
1/4

CS252: Why Performance Is Irrelevant

Hugh Darwen

CS252 students doing database design exercises sometimes imagine that they must
address issues of “performance”. I explain here why this is not required, even though
performance considerations are likely to be extremely important when you design
databases for use out there in the industry.

One good reason is that in CS252 we do not teach you anything related to
performance issues. Therefore it would be unreasonable of us to assess you on your
understanding of such issues. It would also be unreasonable to reward a student who
brings to the module a previously acquired good understanding of these issues and
tries to put that understanding into practice in the exercises we set.

Now, you might be asking why we do not teach anything related to performance
issues. So I’ll try to answer that question. (But if you aren’t asking it and you accept
the reason given in my second paragraph above, then you can stop reading now and
skip the rest of this document.)

The short answer is that to do justice to such issues in 14 lectures would leave
precious little time for teaching the theory plus a couple of contrasting languages
(Tutorial D and SQL) that illustrate that theory and try to put it into practice. But I’d
like to say a little more than that on the subject of performance.

A relational database design is an example of what is commonly referred to as a
logical schema—logical because it is derived from the stated requirements on purely
logical grounds. And because relational theory is so firmly and immediately rooted in
logic, the term is particularly appropriate in connection with relational databases. A
logical design maps the various kinds of statements about the enterprise, that we wish
to represent in the database, to relation variables. And it includes logical expressions,
known as constraints, that govern the combinations of values that can validly be
assigned to those variables at any time.

We have seen that various different logical schemas can be devised to meet exactly
the same requirements and we have encountered some reasons for preferring one
schema over another. But the reasons we have encountered in CS252 have nothing to
do with performance!

Take Henry VIII’s wives, for example. At the end of lecture HACD.9 I concluded
that the 6NF decomposition was not a good idea. The main reason was to do with all
those constraints that need to be declared in the 6NF design in order to make sure the
database is always correctly “glued” together. This reason is a psychological one: the
more constraints we have to write down, the more likely we are to make mistakes, for
example. The 5NF design, in which all the relvars concerning Henry’s wives are
joined together, very conveniently implies all of those constraints.

Another reason for spurning 6NF is that the DBMS being used might not support any
kind of “multiple assignment” operator that is needed if updates to such a database are
to be supported at all. That reason is a pragmatic one, to do with whatever particular
DBMS we are using. For example, although Tutorial D fully supports multiple
assignment, Rel does not (yet) and nor do SQL systems in general (though I learned
recently that the latest version of Oracle supports some kind of simultaneous insertion
into two or more tables, so perhaps the industry is at last moving on that front).

2/4

The students-and-courses example illustrates a further criterion for sometimes
preferring one logical schema over another. My original ENROLMENT relvar has
nothing logically wrong with it, so long as we include in the design a constraint to the
effect that the same student identifier is always paired with the same name, however
many times that student identifier appears in the current value of ENROLMENT at
any time. However, the 5NF design derived by decomposing ENROLMENT into
IS_CALLED and IS_ENROLLED_ON solves the problem a lot more neatly by
making sure that every student’s name is recorded no more than once—recorded as
far as can be seen via the logical schema, that is! And that brings me to perhaps the
most important point I wish to make here.

The question arises as to whether our choice of logical schema can be guided by
performance considerations in addition to psychological and pragmatic ones. For
example, might we decide to prefer the non-5NF ENROLMENT over the 5NF
IS_CALLED/IS_ENROLLED_ON because for some reason we would expect things
to go faster that way?

Well, first of all, there are many different kinds of “things” that the users of the
database might wish to do, so we would have to decide which kinds of things are
going to be done most often. Secondly—and this is the point that is so often
overlooked—having decided which operations we are going to optimise for, we have
to know how the DBMS actually stores the data and executes those operations. In
CS252 we do not teach you how Oracle stores data and executes SQL operations; nor
how Rel stores data and executes Tutorial D operations. That’s because our purpose
is to teach you SQL and Tutorial D, not Oracle and Rel! Besides, why should we
teach you how one particular DBMS works in 2006, when that might be significantly
different from how it will work in 2020 and even more significantly different from
how several other implementations of the same language currently work?

But people sometimes make assumptions about how a DBMS works, without
realising how naïve and possibly incorrect those assumptions might be. Let me give
you a couple of examples.

My first example is the common assumption that “joins slow queries down”.

With our students-and-courses example, this assumption means that the query
ENROLMENT WHERE StudentId = 'S1' (against the non-5NF design) goes
faster than IS_ENROLLED_ON JOIN (IS_CALLED WHERE StudentId =
'S1'), and the same applies to lots of similar queries. Under this assumption the
two-relvar 5NF design might be rejected in favour of the single-relvar one.

But the assumption might not be correct! And even if it is correct, the assumption
that a query such as ENROLMENT { StudentId, Name } will be required
significantly less often than ENROLMENT is also questionable. And in proposing that
point as an argument in favour of the 5NF design I am assuming that the projection
will always run slower than the simple relvar reference, IS_CALLED. But even that
assumption cannot be relied upon unless we actually know how the particular system
we are using works.

Here are the two designs under consideration:

1. VAR ENROLMENT BASE RELATION
{ StudentId CHAR, Name CHAR, CourseId CHAR }

KEY { StudentId, CourseId } ;

3/4

2. VAR IS_CALLED BASE RELATION
{ StudentId CHAR, Name CHAR }

KEY { StudentId } ;

VAR IS_ENROLLED_ON BASE RELATION
{ StudentId CHAR, CourseId CHAR }

KEY { StudentId, CourseId } ;

CONSTRAINT All_named_are_enrolled_and_vice_versa
IS_ENROLLED_ON { StudentId } =
IS_CALLED { StudentId } ;

The constraint in Design 2 is implied in Design 1 because each tuple in
ENROLMENT gives both a name and a course for the student in question. I didn’t
include this constraint when I discussed decomposing ENROLMENT because one of
the possible advantages of decomposing is that it enables students who are not yet
enrolled on anything to at least have their names recorded. But here we are
considering two equivalent designs, meaning that if Design 1 can be considered at all,
then the whole of Design 2 is needed to meet the same requirements. In other words,
if the constraint in Design 2 is not required, then Design 1 cannot be considered as an
alternative.

Now, if the DBMS adopts a simple method of storage in which elements of the logical
schema map in a very direct and obvious way to elements of the storage schema, then
we might expect each ENROLMENT tuple to be stored on disk as a single record
consisting of three contiguous fields (possibly very long fields, considering that the
CHAR specification imposes no length restriction on the corresponding attribute
values!). Similar expectations would apply to IS_ENROLLED_ON tuples and
IS_CALLED tuples.

But DBMSs typically do not use such simple storage algorithms. Some, for example,
would actually store a wife of Henry VIII (as in lecture HACD.8) in three separate
records even when the logical schema uses the preferred single-relvar design.
Conversely, it is quite reasonable to expect a relational DBMS to implement the 6NF
design, noting the constraints, by storing just one record for each wife.

It was very much part of the relational vision of the 1970s that the database designer
would be able to ignore performance considerations when formulating a logical
schema. The storage schema and its mapping to the logical schema would either be
determined automatically by the DBMS, perhaps according to the kind of business the
product in question is intended for (e.g., “data warehouse” or “on-line transaction
processing”), or, failing that, provide some storage language to enable it to be
specified explicitly by the database designer as an implementation of the logical
schema. In the latter case we can even imagine that logical schema design and
storage schema design, being quite different skills, are undertaken by different
professions.

I have one final example that I hope will drive the point home. It arises from my
solution to the Lecture HACD.9 exercise, where I use a single attribute for the postal
address of a customer. Postal addresses are quite long, and it is easily possible for
several customers (perhaps members of the same family) to have the same postal
address. Wouldn’t it save space to store the postal address just once, even in those
cases? We could achieve that by assigning a unique id to each address and have an
AddressId attribute in Customer in place of Address. The AddressId would be a

4/4

foreign key referencing a separate relvar, keyed on AddressId, pairing address ids
with actual addresses. But if long character strings are actually stored by the DBMS
in the way I am about to describe—a method that I once devised and implemented
myself for a real industrial-strength DBMS—then that idea could actually be
extremely counterproductive!

The method I have just mentioned used what we called a literal pool (a term taken
from compiler technology). In the physical record for storing a customer’s address, a
fairly short, fixed-length field was allocated. In this field were stored the first few
characters of the address and a pointer to the place in the literal pool where the rest
was stored. Suppose “first few” was actually 5, and 8 bytes were used for the
pointers, and some address common to three people was 100 characters long. Then
the total storage for the addresses of those three customers was 95+(3*13) = 134
instead of the 300 you might have been expecting. With the AddressId approach,
assuming address ids occupy 6 bytes, the storage used would be 6+5+8+95 = 114 for
the Address tuple and 3*6 = 18 for the AddressId fields in the records for the
Customer tuples. So the saving on storage is pretty marginal, though it does get better
in this particular example as the number of people living together increases.
However, the AddressId design entails more pointer-chasing than the simple design
and, furthermore, it loses the advantage of storing the first few characters in the
Customer record. It is working against the system! (Having the first few characters
to hand, so to speak, often saves the system from having to access all of a string to
evaluate some comparison.)

Do not spend too much time questioning whether that literal pool idea was really a
good one. For one thing I haven’t given all the details of how it worked, but my main
point is that the actual algorithms used by a DBMS might be quite different from what
you are assuming and in that case it doesn’t matter whether those algorithms are good
or bad.

End

