
HACD.4: Relational Algebra, Principles and Part I 13/10/2011

CS252: Fundamentals of Relational Databases 1

1

Relational Algebra,
Principles and Part I

Hugh Darwen

hugh@dcs.warwick.ac.uk
www.dcs.warwick.ac.uk/~hugh

CS252.HACD: Fundamentals of Relational Databases
Section 4: Relational Algebra, Principles and Part I

2

Anatomy of a Relation

Anne

Name

C1S1

CourseIdStudentId

attribute name attribute values n-tuple, or tuple.
This is a 3-tuple.
The tuples
constitute the body
of the relation.
The number of
tuples in the body
is the cardinality of
the relation.

Heading (a set of attributes)
The degree of this heading is 3,
which is also the degree of the relation.

3

ENROLMENT Example

C3CindyS3

Devinder

Boris

Anne

Anne

Name

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

Predicate: StudentId is called Name and is enrolled on CourseId

Note redundancy: S1 is always called Anne!

ENROLMENT (a relation variable, or relvar)

4

Splitting ENROLMENT

DevinderS4

CindyS3

Boris

Boris

Anne

Name

S5

S2

S1

StudentId

C3S3

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

IS_CALLED IS_ENROLLED_ON

Student StudentId is called
Name

Student StudentId is enrolled on
course CourseId

5

Relations and Predicates (1)

Consider the predicate: StudentId is called Name

… is called --- is the intension (meaning) of the predicate.

The parameter names are arbitrary. “S is called N” means the
same thing (has the same intension).

The extension of the predicate is the set of true propositions that
are instantiations of it:
{ S1 is called Anne, S2 is called Boris, S3 is called Cindy,
S4 is called Devinder, S5 is called Boris }

Each tuple in the body (extension) of the relation provides the
values to substitute for the parameters in one such
instantiation.

6

Relations and Predicates (2)

Moreover, each proposition in the extension has exactly one
corresponding tuple in the relation.

This 1:1 correspondence reflects the Closed-World Assumption:

The Closed-World Assumption underpins the operators we are
about to meet.

A tuple representing a true instantiation is in the relation.
A tuple representing a false one is out.

HACD.4: Relational Algebra, Principles and Part I 13/10/2011

CS252: Fundamentals of Relational Databases 2

7

Relational Algebra

Operators that operate on relations and return relations.

In other words, operators that are closed over relations. Just as
arithmetic operators are closed over numbers.

Closure means that every invocation can be an operand, allowing
expressions of arbitrary complexity to be written. Just as, in
arithmetic, e.g., the invocation b-c is an operand of a+(b-c).

The operators of the relational algebra are relational
counterparts of logical operators: AND, OR, NOT, EXISTS.
Each, when invoked, yields a relation, which can be
interpreted as the extension of some predicate.

8

Logical Operators

Because relations are used to represent predicates, it makes sense for
relational operators to be counterparts of operators on predicates.
We will meet examples such as these:

Student StudentId is called Name AND StudentId is enrolled on
course CourseId.

Student StudentId is enrolled on some course.

Student StudentId is enrolled on course CourseId AND StudentId is
NOT called Devinder.

Student StudentId is NOT enrolled on any course OR StudentId is
called Boris.

9

Meet The Operators

(semi)difference(AND) NOT

UNIONOR

RENAME

projectionEXISTS

JOIN
restriction (WHERE)
extension
SUMMARIZE
and some more

AND

Logic Relational counterpart

10

JOIN (= AND)

StudentId is called Name AND StudentId is enrolled on CourseId.

IS_CALLED JOIN IS_ENROLLED_ON

S4Devinder

Boris

Cindy

Boris

Anne

Name

S3

S5

S2

S1

StudentId

C3S3

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

11

IS_CALLED JOIN IS_ENROLLED_ON

C3CindyS3

Devinder

Boris

Anne

Anne

Name

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

Seen this before? Yes, this is our original ENROLMENT. The
JOIN has reversed the split. (And has “lost” the second Boris.)

12

Definition of JOIN

Let s = r1 JOIN r2. Then:

The heading Hs of s is the union of the headings of r1 and r2.

The body of s consists of those tuples having heading Hs that can
be formed by taking the union of t1 and t2, where t1 is a tuple of
r1 and t2 is a tuple of r2.

If c is a common attribute, then it must have the same declared
type in both r1 and r2. (I.e., if it doesn’t, then r1 JOIN r2 is
undefined.)

Note: JOIN, like AND, is both commutative and associative.

HACD.4: Relational Algebra, Principles and Part I 13/10/2011

CS252: Fundamentals of Relational Databases 3

13

RENAME

DevinderS4

CindyS3

Boris

Boris

Anne

Name

S5

S2

S1

Sid1

DevinderS4

CindyS3

Boris

Boris

Anne

Name

S5

S2

S1

StudentId

Sid1 is called Name

IS_CALLED RENAME (StudentId AS Sid1)

14

Definition of RENAME

Let s = r RENAME (A1 AS B1, … An AS Bn)

The heading of s is the heading of r except that attribute A1 is
renamed to B1 and so on.

The body of s consists of the tuples of r except that in each tuple
attribute A1 is renamed to B1 and so on.

15

RENAME and JOIN
Sid1 is called Name AND so is Sid2

IS_CALLED RENAME (StudentId AS Sid1) JOIN
IS_CALLED RENAME (StudentId AS Sid2)

S2BorisS2

S5BorisS2

Boris

Devinder

Cindy

Boris

Anne

Name

S5

S4

S3

S2

S1

Sid2

S4

S3

S5

S5

S1

Sid1

16

Special Cases of JOIN

What is the result of R JOIN R?

What if all attributes are common to both operands?

What if no attributes are common to both operands?

R

It is called “intersection”.

It is called “Cartesian product”

17

Interesting Properties of JOIN

It is commutative: r1 JOIN r2 ≡ r2 JOIN r1

It is associative: (r1 JOIN r2) JOIN r3 ≡ r1 JOIN (r2 JOIN r3)
So Tutorial D allows JOIN{r1, r2, …} (note the braces)

Of course it is no coincidence that logical AND is also both
commutative and associative.

We note in passing that these properties are important for
optimisation (in particular, of query evaluation).

18

Projection (= EXISTS)

Student StudentId is enrolled on some course.

C3S3

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

Given:

S3

S4

S2

S1

StudentId

To obtain:

IS_ENROLLED_ON { StudentId }

= IS_ENROLLED_ON { ALL BUT CourseId }

HACD.4: Relational Algebra, Principles and Part I 13/10/2011

CS252: Fundamentals of Relational Databases 4

19

Definition of Projection

Let s = r { A1, … An }
(= r { ALL BUT B1, … Bm })

The heading of s is the subset of the heading of r given by { A1,
… An }.

The body of s consists of each tuple that can be formed from a
tuple of r by removing from it the attributes named B1, … Bm.

Note that the cardinality of s can be less than that of r but
cannot be more than that of r.

20

How ENROLMENT Was Split

VAR IS_CALLED BASE
SAME_TYPE_AS (ENROLMENT { StudentId, Name })
KEY { StudentId };

IS_CALLED := ENROLMENT { StudentId, Name };

VAR IS_ENROLLED_ON BASE
SAME_TYPE_AS (ENROLMENT { ALL BUT Name })
KEY { StudentId, CourseId } ;

IS_ENROLLED_ON := ENROLMENT { ALL BUT Name };

Can be done even more economically—see the
Notes!

21

Special Cases of Projection

What is the result of R { ALL BUT }?

What is the result of R { }?

R

A relation with no attributes at all, of course!

There are two such relations, of cardinality 1 and 0.
The pet names TABLE_DEE and TABLE_DUM have
been advanced for these two, respectively.

22

Another Special Case of JOIN

What is the result of R JOIN TABLE_DEE ?

R

So TABLE_DEE is the identity under JOIN (cf. 0 under addition
and 1 under multiplication.)

