabilistic bounds. While the relevance of

asymptotics and (conceivably loose) bounds is often ques-
tioned (Abate et al. [1], Choudhury et al. [17], Shroff and
Schwartz [41]), other advanced techniques yield much refined
results (Duffield [20], Liu et al. [32], Chang [14], Mazumdar
[35]) at the expense however of a more involved analysis.

The common challenge faced by queueing approaches,
when modelling some unpredictable resource sharing based
system, is capturing the system’s inherent randomness. For
instance, in the context of a network router, the high variability
inherent to packet flows is captured by conventional queueing
models with probability distributions (e.g., of the packets’
inter-arrival times and sizes). Network calculus models use
instead envelope functions, which enforce either deterministic
or probabilistic bounds on the amounts of packets over time
intervals. A very recent alternative to classical queueing theory
uses deterministic models satisfying the implications of prob-
ability laws characteristic to the packets flows (e.g., the Law
of the Iterated Logarithm, see Bertismas et al. [7]).

While capturing randomness is essential in modelling,
different randomness models can lead to very different (and
possibly bogus) insights on actual system behavior. Consider
for instance a simple example of a router with capacity C
which is being modelled by the classic M/M/1 queue: packets
arrive as a Poisson process with rate λ, and their sizes are
exponentially distributed with average 1/µ. Under the stability
condition λ/(µC) < 1, the packets’ average delay is

E
[

delay
]

=
1

µC − λ
. (1)

Consider next the much simpler averaged-out D/D/1 model, in
which the interarrival times are constant (i.e., equal to 1/λ) and
packet sizes are constant as well (i.e., equal to 1/µ). Under the
same stability condition, the packets’ average delay becomes

E
[

delay
]

=
1

µC
. (2)

Note the different quantitative results predicted by the two
models, with the observation that the ‘more-random’ one
predicts higher delays. Such stochastic ordering properties,
formalizing the manifestation of the folk principle that “deter-
minism minimizes the queue”, have been studied in the context
of queueing systems (see the related work section) and even
for risk management (see, e.g., Asmussen et al. [3]).

There is substantial prior work on randomness models at
the flow level. What is much less known, and motivates this
paper, concerns randomness models for the number of parallel
flows. Understanding the impact of such randomness models is
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clearly important, e.g., to dimension a network router which is
conceivably traversed by a highly fluctuating number of flows
(for empirical evidence see Section III).

To this end, this paper derives closed-form upper and lower
bounds on the queue size distribution in scenarios whereby
the number of parallel flows M(t) is a random process, and
identifies several extremal properties characteristic to dynamic
queues. The bounds are obtained using martingale-based tech-
niques, which not only lead to tight but also concise results for
broad distributions ofM(t). By leveraging the simplicity of the
obtained bounds, it is first shown using convexity arguments
that the best-case distribution from the perspective of the
queue size is the intuitively obvious constant distribution,
extending thus the folk principle that “determinism minimizes
the queues” from static to dynamic queues.

The second extremal property concerns the corresponding
worst-case distribution, i.e., which law of M(t) maximizes the
queue size? It is shown that this is a bimodal distribution, with
mass on the extremes of M(t)’s range and therefore maximiz-
ing all the moments. This result also agrees with parallel results
from static queues concerning extremal properties of bimodal
distributions (see Section II-B).

In contrast with these apparent similarities between static
and dynamic queues, there is a fundamental difference between
the two. In static queues, capacity dimensioning rules roughly
depend on the average-values of the flows’ rates in multiplex-
ing regimes, subject to some “safety margins” (see, e.g., van
den Berg et al. [6]). For instance, a safety margin of 15%
above the average suffices for guaranteeing end-to-end delays
as low as 3 ms, according to a study on the Sprint network
(see Fraleigh et al. [22]). When dimensioning dynamic queues,
however, this paper uncovers that capacity dimensioning rules
should depend on the peak-values and not the average-values
of the number of parallel flows.

In conjunction with the previous two extremal properties,
this paper indicates that approximating dynamic queues with
static queues (by letting M(t) = E[M(t)]), as convention-
ally done, can severely underestimate queueing behavior and
consequently lead to improper dimensioning rules.

The rest of the paper is structured as follows. First we
overview related work. In Section III we provide some empir-
ical evidence on the practical relevance for studying dynamic
queues. In Section IV we derive upper and lower bounds on the
queue distribution in a dynamic queue. In Section V we present
the best and worst-case distributions in dynamic queues and
illustrate numerical results. Section VI highlights the idiosyn-
crasy of dynamic queues that peak-values dominate capacity
dimensioning rules. Section VII summarizes the paper.

II. RELATED WORK

Here we overview previous work related to the main
topics of this paper, i.e., 1) the relevance of studying dy-
namic queues and 2) extremal distributions for minimiz-
ing/maximizing queues.

A. Dynamic Queues and Analytical Approaches

The importance of accounting for the elastic nature of
Internet traffic, determined by a dynamic or random number of

parallel flows, has been recognized in the context of bandwidth
sharing. Massoulié and Roberts showed that randomness in the
number of parallel flows can have unpredictable consequences
on the throughput of long-lived flows, irrespective of the
assigned weights to the parallel flows [34]. In a similar setting,
Bonald and Massoulié demonstrated that network stability is
insensitive to a broad range of fair allocations [8], gener-
alizing a result of de Veciana et al. for weighted max-min
fairness [44]. A more recent study of Liu et al. showed that
stability is actually sensitive to the settings of α-fairness, in
networks with nonconvex and time-varying rate regions [31],
generalizing an earlier result of Bonald and Proutière [9].
Another notable insensitivity result is that in dynamic scenarios
with flows arriving as a Poisson process, the first moments of
the number of flows and the flows’ throughput do not depend
on the flow size distribution or on the properties of the flows’
arrivals (Fred et al. [23]).

A general way to model randomness in the number of
flows is through a queue with bulk arrivals, i.e., the G[M ]/G/1
queue, whereby customers arrive in batches of random size
M according to a renewal process, and customers have some
service time distribution. In the case of Poisson renewals, exact
solutions exist for various queueing metrics (e.g., Laplace
transforms for waiting times) and various scheduling of the
batches: FIFO (Burke [11]), with priorities (Takagi and Taka-
hashi [43]), or PS (Bansal [4]); for more general renewals
solutions are given numerically (Schleyer [39]) or in terms
of bounds (Yao et al. [46]). For an excellent treatment of
queues with bulk arrivals see Chaudhry and Templeton [15].
Our contribution herein is to analyze very general distributions
(subject to a finite moment generating function (MGF)).

Other analytical approaches address queueing models with
fluid arrivals. For instance, the classical Anick-Mitra-Sondhi
model [2], with a fixed number of flows producing arrivals
at some rates according to the states of Markov On-Off
processes, can be regarded as a queue with a binomial number
of flows. Queueing in related fluid models can be analyzed
exactly in terms of spectral representations, at a cost of high
computational complexity due to a combinatorial explosion in
the number of states [42]. The advantage of our approach is
that it provides simple (convex) upper and lower bounds on
queueing metrics, which further permit the immediate analysis
of extremal properties.

B. Extremal Distributions

A “folk theorem” in queueing theory states that, when
the average inter-arrival (service) time is fixed, the constant
inter-arrival (service) time distribution minimizes queueing
metrics such as average waiting time. This result was proven
for renewal processes (see Rogozin [38]) and also for more
general arrival processes with exponential service times (see
Hajek [24] and Humblet [25]). A related variant of the un-
derlying intuitive principle that “determinism minimizes the
waiting” is that round-robin server assignment outperforms
random server assignment (see Makowski and Philips [33]).

In turn, bimodal distributions maximize queue lengths
in GI/M/1 queues (Whitt [45]), in G/M/1 queues with bulk
arrivals (Lee and Tsitsiklis [30]), and more recently in queues
with bulk arrivals and finite buffers (Bušić et al. [12]). We



will show that these extremal properties characteristic to static
queues extend to dynamic queues as well.

III. EMPIRICAL MOTIVATION

To confirm fluctuations in the number of parallel flows, and
thus provide an empirical justification for addressing dynamic
queues, we consider two packet-level traces referred to as
Munich and MAWI. The first was captured in 2007 at the
Munich Scientific Network, serving more than 50,000 hosts,
on a 1 Gbps uplink to the German research backbone network
(for more details see [19]). The second was collected over a
trans-Pacific backbone line in July 2012 (MAWI repository,
cf. [16]) and contains 15 minutes of traffic. For our study,
we extracted connection-level information by analyzing packet
headers using the tool BRO [36], and by setting inactivity
timeouts for TCP flows to 1 min., and for UDP and ICMP
flows to 10 secs.
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Fig. 1. Densities of the number of parallel flows for two traces.

Figures 1.(a) and (b) illustrate the densities of the number
of parallel flows over a randomly selected period of 10
secs, and three additional embedded periods of 10, 102, 103

ms in the 10 secs period. Both figures clearly show the
existence of fluctuations in the number of parallel flows at
relatively small time scales. While it is clearly of interest
to investigate more closely the measured data (e.g., alike
measurement studies showing subexponential flow interarrival
times (Feldmann [21])) we do not seek to identify specific
distributions but rather to motivate the need for investigating
the effects of randomness in the number of parallel flows.

We remark that while the empirical justifications provided
herein are based on realistic Internet traffic, the analytical mod-
els used in this paper are much simplified. In particular, they do
not address closed-loop traffic (e.g., TCP), but rather open-loop
traffic with i.i.d. assumptions at the flow level. All together, our
analytical models provide an intuitively straightforward and
yet effective convex optimization framework to investigate the
effects of randomness in dynamic queues, and in particular to
highlight extremal properties.

IV. RANDOMNESS IN THE NUMBER OF PARALLEL FLOWS

In this section we analyze the single-queue scenario from
Figure 2. In addition to randomness at the flow level, the
queueing model captures randomness in the number of parallel
flows. The queue has an infinite sized buffer, whereas the
server has a constant capacity C and serves the arrivals in
a work-conserving manner.

After introducing the arrival model, we will present closed-
form results on the queue size, and then discuss on the impact
of randomness in the number of flows.

CA(t)

M(t)

Fig. 2. A server with constant rate C serving a single queue with input A(t)
consisting of M(t) flows.

A. Arrival Model

The time model is discrete. The number of parallel flows
active at time t is represented by a stationary stochastic
process M(t). The cumulative arrival process A(t), counting
the number of data units (e.g., packets) over the time interval
[0, t] is defined recursively as

A(t) = A(t− 1) +

M(t)
∑

i=1

ai(t) , (3)

with the initial condition A(0) = 0. The instantaneous arrival
process at time t is represented by the random vector a(t) =
(a1(t), a2(t), . . . ). When clear from the context, we will refer
to the elements of M(t) by M , and to the elements of a(t)
simply by a.

For some θ > 0, we assume that the moment generating
functions (MGFs)

φa(θ) := E
[

eθa
]

and φM (θ) := E
[

eθM
]

are finite. Moreover, for the sake of simplicity we assume that
the elements of a(t) and M(t) are each iid (independent and
identically distributed), and jointly independently.

B. The Queue Distribution

Without loss of generality we assume that A(t) is a
reversible process such that the stationary queue length Q can
be written as

Q = sup
t≥0

{A(t)− Ct} .

The next theorem provides upper and lower bounds for the
distribution of Q for the case when the elements of M are
statistically independent.

Theorem 1: (Q’S DISTRIBUTION) Consider the arrival
process from Eq. (3) and assume that the elements of A are
i.i.d. with MGF φa(θ), and the elements of M are i.i.d. with
MGF φM (θ); also, A and M are independent. Consider a
queue with service rate C and let

θ = sup {θ ≥ 0 : φM (logφa(θ)) = φC(θ)} . (4)

Then we have the upper bound for all x ≥ 0

P

(

Q ≥ x
)

≤ e−θx . (5)

If in addition there exists the constants amax and Nmax such
that a1(1) ≤ amax almost surely (a.s.), M(1) ≤ Nmax a.s., and
Nmaxamax > C, then we have the lower bound for all x ≥ 0

P

(

Q ≥ x
)

≥ e−θ(Nmaxamax−C)e−θx .

The upper and lower bounds are asymptotically exact (i.e.,
the following limit limx→∞

1
x
logP (Q > x) = θ holds) since



the two exponential bounds have the same decay rate θ. We
remark that the theorem immediately extends to the case of a
queue with random instantaneous capacities (C(1), C(2), . . . ),
if these are i.i.d.; the only modification is that φC(θ) in Eq. (4)
is to be replaced by φC(1)(θ). In the theorem, we do not
explicitly impose the stability condition φ′

a(0)φ
′
M (0) < C.

Unless this is true then θ = 0 in Eq. (4). Also, for the lower
bound, the condition Nmaxamax > C avoids the trivial situation
of no queueing.

V. EXTREMAL DISTRIBUTIONS

In this section we first identify the best-case and worst-
case distributions for M(t) which minimize and maximize,
respectively, the queue size in a scenario with a random
number of parallel flows. Finally we discuss on conditions
under which a particular distribution is ‘better’ or ‘worse’ than
another, and present numerical results.

To formalize the underlying stochastic ordering, and thus
the meaning of ‘better’ and ‘worse’, we say that a queue Q1

is smaller than another queue Q2 if the corresponding decay
rates θ1 and θ2 (e.g., defined in Eq. (4)) satisfy

θ1 ≤ θ2 .

A. Best-Case Distribution

First we briefly show the intuitive result that the best-case
distribution of M is the constant one. What is more interesting
is that neither of the distributions of M and a dominates the
other, when jointly accounting for both.

In the simpler case when M(t) is i.i.d., Jensen’s inequality
applied to the exponential function (i.e., eθE[X] ≤ E

[

eθX
]

for
some r.v. X) yields that

φE[M ] (logφa(θ)) ≤ φM (logφa(θ)) .

The left-hand side corresponds to the composition of MGFs
from the definition of θ from Eq. (4) when there is no
randomness in the number of parallel flows, i.e., when the
elements of M(t) are equal to a single constant. In turn, the
right-hand side accounts for randomness in M(t). Because of
the inequality above, it follows that the value of θ from Eq. (4)
decreases when accounting for randomness, which further
means that the queue increases correspondingly. The best-
distribution is thus the constant, which in particular minimizes
all the moments.

Finally, we point out the interesting fact that none of the
randomness in the number of parallel flows, or at the flow
level, dominates the other. That is because there is no general
ordering between the terms

φE[M ] (logφa(θ)) and φM

(

logφE[a](θ)
)

.

Indeed, using Jensen’s inequality, the left term is the smallest
when a is non-random (i.e., a = E[a]) and M is random.
In turn, the left term is the largest when M is non-random
(i.e., M = E[M ]) and a is random. This fundamental lack of
monotonicity suggests that, even for the purpose of deriving
bounds on the queue size distribution, both the randomness
in the number of flows and at the flow level must be jointly
accounted for. In other words, simplifying the queueing model
by averaging-out either M or a can lend itself to bogus results.

B. Worst-Case Distribution

According to Theorem 1, the problem of determining the
distribution of M which maximizes the queue reduces to
solving for

argmax
M,E[M ]=m

E
[

eθM
]

, (6)

for all θ > 0. The next Lemma gives the solution.

Lemma 1: (WORST-CASE DISTRIBUTION) Assuming that
M has the support {0, 1, . . . ,m}, and E[M ] = m, then the
solution of Eq. (6) is the bimodal distribution with

π0 = 1−
m

m
and πm =

m

m
.

PROOF. Assume that there exists 0 < i < m such that
πi := P(M = i) > 0. Denoting x = m−i

m
πi, let us observe

that

π0 + πie
θi + πmeθm ≤ π0 + x+ (πm + πi − x) eθm . (7)

Indeed, showing this inequality reduces to showing that the
function

f(i) :=
eθm − eθi

m− i

is monotonically increasing over i ∈ {0, 1, . . . ,m − 1}. This
can be shown immediately by extending f(·) to continuous
time, differentiating, and using the inequality ez ≥ z + 1 for
z ≥ 0.

Therefore, Eq. (7) shows that a ‘worse’ distribution can be
obtained by appropriately spreading the distribution mass to
the extremes. Note that the new distribution retains the average
value m since

iπi +mπm = m (πm + πi − x) .

The proof is complete by repeatedly spreading the mass, as in
Eq. (7), for all 0 < i < m for which πi > 0. �

We note that the bimodal distribution was found to attain
the maximum over a partial order set according to convex
ordering (see Shaked and Shanthikumar [40], Theorem 3.A.24,
p. 125); in our case, the ordering is restricted to MGFs only.

C. Numerical Results

We now provide numerical evidence on the discrepancy
between static and dynamic queues, by varying the distribution
of the number of parallel flows M .

To keep the analysis concise, we consider a homogenous
scenario in which the elements of a are Bernoulli random
variables taking the values 0 and 1 with probabilities 1−p and
p, respectively. Figure 3 illustrates the queue size x, for a
fixed violation probability ε = 10−3, and as a function of
the utilization factor; the other parameters are E[M ] = 10,
Peak(M) = 20, C = 9, and p is scaled accordingly for
each utilization value. The worst-case distribution is the one
from Lemma 1. The figure indicates that the impact of M ’s
distribution on the queue size can be substantial (e.g., as large
as many orders of magnitude). Moreover, simulation results
(depicted with the ‘×’ symbol, for each distribution) indicate
that our analytical bounds are quite tight.



0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

2
5

Utilization

Q
u
e
u
e
 s

iz
e

Worst−Case

Uniform

Binomial

Deterministic

Fig. 3. Impact of several distributions for the number of parallel flows
M on the queue size. Analytical bounds are depicted with lines, whereas
corresponding simulation results are depicted with the ‘×’ symbol.

VI. THE PEAK-VALUE MATTERS

In this section we show the interesting fact that randomness
in the number of parallel flows M is fundamentally different,
from a practical point of view, than randomness in the elements
of the flows a. We expose this discrepancy by analyzing
the dominant roles of average and peak-values in capacity
dimensioning.

To this end, we consider a simple capacity dimensioning
problem: given M parallel flows and the overflow probability
constraint

P

(

Q > x0

)

≤ ε0 ,

for some fixed values x0 and ε0, one has to determine the
required capacity C0.

We first give the solution when M is non-random, i.e.,
M = E[M ]. According to Theorem 1, for instance, the
required capacity must satisfy

C0 ≥ E[M ]αa(θ0) ,

where α(θ0) is the so-called effective bandwidth (see,
e.g., Kelly [28]) of a single source, which is defined here as

αa(θ0) =
logφa(θ0)

θ0
. It is important to point out now the range

of the effective bandwidth, i.e.,

E[a] ≤ αa(θ0) ≤ Peak(a) ,

where Peak(a) denotes the peak-value of a; also, αa(θ0) is
non-decreasing in θ0. Accordingly, the above dimensioning
rule says that the required capacity scales linearly with a
rate αa(θ0), which lies between the average and peak-value
of a. In particular, in the case of a weak constraint of the
dimensioning problem (e.g., for large values of x0 or of
the violation probability ε0), the required capacity C0 scales
roughly linearly with E[a].

In contrast, we next show that in the case when M is ran-
dom, it is generally the peak-value of M , and not its average-
value, which determines the required capacity. Let us assume
that M has some distribution with support {0, 1, . . . ,m},
where m = Peak(M) is the peak-value having some positive

mass πm. According to Theorem 1, the required capacity for
the above dimensioning problem satisfies

C0 ≥
1

θ0
logE

[

φa(θ0)
M
]

≥ Peak(M)αa(θ0) +
log πm

θ0
.

This shows that the required capacity C0 grows linearly in

the peak-value of M as long as πm = ω
((

1
φa(θ0)

)m)

, i.e.,

the mass of the peak-value m does not decay (at least) expo-
nentially fast with a certain base depending on the overflow
constraint.

To summarize, we have showed (first the known fact)
that when M is non-random then the following capacity
dimensioning rule applies

Capacity ≈ AvgValue (# of flows)∗ (AvgRate (flows)+SM) ,

where SM is some safety margin (e.g., SM = αa(θ0)−E[a])
(van den Berg et al. [6]) . This rule captures the manifestation
of statistical multiplexing or economies of scale; see Knightly
and Shroff [29], or Boorstyn et al. [10] for numerical evidence.
In turn, when M is random, then a fundamentally different
capacity dimensioning rule applies, i.e.,

Capacity ≈ PeakValue (# of flows) ∗ AvgRate (flows) .

As a side remark, the obtained results so far uncover several
fundamental similarities and differences amongst the concepts
of capacity when defined in 1) information theory (e.g., as the
channel capacity), 2) static, and 3) dynamic queues (e.g., as
the required capacity to guarantee some queueing constraints).
All three corresponding maximal capacities are attained by the
intuitively obvious constant distribution, which in particular
has zero entropy. In turn, while the minimal channel capacity is
attained by the uniform distribution (which maximizes the en-
tropy), the two queueing minimal capacities are attained by bi-
modal distributions; this conceptual difference stems from the
different scalar measures of a distribution used in information
theory (i.e., the entropy) and queues (i.e., moments accounting
for actual values). A fundamental distinction between 2) and
3) is that the corresponding capacities are dominated in 2) by
average-values (or more precisely by effective bandwidths),
and in 3) by peak-values, which are themselves fundamentally
different scalar metrics of a distribution.

VII. CONCLUSIONS

In this paper we have investigated queueing behavior
in typically neglected but highly relevant dynamic queues
characterized by a random number of parallel flows. We have
showed that dynamic queues retain some extremal properties
from static queues, i.e., capacities are maximized by constant
distributions and are minimized by bimodal distributions.
The underlying apparent high sensitivity of dynamic queues
to randomness is further evidenced by the observation that
capacities are dominated by peak and not by average-values;
the opposite holds instead in static queues. These results jointly
highlight the pitfall of approximating dynamic by static queues,
by averaging-out the number of parallel flows, which can lead
to very misleading results.
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[12] A. Bušić, J.-M. Fourneau, and N. Pekergin. Worst case analysis of
batch arrivals with the increasing convex ordering. In A. Horváth
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