Relational Algebra, Part III, and Other Operators

Hugh Darwen

hugh@dcs.warwick.ac.uk www.dcs.warwick.ac.uk/~hugh

CS252.HACD: Fundamentals of Relational Databases Section 6: Relational Algebra, Part III, and Other Operators

The Running Example ...
IS CALLED

StudentId	Name
S1	Anne
S2	Boris
S3	Cindy
S4	Devinder
S5	Boris

StudentId is called Name

IS_ENROLLED_ON

StudentId	CourseId
S1	C 1
S1	C 2
S2	C 1
S 3	C 3
S 4	C 1

StudentId is enrolled on CourseId
... and these
COURSE

CourseId	Title
C1	Database
C2	HCI
C3	Op Systems
C4	Programming

CourseId is entitled Title

EXAM_MARK

StudentId	CourseId	Mark
S1	C1	85
S1	C2	49
S2	C1	49
S3	C3	66
S4	C1	93

StudentId scored Mark in the exam for course Courseld

Some Useful Shorthands

Relational operators:

- semijoin
- composition
- GROUP/UNGROUP
- UPDATE (not an update operator!)

Other operators:

- relation comparisons
- tuple extraction (from a relation)
- attribute value extraction (from a tuple)

3

Semijoin

StudentId is called Name AND is enrolled on some course.

StudentId	Name
S1	Anne
S2	Boris
S3	Cindy
S4	Devinder

IS_CALLED MATCHING IS_ENROLLED_ON

Definition of MATCHING

$r 1$ MATCHING $r 2 \equiv r 1$ JOIN ($r 2\{$ common-attrs $\}$)
where common-attrs is the attributes in common to $r 1$ and $r 2$.
So, let $s=r 1$ MATCHING r 2. Then:
The heading of s is the heading of $r 1$.
The body of s consists of each tuple of $r 1$ that matches at least one tuple of $r 2$ on their common attributes.

It follows that in the case where there are no common attributes, s is empty if $r 2$ is empty, and is otherwise equal to $r 1$.

Composition

StudentId is enrolled on a course entitled Title.

StudentId	Title
S1	Database
S1	HCI
S2	Database
S3	Op Systems
S4	Database

IS_ENROLLED_ON COMPOSE COURSE

Read-only Counterparts of Update Operators

E.g. UPDATE (IS_CALLED WHERE StudentId = 'S1') (Name:= ‘Ann')
Note lack of semicolon - this is an expression, not an imperative.
And the "target" is a relation, not a relvar
INSERT $r v 1 r 2$? Counterpart is $r 1$ UNION $r 2$.
DELETE $r v$ WHERE c ? Counterpart is r WHERE NOT(c)

GROUP/UNGROUP				
A		B		
StudentId	Name	Name	StudentIds	
S1	Anne	Anne	StudentId	
S2	Boris		S1	
S3	Cindy	Boris	StudentId	
S4	Devinder		S2	
S5	Boris		S5	
UNGROUP		Cindy	StudentId	
			S3	
		Devinder	StudentId	
	GROUP		S4	
		10		

From A to B and Back Again

B = A GROUP $(\{$ StudentId \} AS StudentIds $)$

A = B UNGROUP (StudentIds)

Definition of COMPOSE

$r 1$ COMPOSE $r 2 \equiv(r 1$ JOIN $r 2)$ \{ ALL BUT common-attrs \} where common-attrs is the attributes in common to $r l$ and $r 2$.

Exercise (see Notes):

Is COMPOSE commutative?
I.e., is $r 1$ COMPOSE $r 2$ equivalent to $r 2$ COMPOSE $r l$?

Is COMPOSE associative?
I.e., are ($r 1$ COMPOSE r 2) COMPOSE $r 3$ and $r 1$ COMPOSE ($r 2$ COMPOSE $r 3$) equivalent?

Other Operators

Operators on relations that do not yield relations:

- aggregate operators (already seen)
- relation comparison
- tuple extraction

Operators on tuples that do not yield tuples:

- relation "selection" (already seen)
- attribute value extraction

Operators that yield tuples:

- tuple "selection" (already seen)
- tuple counterparts of relational operators

Relation Comparison (1)

Every student enrolled on Courseld is called Name (and at least one student is enrolled on CourseId).

CourseId	Name
C2	Anne
C3	Cindy

((B JOIN C) WHERE N_StudentIds \supseteq C_StudentIds)
\{ Name, CourseId \}

Relation Comparison (2)

Every student called Name is enrolled on CourseId (and at least one student is called Name).

Name	CourseId
Anne	C 1
Anne	C 2
Cindy	C 3
Devinder	C 1

((B JOIN C) WHERE N_StudentIds \subseteq C_StudentIds)
\{ Name, CourseId \}

Tuple Extraction

Given a relation r of cardinality 1 (no more, no less):
TUPLE FROM r
yields the single tuple contained in the body of r.
E.g.: TUPLE FROM (IS_CALLED

WHERE StudentId = ‘S1')
gives TUPLE \{ StudentId 'S1', Name 'Anne' \}

Attribute Value Extraction

A Relational View of Arithmetic

Recall the imagined relation PLUS:

a	b	c
1	2	3
2	3	5
2	1	3

Now, to compute, e.g., $2+3 \ldots$

Adding 2 and 3

LUS

a	b	c
1	2	3
2	3	5
2	1	3

c FROM TUPLE FROM (PLUS COMPOSE \{ RELATION \{ TUPLE \{ a 2, b 3 \} \})
(okay, $2+3$ is perhaps a little easier!)

Tuple Counterparts of Relational Operators

Let $t 1, t 2, \ldots$ be tuples. Then we have:

- tuple rename: $t 1$ RENAME ($a \mathrm{AS} b, \ldots$)
- tuple projection: $t 1$ \{[ALL BUT] attribute-name-list \}
- tuple extension: EXTEND $t 1$ ADD (\exp AS attribute-name)
- tuple "update": UPDATE $t 1$ (attribute-name :=exp)
- tuple join: $t 1$ JOIN $t 2$, and JOIN $\{t 1, t 2, \ldots\}$
- tuple compose: $t 1$ COMPOSE $t 2$

