
File: CS252-Solutions1.doc
Printed at: 14:16 on Wednesday, 23 February, 2011

CS252 Solutions for Worksheet 1: Getting Started with Rel — Page 1 of 4

CS252 Fundamentals of Relational Databases — Solutions for Worksheet 1

Getting Started with Rel

1. No questions asked.

2. No questions asked.

3. No questions asked.

4. No questions asked.

5. Why do we have to write output x ; in full when it is part of a compound statement,
instead of just x?

Because otherwise Rel would be looking at x end ; and that is not a valid
statement of any kind. The presence of a line break carries no significance.

What have you learned about Rel’s rules concerning case sensitivity?

Identifiers are case-sensitive, key words are not.

6. When “Enhanced” is off, is the output of evaluating the given relation literal identical to the
input?

No. The output includes {CourseId CHAR, Name CHAR, StudentId CHAR} in
between the key word RELATION and the first opening brace. Also, the character string
literals are enclosed in double-quotes instead of single-quotes.

Now delete all the tuple expressions, leaving just RELATION { }. What happens when Rel tries
to evaluate that?

You get an error message saying that “{” is expected in place of <EOF>. In other words,
it expects another list enclosed in braces to follow the empty one.

Now use < to recall the original RELATION expression to the input pane and re-evaluate it with
“Enhanced” off. Use copy-and-paste to copy the result to the input pane, then delete all the
TUPLE expressions, to leave this:

RELATION {StudentId CHARACTER, CourseId CHARACTER,
Name CHARACTER} { }

Study the result of that in the output pane, first with “Enhanced” off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?

The text inserted after the key word RELATION can be recognized as a specification of the
heading of the relation: a list of the attribute names and their declared types (in this
example, CHARACTER for each attribute). Tutorial D allows the heading to be specified,
in which case each tuple specified in the body must be of that heading. Tutorial D also
allows the heading to be omitted, provided that the body is not empty. Each tuple must of
course be of the same heading, and that determines the heading of the relation.

Rel allows CHARACTER literals to be enclosed in either single-quotes or double-quotes.
The closing quote must match the opening one.

Next, enter the following literal, perhaps by using the < button to recall enrolment and editing
it:

RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },

Page 2 of 4 —CS252 Solutions for Worksheet 1: Getting Started with Rel

TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }
}

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet
your expectation? How do you explain it?

The body of a relation is a set of tuples. A set by definition contains exactly one
appearance of each of its elements. Rel would perhaps be justified in treating this
expression as an error, but it is equally justified in just ignoring any duplicate tuples. In
conventional mathematical notation, {1,2,3,1}, for example, is considered to denote the set
consisting of the elements 1, 2, and 3. The redundancy can sometimes be convenient when
variables are involved—the set {x, y}, for example, has cardinality 1 in the case where
x=y.

Use < again to recall the enrolment literal. Insert the word WITH at the beginning, add AS
enrolment : enrolment at the end, and execute. How do you understand what you have
just done?

The WITH expression equates the name enrolment with the RELATION expression
preceding the key word AS. It is the expression following the colon (:) that Rel evaluates.
So in this simple case, WITH defines the name enrolment, and enrolment is then the
expression we ask Rel to evaluate when we click on Run (F5).

By inspection of enrolment only, write down all the cases you can find of two students such
that there is at least one course they are both enrolled on.

Anne and Boris
Boris and Devinder
Anne and Devinder

If you included all the cases where the two students are in fact the same student, such as
“Anne and Anne”, well, that's a good pointthe question didn't say “distinct students”.

7. How many distinct projections can be obtained from enrolment?

Eight. If you found less than eight, did you forget the empty projection,
enrolment{}? If you found more than eight, were you perhaps thinking that, for
example, enrolment{StudentId, Name} and enrolment{Name,
StudentId} are distinct projections? Recall that attribute order carries no
significance.

8. Your renaming should look like this:

WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
} AS enrolment,
enrolment RENAME (StudentId as SID1, Name as N1) AS E1:
E1

CS252 Solutions for Worksheet 1: Getting Started with Rel — Page 3 of 4

9. Here is the expression you should have evaluated:

WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
} AS enrolment,
enrolment RENAME (StudentId as SID1, Name as N1) AS E1,
enrolment RENAME (StudentId as SID2, Name as N2) AS E2:
E1 JOIN E2

How do you interpret the result? How many tuples does it contain? Replace the key word
JOIN by COMPOSE. How do you interpret this result? How many tuples are there now?
How do you account for the difference?

The result of the join gives pairs of students, shown by their names and ids, enrolled
on the same course, along with the course id of that course. There are 11 tuples,
including several in which the two students are in fact the same person!

The result of the compose gives pairs of students such that there is at least one course
they are both enrolled on. This time there are only 10 tuples, because Anne is
enrolled on two courses and therefore appears twice, paired with herself, in the join
but only once in the composition. (The composition is equivalent to the join
followed by { ALL BUT CourseId }).

10. Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in Step 9
(see Lecture HACD.5, slides 3-6). Examine the result closely. Now place parentheses
around E1 COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by { SID1 }. Do
you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Rel?

Because presence of parentheses around e1 COMPOSE e2 makes no difference
when that is followed by an invocation of WHERE, it appears that COMPOSE takes
precedence over restriction. And so does JOIN. However, when we replace the
restriction by a projection that specifies an attribute of E1, we find that it fails unless
the COMPOSE invocation is enclosed in parentheses. We conclude that projection
takes precedence over COMPOSE (and JOIN). On the whole you are left to discover
Rel's operator precedence rules for yourself. Of course you can always use
parentheses to override them, as in most computer languages.

Why was it probably a good idea to add that WHERE invocation? Does it completely solve
the problem? If not, can you think of a better solution?

It eliminates the cases of the two students paired together being the very same
student. However, we are still left with Anne being paired with Boris in one tuple,
and Boris being paired with Anne in another tuple. Obviously if Anne and Boris are
both enrolled on some course, we don't really want to be told so twice. It seems that
the relation for the predicate “x is enrolled on the same course as y” is reflexive (true
whenever x = y) and symmetric (if it is true when x = a and y = b, then it is true when
x = b and y = a).

Page 4 of 4 —CS252 Solutions for Worksheet 1: Getting Started with Rel

We can eliminate the redundant cases by using the WHERE condition SID1 <
SID2, sneakily taking advantage of the fact that character strings are ordered (in
Rel, as in most programming languages, of course).

What connection, if any, do you see between this exercise and Exercise 6?

See the last paragraph of Exercise 6.

11. We value your comments. If you wrote some, thank you!

End of Solutions

