File: CS252-Solutions4.doc
Printed at: 15:37 on Wednesday, 9 March, 2011

CS252 Fundamentals of Relational Databases — Solutions for Worksheet 4

Constraints, Catalog, and Virtual Relvars in Rel
1. No questions asked.

2. Write Tutorial D integrity constraints for the suppliers-and-parts database to express the
following requirements:

a. Every shipment tuple must have a supplier number matching that of some supplier
tuple.

CONSTRAINT Ca IS EMPTY (SP NOT MATCHING S) ;

Relation comparison could alternatively be used:
CONSTRAINT Ca (SP { S# }) <= (S { s# }) ;

but note the need to state the matching attribute name explicitly—this might be
thought to be an advantage or a disadvantage. The first solution is neat and immune to
changes in attribute names, but exposed to the possibility of inappropriately chosen
attribute names. The second solution is exposed to the possible change in name of the

S# attributes but is immune to all other attribute name changes. A compromise could
be:

CONSTRAINT Ca IS EMPTY (SP { S# } NOT MATCHING S) ;

b. Every shipment tuple must have a part number matching that of some part tuple.

CONSTRAINT Cb IS EMPTY (SP NOT MATCHING P) ;

c. All London suppliers must have status 20.

CONSTRAINT Cc IS EMPTY
(S WHERE City = 'London' AND Status <> 20) ;

d. No two suppliers can be located in the same city.
Add the following to the declaration of the relvar S:
KEY { CITY }
Alternatively:

CONSTRAINT Cd
COUNT (S { City }) = COUNT (S) ;

e. At most one supplier can be located in Athens at any one time.

CONSTRAINT Ce
COUNT (S WHERE City = 'Athens') <=1 ;

f. There must exist at least one London supplier.

CONSTRAINT Cf
COUNT (S WHERE City = 'London') > 0 ;

g. The average supplier status must be at least 10.

One is tempted to write something like

CONSTRAINT Cg
AVG (S, Status) >= 10.0 ;

CS252 Solutions for Worksheet 4: Constraints, Catalog, and Virtual Relvars in Re/ — Page 1 of 4

but AVG is undefined on the empty set. If it is permissible for S to be empty, we
could write

CONSTRAINT Cg
AVG (S { S#, Status }
UNION
RELATION { TUPLE { S# 'Sl1', Status 10 } 1},
Status) >= 10.0 ;

but not

CONSTRAINT Cg
IS EMPTY (S) OR AVG (S, Status) >= 10.0 ;

because Tutorial D assumes that (a) operands of OR can be evaluated in either
order and (b) the system is permitted to evaluate both operands even when it has
discovered one of them to be TRUE.

h. Every London supplier must be capable of supplying part P2.

CONSTRAINT Ch IS EMPTY (
(S WHERE City = 'London') NOT MATCHING
(SP WHERE P# = 'P2'));

Which of your constraint definitions are rejected by Rel for being FALSE at the time of
definition?

Cd

3. Create a virtual relvar named myvars giving the Name, Owner, and isVirtual of
every relvar not owned by 'Rel'.

VAR myvars VIRTUAL (sys.Catalog WHERE Owner <> 'Rel')
{ Name, Owner, isVirtual } ;

4. Load /local/java/Rel-version'/Scripts/OperatorsChar.d. into Rel’s input pane and execute
that script. As a result several useful user-defined operators will be available to you. One of
the relvars mentioned in sys.Catalog is named sys.Operators. Display the contents of that
relvar. How many attributes does it have? What is the declared type of the attribute named
Implementations?

Two attributes: Name and Implementations
The declared type of Implementations is:

RELATION {Signature CHARACTER,
ReturnsType CHARACTER,
Definition CHARACTER,
Language CHARACTER,
CreatedByType CHARACTER,
Owner CHARACTER,
CreationSequence INTEGER}

Relation types aren’t normally recommended for attributes of database relvars, but
all updates to the system catalog are performed “under the covers” by the system
itself, which should be capable of handling all the difficulties caused by relation-
valued attributes. That said, queries against such relvars can be difficult to express,
unless you begin them by ungrouping, as suggested in the next exercise.

! replace version by the version being used (was 0.3.17 in 2009)

Page 2 of 4 —CS252 Solutions for Worksheet 4: Constraints, Catalog, and Virtual Relvars in Rel

5.

Evaluate the expression

(sys.Operators ungroup (Implementations)
where Language = 'JavaF')
{ ALL BUT Language, CreatedByType, Owner, CreationSequence}

What are the “ReturnsTypes” of LENGTH, IS DIGITS, and SUBSTRING?
INTEGER, BOOLEAN, and CHARACTER, respectively.

Note that if s is a value of type CHAR, then LENGTH(s) gives the number of characters in s,
IS DIGITS(s) gives TRUE if and only if every character of s is a decimal digit.
SUBSTRING(s,0,l) gives the string consisting of the first / characters of s (note that strings
are considered to start at position 0, not 1). SUBSTRING(s,f) gives the string consisting of
all the characters of s from position f'to the end.

What is the result of IS DIGITS (' ') ? Is it what you expected? Is it consistent with the
definition given above?

TRUE. This is to be expected on the understanding that “everything is true of all
elements of the empty set”. The string ' ' contains no characters and therefore does
not contain a character that isn’t a digit. (V' x)P(x) is logically equivalent to
—(Ix)~P(x).

Using operators defined by OperatorsChar.d, define types for supplier numbers and part
numbers, taking the example shown in lecture HACD.2, Slides 14 and 15. Note: Those two
slides were revised after the 2009 presentation of that lecture.

TYPE SNO POSSREP { c CHAR CONSTRAINT
SUBSTRING (c,0,1) = 'S' AND
IS DIGITS (SUBSTRING(c,1)) } ;

TYPE PNO POSSREP { c CHAR CONSTRAINT
SUBSTRING (c,0,1) = 'P' AND
IS DIGITS (SUBSTRING(c,1)) } ;

Define relvars Srev, Prev, and SPrev as replacements for S, P and SP, using the types
you have just defined as the declared types of attributes S# and P#.

VAR Srev BASE RELATION {S# SNO, Sname CHAR,

Status INTEGER, City CHAR}
KEY { S# } ;

VAR Prev BASE RELATION {P# PNO, Pname CHAR, Colour CHAR,
Weight RATIONAL, City CHAR}
KEY { P# } ;

VAR SPrev BASE RELATION {S# SNO, P# PNO, Qty INTEGER}
KEY { S#, P# } ;

Write relvar assignments to copy the contents of S, P and SP to Srev, Prev, and SPrev,
respectively. Note that if SNO is the type name for supplier numbers in S and Srev, then
SNO (S#) “converts” an S# value in S to one for use in Srev.

We need to use EXTEND to add an attribute to contain the “converted” S# and/or P#
values. The new attributes can’t be named S# and P#, of course, but we do need

them to have those names, so we “project away” the old attributes and then rename
the new ones:

CS252 Solutions for Worksheet 4: Constraints, Catalog, and Virtual Relvars in Re/ — Page 3 of 4

Srev ((EXTEND S ADD (XS# AS SNO(S#)))
{ ALL BUT S# })

RENAME (XS# AS S#) ;

Prev := ((EXTEND P ADD (XP# AS PNO(P#)))
{ ALL BUT P# })
RENAME (XP# AS P#) ;
SPrev := ((EXTEND SP ADD (XS# AS SNO(S#),

XP# AS PNO (P#)))
{ ALL BUT S#, P# })
RENAME (XS# AS S#, XP# AS P#)

.
4

End of Solutions

Page 4 of 4 —CS252 Solutions for Worksheet 4: Constraints, Catalog, and Virtual Relvars in Rel

