File: CS252-Solutions-to-HD-Lecture9-Exercises.doc
Printed at: 15:54 on Wednesday, 20 October, 2010

CS252.HACD — Solutions to Lecture Exercises
(in Section 9)

Slide 5

Exercise: Write a Tutorial D constraint declaration to ensure that every StudentId value

appearing in IS_ENROLLED_ON also appears as a StudentId valuein IS CALLED.
The simplest way is just

CONSTRAINT Only known students are enrolled
IS EMPTY (IS ENROLLED ON NOT MATCHING IS CALLED) ;

Slide 6

Exercise: Write a Tutorial D constraint declaration to enforce the FD { StudentId}—{Name}
to hold in ENROLMENT.
There are several solutions. The logician might try:

WITH ENROLMENT { StudentId, Name } AS ESN
IS EMPTY ((ESN RENAME (Name AS N1) JOIN
ESN RENAME (Name AS N2))
WHERE N1 <> N2)

But rather slicker is

IS EMPTY (ENROLMENT GROUP ({ALL BUT StudentId} AS CN)
WHERE COUNT (CN{Name}) > 1)

Here we obtain, by grouping, for each StudentId value, a set of {CourseId, Name}
pairs. The FD means that in every such set the Name value must be constant.

Perhaps even simpler:

WITH ENROLMENT { StudentId, Name } AS ESN
COUNT (ESN) = COUNT (ESN { StudentId })

If any StudentId value appears with different Name values in distinct tuples of
ENROLMENT, then these counts will not be the same; otherwise they will be.

Slide 24

(a) Write down the nontrivial functional dependencies (FDs) that hold in fixture. For each
one, state whether its determinant is a key of fixture.

{Date} — {Against, Venue, GoalsFor, GoalsAgainst, Result}
{Date} is a key.

{Against, Venue} — {Date, GoalsFor, GoalsAgainst, Result}
{Against, Venue} isakey.

{GoalsFor, GoalsAgainst}— {Result}
{GoalsFor, GoalsAgainst} isnota key.

(b) Decompose fixture into as few relvars as possible such that each one is in BCNF. Use

Boris’s notation for the relvars and state the key(s) of each one. For each BCNF relvar, state
whether it is in 6NF.

CS252.HACD — Solutions to Lecture Exercises — Page 1 of 3

(c)

(d)

(©)

®

(2

fixture {Against, Venue, Date, GoalsFor, GoalsAgainst}
{Date} and {Against, Venue} are both keys.
fixture is not in 6NF.

outcome {GoalsFor, GoalsAgainst, Result}
{GoalsFor, GoalsAgainst} isthe only key.
outcome is in 6NF.

What problem, originally observed by Anne, has been solved in the BCNF design?

Because the score determines the result, two or more matches with the same score
must always have the same result. The database would be inconsistent if, for
example, a draw was given for a certain score of 0-0 but a win to Wargs for another
0-0 score. (Of course we know which one is incorrect, but BCNF alone does not
provide a fix for that.)

For any BCNF relvar that is not in 6NF, decompose it into an equivalent set of 6NF relvars
having the same key.

I decompose fixture as follows, Date being the key in each case:

fixA {Against, Date}

fixV {Venue, Date}

fixGF {GoalsFor, Date}
fixGA {GoalsAgainst, Date}

What problem, originally observed by Anne and remaining in the BCNF design, has been
solved in the 6NF design?

They had agreed that it is desirable to be able to record the date and venue of a
fixture before the match is actually played. Boris’s original design makes that
impossible except by means of a contrivance such as assigning values such as -1, -1
and “not played yet” to GoalsFor, GoalsAgainst, and Result, respectively.
Such contrivances lead to needless complications for users of the database and are
best avoided.

What problem, originally observed by Anne, remains in the complete 6NF design?

The Result attribute is completely redundant because, as Boris explained, its value
can always be deduced from GoalsFor and GoalsAgainst. Unless we declare
the constraint that would be needed to ensure that the result is consistent with the
score, the database is at risk of being inconsistent and therefore incorrect.

What new problems did Boris observe with the 6NF design?

1. The constraint expressed by {Against, Venue} being a key of
fixture has been “lost”. The 6NF design permits any number of matches
to be played against the same opponents at either venue.

2. Unless appropriate constraints are added, the design allows a tuple to exist in
either of £ixA and f1ixV for a certain Date without there being also a tuple
for that Date in the other.

3. Similarly, unless appropriate constraints are added, the design allows a tuple
to exist in either of £ixGF and £ixGA for a certain Date without there

being also a tuple for that Date in the other.

Page 2 of 3 — CS252.HACD — Solutions to Lecture Exercises

(h) What compromise do you think Anne and Boris settled on, to solve all the problems they

had both observed? Give the relvars and their keys, and state any other constraints that you
think needs to be declared for this design.

They recombined the 6NF relvars into just two, discarding the Result attribute
altogether, as follows:
fixture {Against, Venue, Date}

{Date} and {Against, Venue} are both keys.
outcome {GoalsFor, GoalsAgainst, Date}

{Date} is the only key and is also a foreign key referencing fixture. As
Tutorial D doesn’t support FOREIGN KEY syntax, the constraint must be declared
like this:
CONSTRAINT outcomeFK
IS EMPTY (outcome NOT MATCHING fixture) ;

End of solutions

CS252.HACD — Solutions to Lecture Exercises — Page 3 of 3

