
1/2

CS252: Mapping Tutorial D's Relational Operators to SQL

Hugh Darwen

Some people who are comfortable with Tutorial D finds SQL difficult. Others,
comfortable with SQL, find Tutorial D difficult. The following mapping might help
anybody who is in either of those two camps. For each Tutorial D relational operator
I give a general invocation of it on the left and, on the right, an SQL expression that is
as near as possible equivalent to it.

The symbols r, r1 and r2 stand for arbitrary relational expressions in Tutorial D. The
SQL counterpart of an arbitrary relation expression is anything you can write as an
operand in a FROM clause, which is either a simple table name, or a table name
followed by an alias, or (query expression) followed by an alias, where query
expression is an arbitrary complete SQL query.

It is assumed that in the SQL expressions r, r1 and r2 stand for tables in which each
column has a name, no two columns have the same name, NULL does not appear, and
no row appears more than once in the same table.

1. Projection

The ALL BUT case just has to be translated into the regular case.

2. JOIN

In the SQL the word INNER can be omitted. You can also achieve a join in
SQL by longhand (and this was the only way of doing it before 1992):

SELECT a, b, c … FROM r1, r2 WHERE r1.c1 = r2.c1 AND … r1.cn = r2.cn
where c1, …, cn are the common columns. If the SELECT list includes each
column of r1 exactly once and each column of r2 that is not also a column of
r1 exactly once, then the effect of a Tutorial D JOIN is achieved.

3. RENAME

where c1, …, cn are the remaining columns of r. The effect of RENAME isn't
required so often in SQL because of its use of column-name qualifiers to
distinguish between two columns of the same name in different operands.

4. Extension

EXTEND r
ADD (f1 AS x, f2 AS y)

SELECT r.*, f1 AS x, f2 AS y FROM r

where f1 and f2 are arbitrary formulae. Note carefully that in standard SQL
and many implementations * must be qualified as shown here in "r.*".

r { a, b, c } SELECT DISTINCT a, b, c FROM r

r { ALL BUT a, b, c } no counterpart

r1 JOIN r2 r1 INNER NATURAL JOIN r2

r RENAME (a AS x, b AS y) SELECT a AS x, b AS y, c1, …, cn
FROM r

2/2

5. SUMMARIZE

SUMMARIZE r BY { a, b }
ADD (f1 AS x, f2 AS y)

SELECT a, b, f1 AS x, f2 AS y
FROM r GROUP BY a, b

where f1 and f2 are arbitrary formulae involving aggregation.

6. UNION

r1 UNION r2 SELECT * FROM r1 UNION
SELECT * FROM r2

In the SQL the columns of r2 have to be in the same order as those of r1.

7. NOT MATCHING

r1 [NOT] MATCHING r2 SELECT * FROM r1
WHERE [NOT] EXISTS

(SELECT * FROM r2
WHERE r1.c1 = r2.c1
…
AND r1.cn = r2.cn)

where c1, …, cn are the common columns of r1 and r2.

8. Difference

r1 MINUS r2 SELECT * FROM r1 EXCEPT
SELECT * FROM r2

In the SQL the columns of r2 have to be in the same order as those of r1.

9. Intersection

r1 INTERSECT r2 SELECT * FROM r1 INTERSECT
SELECT * FROM r2

In the SQL the columns of r2 have to be in the same order as those of r1.

10. GROUP/UNGROUP

SQL has no counterparts for these Tutorial D operators.

See also SQL Subqueries: Counterparts in Tutorial D.

End

