
File: CS252-HACD-Notes7.doc
Printed at: 17:30 on Monday, 25 October, 2010

CS252.HACD Notes for Section 7, Constraints and Updating — Page 1 of 4

CS252:HACD Fundamentals of Relational Databases
Notes for Section 7: Constraints and Updating

1. Cover slide

Now that we have learned relational algebra, we are in a position to tackle the two topics of this
section.

2. CONSTRAINTS

“… the database is at all times in a consistent state”we need to clarify “at all times”. In Tutorial
D it means that consistency is enforced at the end of every innermost statementin other words,
from a syntactic point of view, every time the system encounters a semicolon in the commands that
are given to it. There is no requirement for consistency to be enforced at a lower level of
granularity than that, because intermediate states arising during the execution of a command are not
visible to any users.

Some authorities require constraints to be satisfied only at the ends of transactionsin other words,
immediately following execution of COMMIT commands. This weaker approach allows an
inconsistent state to arise during a transaction and to be visible to the user running that transaction,
but still protects other users. (This approach was once thought necessary to overcome the problem
described on Slide 20, but see the solution described on Slides 21 and 22.)

The SQL counterparts of KEY are PRIMARY KEY and UNIQUE. That of IS_EMPTY is NOT
EXISTS.

3. KEY Constraints

The constraint, if declared, has to be satisfied for every relation ever assigned to EXAM_MARK.

Note that the current value shows that { Mark } is not a superkey, because two distinct tuples have
the same value for Mark. We might wonder if { CourseId, Mark } or { StudentId, Mark } is a
superkey, as both of those subsets do satisfy the constraint in the relation shown. However, our
knowledge of the enterprise tells us that in general a student might get the same mark on two
different courses and that different students might get the same mark on the same course.

The longhand shown on the slide groups the marks for each combination of StudentId and
CourseId, then picks out just those tuples containing more than one mark in the Marks group, then
requires that result to be empty by projecting it over no attributes and comparing the result of that
with the empty relation of degree zero (a.k.a. TABLE_DUM).

In general, the longhand involves grouping the nonkey attributes, then picking out the tuples having
groups of cardinality greater then one, then projecting over no attributes, then comparing that with
TABLE_DUM. If the comparison yields FALSE, then the KEY constraint is violated.

Here’s a shorter longhand for the same KEY constraint:

COUNT (EXAM_MARK) = COUNT (EXAM_MARK { StudentId, CourseId })

If the number of tuples in the base relvar is equal to the number of tuples in its projection over the
key attributes, then the KEY constraint is satisfied; otherwise it is not.

4. When a Superkey Is a Key

No notes.

Page 2 of 4 — CS252.HACD Notes for Section 7, Constraints and Updating

5. The KEY Shorthand

Note that Tutorial D supports keys but does not support primary keys. Primary keys are not
essential. Multiple KEY clauses are permitted in the same relvar definition. No declared key can
be a superset of another one.

6. Multiple Keys

No notes.

7. Degenerate Cases of Keys

Recall the definition of key. First we defined superkey as meaning a certain kind of uniqueness
constraint, and then we defined a key as being a superkey of which no proper subset is a superkey.

As for the special property implied by the empty key, recall that if k is a superkey of rv, then
COUNT(rv) = COUNT(rv { k }). What is the maximum value of COUNT(rv {})?

8. “Foreign Key” Constraints

The term “foreign key” was introduced in the 1970s and taken up by SQL. Tutorial D has no
direct counterpart, for reasons we shall shortly see. Not everybody finds the term very intuitive.
The special kind of constraint it refers to is certainly a very common one indeed, and comparatively
easy to implement with good performance in a DBMS.

The constraint involves matching certain attributes (just one in the example) with those of a key of
“another” relvar (called the referenced relvar). I wrote the word “another” in quotes, because in
fact the referenced relvar is permitted to be the same as the referencing relvar; but the fact that the
two relvars are usually different ones perhaps explains the use of the word “foreign”. The
referenced attributes are a key in a foreign place, so to speak, but unfortunately the term “foreign
key” refers to the referencing attributes!

9. Inclusion Dependency

By using a relation comparison such as the one shown on this slide, we lose those restrictions that,
for reasons that are not entirely clear, are imposed on foreign keys:

 The referencing relation does not have to be specifically a base relvar reference (here it is a
projection of a base relvar).

 Nor does the referenced relation (here again it is a projection of a base relvar).

 And the matching attributes no longer have to constitute a declared key of the referenced
relation (though here they are).

Because the reasons are unclear, the shorthand is not supported in Tutorial D, so you will have to
write such constraints using as relation comparisons or the IS_EMPTY shorthand shown on the next
slide. In any case, even if Tutorial D did support FOREIGN KEY, it would have to be done
differently from SQL, because in SQL the specification depends on column order when more than
one column is involved.

Rel alert: Don’t forget that Rel uses <= and >= for  and , respectively.

10. A Special Case of Inclusion Dependency

Recall that TABLE_DUM is the relation with no attributes and no tuples. If TABLE_DUM is a
superset of r, then r too must be empty (and in fact must be TABLE_DUM).

CS252.HACD Notes for Section 7, Constraints and Updating — Page 3 of 4

11. IS_EMPTY Example

Because the operand of IS_EMPTY is a relation expression of arbitrary complexity, and because of
the completeness of the relational algebra, any constraint can be expressed using IS_EMPTY, in
theory. But sometimes the more general notation for inclusion dependencies is more convenient.
The KEY and FOREIGN KEY shorthands, when applicable, are always more convenient.

Note that expressions using IS_EMPTY often seem like double negatives. We want to ensure that
every mark is between 0 and 100 but we have to declare instead that no mark shall not be between 0
and 100.

12. Generalisation of Inclusion Dependency

Note that the operands now do not have to be of the same type (have the same heading). So we
don’t need those projections that we had to use in the inclusion dependency. As a consequence, the
expression now includes no attribute names. This makes it immune to certain changes in the
database definition, but vulnerable to others. It is unaffected when the name StudentId is changed
to the same new name in both relvars, but it is vulnerable to the case where it is changed in just one
of them. To be 100% safe, but vulnerable to both kinds of change, the constraint could be written
like this:

IS_EMPTY (IS_ENROLLED_ON { StudentId } NOT MATCHING
IS_CALLED { StudentId })

But use of IS_EMPTY (… NOT MATCHING …) expressions poses big performance challenges
for the DBMS. Shorthands are often good for the system as well as the user. The FOREIGN KEY
shorthand used in SQL does have the advantage of being easy to implement with great efficiency.
The question is, do we really need all of the observed restrictions before we can achieve the same
efficiency?

13. “Exclusion Dependency”?

“Exclusion Dependency” is in quotes because I made it up for this lecture. You won’t find it in the
literature.

Unlike the FOREIGN KEY shorthand, inclusion dependency has an obvious and occasionally
useful inverse, neatly captured in Tutorial D by omission of the word NOT.

Note that the operands of MATCHING can now be placed in either order, which is not the case
with the inclusion dependency.

14. Constraint Declaration

As usual, a Tutorial D declaration consists of a key word indicating the kind of thing being
declared, followed by a name by which it can be subsequently referenced, followed by the rest of
the declaration.

15. Relational Update Operators

No notes.

16. INSERT, UPDATE, DELETE

Loosely speaking especially in the case of UPDATE. To speak of updating tuples is to speak of the
tuples in a relvar as if they too were variables (and thus vairables within variables).

Each of these operators is actually shorthand for some form of assignment. For example, the
assignment shown for enrolling student S5 on course C1 is the longhand for a certain invocation of
the INSERT operator …

Page 4 of 4 — CS252.HACD Notes for Section 7, Constraints and Updating

17. INSERT

This example records two new enrolments. The SQL counterpart of Tutorial D’s RELATION{…}
expressions is the VALUES expression. Many SQL implementations restrict VALUES to denoting
just a single row, even though the international standard allows any number of rows to be included,
as in Tutorial D’s RELATION{…}.

18. UPDATE

If the WHERE clause is omitted, the specified attribute updates apply to every tuple in the current
value of the target relvar. In other words, the WHERE clause defaults to WHERE TRUE.

19. DELETE

No notes.

20. An Occasional Problem with Updating

The example shown on this slide cannot happen with Oracle SQL because the second constraint
cannot be expressed in Oracle. This is because Oracle, like nearly all industrial SQL
implementations, does not allow subqueries to appear in constraint declarations.1 However, the
impasse can still arise if, for example, base table T1 is defined with a foreign key referencing base
table T2 and T2 is defined with a foreign key referencing T1.

21. Proposed Solution to The Impasse

Multiple assignment has been proposed as a solution to the updating impasse that occasionally
arises, but is not available in the technology of 2005. SQL systems have rather unsatisfactory ad
hoc workarounds.

Notice the comma after the first INSERT. It indicates that constraints are not to be checked yet. In
Tutorial D, constraints are checked at every semicolon (so to speak) only.

The detailed semantics of multiple assignment are rather complicated and beyond the scope of this
course. Perhaps its most important aim is to ensure that no inconsistent database state is ever
“visible”, even if can notionally arise in the middle of a operation. For that reason, there is a rule to
the effect that all expressions involved in the multiple assignment are evaluated before any updates
are done (see the next slide).

22. A Note on Multiple Assignment

Rel’s support for multiple assignment is inconsistent with the aspect described on this slide. In
other words, if one of the individual assignments references a variable updated by an early
assignment in the same statement, the value of that reference is the result of that earlier update
instead of being its value at the very beginning of the statement. If that earlier update resulted in a
temporary inconsistent state of the database, then the later assignment is “seeing” that inconsistent
statethe phenomenon that Tutorial D’s multiple assignment is intended to avoid is being allowed
to arise. The deficiency in Rel’s support for multiple assignment need not bother CS252 students.
The important thing for CS252 is that the “impasse” described on Slide 20 can be easily addressed.

End of Notes

1 The SQL international standard does allow them and also includes a CREATE ASSERTION statement that supports
everything that can be expressed using Tutorial D’s CONSTRAINT statement. We are not aware of any SQL
implementations that support CREATE ASSERTION.

