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CS319: Relational Algebra

(revisited, reviewed, revised, simplified)

1. Cover slide

You were introduced to relational algebra in CS258. Hugh Darwen’s invited CS319 lectures use a
different notation and in some important respects different semantics from what you were taught in
CS258, which was based on a somewhat flawed definition still appearing in some textbooks.

The principle underpinning relational algebra is the notion of a relation as being a representation of
the extension of a predicate.The algebra is called relational because its operators operate on
relations to yield relations—in mathematical parlance, its operators are closed over relations.

Note very carefully: Relational algebra, of itself, has nothing to do with databases! And its
operators are mathematical ones: they have nothing to do with updating. However, the motivation
for them is of course their perceived applicability to many database problems.

Relational algebra is not a language either, but we do need some kind of notation for defining and
describing its operators. The notation and semantics described here are from Tutorial D, a
complete programming language devised for teaching purposes by C.J. (Chris) Date and the present
author, first published in 1998. Rel is a full implementation of Tutorial D developed by Dave
Voorhis of the University of Derby. It is available as Open Source software at
http://dbappbuilder.sourceforge.net. The Tutorial D notation is used in the present author’s free
download textbook, An Introduction to Relational Database Theory, available at
http://bookboon.com/en/an-introduction-to-relational-database-theory-ebook.

Tutorial D also pervades all of Chris Date’s many books written since the mid-1990s. For the best
part of 40 years Date has been far and away the most prolific (and most authoritative, and most
approachable) writer on the subject of relational databases, which he started to teach hot on the
heels of Codd’s 1970 paper.

All of that said, however, I must emphasise that notation is relatively unimportant, so long as it’s
sound, intelligible and economical. It’s the semantics that really matter.

2. Anatomy of a Relation

Because of the distinction I have noted between the terms “relation” and “table”, we prefer not to
use the terminology of tables for the anatomical parts of a relation. We use instead the terms
proposed by E.F. Codd, the researcher who first proposed relational theory as a basis for database
technology, in 1969.

Try to get used to these terms. You might not find them very intuitive. Their counterparts in the
tabular representation might help:

relation table
(n-)tuple row
attribute column

Also (repeating what is shown in the slide):
The degree is the number of attributes.
The cardinality is the number of tuples.

The heading is the set of attributes (note set, because the attributes are not ordered in any
way).
An attribute has an attribute name and is of some type (Codd’s “domain”).
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The body is the set of tuples (again, note set).
Each attribute has an attribute value—a value of the applicable type—in each tuple.

The terms heading and body help us to provide concise definitions of relational operators, as shown
on some of my slides.

3. Running Examples

Notice the names above the two tables in this slide: IS_CALLED and IS_ENROLLED_ON and
recall that no such name is shown on the previous slide. A relation doesn’t have a name as such: it
is just a heading and a body. IS CALLED and IS ENROLLED ON, contrary to what you
sometimes see in the literature, are not relation names. They are names of variables—relation
variables, to be precise, and possibly persistent variables that form part of a relational database
(where relation variables—relvars for short—are the only kind permitted).

To be going on with, these two examples will constitute the database for our case study. We will
add more when we need them. The operators of the algebra operate on relations, not relation
variables, but variable names are a convenient way of denoting relations appearing as operands: the
name denotes the value currently assigned to the variable in question—a concept that you will of
course be very familiar with if you’ve done any computer programming at all.

Notice also the sentences below the tables. These sentences denote the predicates that tell us how
these relations are to be interpreted, as explained in the next two slides. Knowing the exact
meanings of relations is essential, of course—otherwise we have data but no information and the
relations are useless.

4. Relations and Predicates (1)

The distinction between the extension of a predicate (as a set of propositions) and a relation
representing such an extension is so slight that some texts ignore it altogether and refer to the
relation as the extension. However, you obviously can’t see what is meant by a tuple just by
“reading” it. Moreover, the same tuple might appear in two or more distinct relations, with
different meanings, just as the ordered triple <2,2,4> might mean either 2+2=4 or 2x2=4 (or
something else altogether), for example.

5. Relations and Predicates (2)

Under the alternative Open World Assumption, it is still the case that every tuple in the relation
represents a true instantiation, but it is not necessarily the case that every such tuple is included. If
relational databases were based on the Open World Assumption they wouldn’t be very useful, as we
could conclude nothing from the absence of a tuple.

6. Relational Algebra

To repeat from my notes on the cover slide relational algebra, contrary to some texts on the subject,
is not a language, any more than arithmetic is a language. Also contrary to some texts, it is not
“procedural” (unless you think arithmetic is procedural). It is just a set of operators, but of course,
as [ also wrote in my notes on the cover slide, we do need some notation for the purposes of
defining and using those operators, just as we need notation such as (x + 10)/y for arithmetical
purposes.

And, by the way, the term is operator, not “operation” as some writers have it.

Although being closed over relations means what it says: the result of invoking such an operator
must be a relation, so it must have a heading in which every attribute is uniquely identified by its
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name. Moreover, the operator’s definition must not depend on some hypothetic ordering to the
attributes of its operand relation(s). I mention those two points specifically because they are not
properly adhered to in some accounts you may find in the literature.

7. Logical Operators

The operators that logicians define to operate on predicates are (a) all of those defined to operate on
propositions, such as AND, OR, and NOT, and (b) quantifiers.

To quantify something is to say how many of it there are. The two best known quantifiers are
called EXISTS and FOR ALL, symbolically 3 and V, respectively. Either of these is sufficient for
all the other quantifiers to be defined in terms of it, and we will take EXISTS as our primitive one.
To say that some kind of thing exists is to say there is at least one thing of that kind.

EXISTS is illustrated in predicate number 2 in the slide. Read it as “There exists a course Courseld
such that Studentld is enrolled on Courseld.” Notice how, although the variable Courseld appears
twice in this rewrite, it doesn’t appear at all in the shorthand used on the slide. The variable is said
to be bound (by quantification). In predicates 3 and 4 we have replaced the variable Name by the
names Devinder and Boris. That variable is also said to be bound, but by substitution rather than by
quantification.

Variables that are not bound are called free variables, or parameters (because a predicate can be
thought of as an operator that when invoked yields a truth value).

AND, OR, and NOT are illustrated in predicates 1, 4 (which also uses NOT) and 3 (which also uses
AND), respectively.

8. Relational Operators

The left-hand column shows the familiar operators of predicate logic. The right-hand column gives
names of corresponding relational operators. These relational operators constitute the relational
algebra.

Why so many for AND? We will see that JOIN is the fundamental one, but we need others for
convenience, to cater for various common special cases that would be too difficult if JOIN were our
only counterpart of AND.

Why some in capitals and others in lower case? The ones in lower case are abstract nouns used in
normal text. The ones in caps refer to operators for which no such abstract noun has been appeared
in the literature; these are verbs commonly used in concrete syntax for invoking the operators in
question—in particular, they are used that way in Tutorial D. Some texts use Greek and
mathematical symbols, most of which were used by Codd in 1970, and these are shown too. There
are no such symbols for extension and summarization because Codd didn’t define these operators.

Advance warning: When we come to the treatment of OR and NOT we will find that relational
algebra imposes certain restrictions to overcome certain severe computational problems with these
operators. For this reason, relational algebra is not complete with respect to logic (first order
predicate calculus, to be precise). Instead we make do with what E.F. Codd called relational
completeness and we will find that the restrictions are of no concern at all in a language for
computation.

9. A Bit of History
1970, E.F. Codd:

Codd was rightly hailed for his landmark papers but unfortunately he showed little interest
in the design of computer languages, in particular the new languages that would be needed
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to bring his ideas to fruition. I will explain the flaws and incompleteness of his account of
relational algebra in my notes on later slides. Here let it just be said that for those (such as
myself) who were immediately interested in developing a relational DBMS his account
raised several questions of clarification to which he did not give satisfactory answers.

1975, Hall, Hitchcock, Todd:

These authors were members of a research team working at IBM’s UK Scientific Centre at
Peterlee in the north-east of England. They devised a language named ISBL (Information
Systems Base Language), which satisfactorily answered those questions and filled in the
gaps. With one exception, all of the operators described in this lecture were directly
supported in ISBL, using single character symbols available on normal keyboards, such as *,
#, 3.

When ISBL was implemented by the same team as a prototype relational DBMS, the IBM
bosses wanted to downplay the significance of this work because they feared that customers
of IBM’s prerelational database systems would read too much into it and expect the new
kind of DBMS to be commercially available right away. Thus, the name of the prototype
was PRTV, standing for Peterlee Relational Test Vehicle.

Unfortunately, when the new breed of DBMS did later become available, IBM went for
some different work that had been done by a bigger and much more visible team in
America—work that ignored ISBL and gave rise to a very badly designed language called
SQL, the subject of my final contribution to CS319, The Askew Wall.

1998, Date and Darwen:

In 1994 Date and I had published a paper, The Third Manifesto, attempting to lay down the
law, so to speak, as to what a correct implementation of Codd’s relational model should look
like. It was partly inspired by the many mistakes that had been made in SQL. The paper
was a bullet list of prescriptions (what must be done) and proscriptions (what must not be
done), devoid of explanation and illustration. When we came to work on a book to explain
and illustrate each of these prescriptions and proscriptions, we realised that we needed to
devise a complete conforming language. We hoped this language would be used for
teaching purposes, hence its name, Tutorial D (always written in bold).

Happily, the language caught the attention of Dave Voorhis and he decided to develop Re/
(always written in italics), an implementation of Tutorial D, using Java. A subset of
Tutorial D was formerly taught by Hugh Darwen in the second year module CS252,
discontinued in 2012 when it was superseded by CS258. His book mentioned in the notes
on the cover slide is based on his CS252 lectures.

2011, Elmasri and Navathe:

Elmasri and Navathe’s slides are the ones used for teaching relational algebra in CS258.
Unfortunately they perpetuate many of the errors of the past.

10. JOIN (= AND)

Note the format of this slide carefully. The format is used for other examples too. The top line
shows a predicate for which we provide a corresponding relational expression. The next line, with
upward arrows connecting its parts to part of the predicate, is that relational expression—in this
case an invocation of the operator JOIN. Underneath that is a table depicting the relation resulting
from that invocation.

Note that JOIN here uses infix notation, the operator name being placed in between its operands, as
with the usual arithmetic operators.
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The relational expression corresponding to the given predicate is
IS CALLED JOIN IS ENROLLED ON.

We can also write it as:

IS_ENROLLED ON JOIN IS CALLED,or

JOIN { IS ENROLLED ON, IS CALLED },or

JOIN { IS CALLED, IS ENROLLED ON }.

Those last two examples show JOIN being used in prefix notation, the name being written in front
of the operands, the operands being enclosed in braces (rather than parentheses) to indicate that the
order is unimportant.

The upwards arrows show which bits of the relational expression correspond to which bits of the
predicate.

The arrows connecting rows in the tables show which combinations of operand tuples represent true
instantiations of the predicate. Note how a tuple on the left “matches” a tuple on the right if the two
tuples have the same Studentld value; otherwise they do not match.

The result of this JOIN is shown on the next slide ...

11. IS_CALLED JOIN IS_ENROLLED_ON

Note very carefully that the result has only one Studentld attribute, even though the corresponding
variable appears twice in the predicate. Multiple appearances of the same variable in a predicate are
always taken to stand for the same thing. Here, if we substitute S1 for one of the Studentlds, we
must also substitute S1 for the other. That is why we have only one Studentld in the resulting
relation. Studentld is called a common attribute (of r1 and r2). In general, there can be any number
of common attributes, including none at all.

JOIN is the operator that Codd called natural join, but unfortunately he didn’t regard it as
primitive. Instead he chose Cartesian product as his primitive operator corresponding to AND, but
his definition of Cartesian product was flawed. For example, if that operator were to be applied to
the two relations shown on this slide, it would result in a “relation” with two attributes having the
same name, and such an object is not a relation! The inventors of ISBL correctly chose natural join
is the preferred primitive, noting that it becomes Cartesian product (without flaws) in the special
case where the operands have no common attributes.

12. Definition of JOIN

Commutative means that the order of operands is immaterial: »/ JOIN 2 = r2 JOIN r/.
Associative means that ( 7/ JOIN 2 ) JOIN r3 = r1 JOIN (72 JOIN r3).

From the given definition we can conclude:

(a) Each attribute that is common to both »/ and r2 appears once in the heading of the result.

(b) It is only where ¢/ and ¢2 have equal values for each common attribute that their
combination (via union) yields a tuple of the result. If #/ and ¢2 have different values for
common attribute ¢, then their union will have two distinct ¢ attributes and therefore is not a
tuple and cannot appear in the result.

(c) If there are no common attributes, then the heading of the result consists of each attribute of
r1 and each attribute of r2. It follows that every combination of a ¢/ with a ¢2 appears in the
result.

(d) If either operand is empty, then so is the result.
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How would we achieve the same natural join, of IS CALLED and IS ENROLLED on, if the
student identifier attributes had different names? We must be able to do that, or we lose relational
completeness! We introduce a relational operator that has no direct counterpart in predicate logic:
RENAME.

13. RENAME

Unfortunately, E.F. Codd did not foresee the need for an attribute renaming operator. That need
was first observed by the inventors of ISBL, but others appear to have independently recognized it
since and some texts, including Elmasri and Navathe’s, describe a version that doesn’t stand up to
close scrutiny. The operator described here is Tutorial D’s equivalent of the ISBL operator. There
is no counterpart of RENAME in SQL.

RENAME returns its input unchanged apart from the specified change(s) in attribute name.

In Tutorial D, multiple changes can be specified, separated by commas. For example:
RENAME IS CALLED { StudentId AS Id, Name AS StudentName }

14. Definition of RENAME

The definition needs no further elaboration but it should be contrasted with the corresponding
operator offered by Elmasri and Navathe:

px(/l,,/lz,...,/l”)(r)
where:

o r is a relation of degree n.
. (41, Az, ..., Ay)is alist of attribute names, which can be omitted
. x is a “relation name”, which can be omitted

Let s denote the result of an invocation of p.

If a list of attribute names is provided, then 4, becomes the name of the “first” attribute of s, 4, the
name of the “second”, and so on. Thus the definition depends on a hypothetical ordering to the
attributes of , but by definition the attributes of a relation are unordered!

If a “relation name” x is provided, then the semantics are not made clear but it seems from its use in
examples that it allows each attribute of s to have more than one name, such that the attribute 4; can
be referred to as either 4; or x.4,. It is claimed that the dot-qualified name allows Codd’s flawed
version of Cartesian product to be supported, as illustrated in the following example.

Consider relations »/ with attributes A and B and »2 with attributes B and C. Then the Cartesian
product 1 X r2 denotes a relation-like object having four attributes, two of which are both named
B. Clearly, any subsequent references to attribute B are ambiguous and the “relation name”
operand is proposed to solve that problem: the Cartesian product »/ X p,(r2) denotes a relation with
attributes A, B, x.B, and x.C, with the additional proviso that x.C can be referred to unambiguously
by its simple name C. Furthermore, these authors seem to assume that if » and 2 are names of
relation variables, say R and S, then those names can also be used as prefixes, such that attribute A
is also named R.A. In that case the attributes of R X S can be referred to as R.A, R.B, S.B, and S.C.
The nonsense of all this begins to emerge when you consider the use of an invocation of p as an
operand, for example, as an operand of another invocation of p. Let s = py(p«(r)). If  has an
attribute named A, what is or are the name(s) of the corresponding attribute in s? Possibilities to be
considered are A, x.A, y.A, and y.x.A (though presumably not x.y.A).

If you found the discussion of Elmasri and Nathe’s p difficult to follow, just reflect on the wisdom
of those earlier but overlooked members of the ISBL team.
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15. RENAME and JOIN
Each operand of the JOIN is an invocation of RENAME.

It is perhaps a trifling irritating to be told that each of our students has the same name as himself or
herself. (Note in passing that the relation for “x has the same name as y” is an example of what is
called a reflexive relation—the predicate is true whenever x=y.) Soon we will discover how those
truisms can be eliminated from the result.

It is also a trifle annoying to be told not only that S2 has the same name as S5 but also that S5 has
the same name as S2.(Note in passing that the relation for “x has the same name as y” is an example
of what is called a symmetric relation—if the predicate is true for x=a and y=b, then it is true for
x=b and y=a.) We will discover how that truism can sometimes be eliminated, too.

16. Special Cases of JOIN

With some of the relational operators we can take note of certain special cases of their invocation,
just as we do with operators in other algebras. For example, in arithmetic, we note that adding 0 to
any number x is a special case of addition because it always yields x itself. Similarly, "times 1" is a
special case of multiplication. Each of these two examples involves the so-called identity under the
operator in question: 0 for addition and 1 for multiplication. With some dyadic operators the case
where the two operands are equal is also an interesting special case. For example, x-x is always
equal to 0, and x/x is always equal to 1 (except when x=0 of course, when it is undefined).

In set theory the empty set (usually denoted by the greek letter phi: ¢) is such that for an arbitrary
setA,AU¢=A4, A-p=A, and A N ¢ = ¢. We can therefore note these three cases as special cases
of union, difference, and intersection, respectively.

In » JOIN r, all attributes are common to both operands and each tuple in » “matches” itself and no
other tuples. Therefore the result is 7.

When 7/ and 72 have the same heading, then the result of #/ JOIN 72 consists of every tuple that is
in both 1 and 2. Traditionally, such cases are allowed to be written as #/ INTERSECT r2, and
Tutorial D allows that. It could be argued that there isn’t much point, but we will see some
justification (not much, perhaps) when we eventually come to relational UNION. Recall how in set
theory, intersection corresponds to AND whereas union corresponds to OR.

When r/ and r2 have disjoint headings (i.e., no attributes in common), then every tuple in »/
matches every tuple in 72 and we call the join a Cartesian product. Some writers permit or require
r1 TIMES r2 to be written in this special case. Permitting it is perhaps a good idea, for the user is
thereby confirming that he or she is fully aware of the fact that there are no common attributes in
the operands. But requiring the use of TIMES in this special case turns out to be not such a good
idea. Exercise: Why not? (Hint: look at the notes for Slide 12.)

17. Interesting Properties of JOIN

Because of these properties, Tutorial D allows JOIN to be written in prefix notation, with any
number of arguments:

JOIN {rl,v2, ...rn}

18. Projection (= EXISTS)

We say that IS ENROLLED ON is projected on {Studentld}, or projected over {Studentld} (take
your choice).
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We can project a relation on any subset of its attributes. The chosen subset gives us the heading of
the result.

Note, however, that we are quantifying over the excluded attribute(s), in this case Courseld. It is
considered important to be able to write either the attributes to be included or those to be excluded,
whichever suits better at the time. Accordingly, Tutorial D permits the present example to be
written thus: IS ENROLLED ON { ALL BUT Courseld }.

In fact, Tutorial D supports the ALL BUT notation everywhere that an attribute name list can
appear in an expression.

19. Definition of Projection

No notes.

20. Special Cases of Projection

The first example is the projection of 7 over all of its attributes; the second is its projection over no
attributes.

In spite of their names, TABLE DEE and TABLE_DUM are the only two relations that cannot be
depicted as tables! This is because they have no attributes, so the corresponding tables, having no
columns, would be invisible. Unfortunately Codd failed to recognize their existence and so does
most of the literature on the relational model, even though they were recognized by the ISBL team.

21. Special Case of AND (1)

Sorry about the contrived example. I could have given a more realistic one if my database had
some numerical data in it. For example, think about computing the price of each item in an order.
That would involve multiplying the unit price by the quantity ordered and perhaps applying a
discount agreed for the customer placing the order.

22. Extension

Unfortunately, E.F. Codd did not foresee the need for an EXTEND operator and so it was omitted
from some prototype implementations of the relational algebra and some textbooks still fail to
mention it. Needless to say, it was the ISBL team who came up with it and the operator described
here is theirs under a different name (ISBL uses # as the operator name).

In this example, we use the operator, SUBSTRING defined in the script OperatorsChar.d provided
by Rel in its directory named Scripts. SUBSTRING(s, b, n ) returns the string consisting of the n
characters of s beginning at position b (with 0 being the first position in s). Thus,
SUBSTRING(Name, 0, 1) yields the string consisting of the first character of the Name value in
each tuple of IS CALLED. Note carefully that the expression assumes, possibly wrongly, that
SUBSTRING is defined for values of type NAME as well as for values of type CHAR. If NAME is
defined in like manner to that shown in Lecture HACD.2, Slides 14 and 15, then we would have to
replace “Name” in the invocation by “THE_C(Name)”, meaning “the value of the component C of
the declared possible representation (possrep) for type NAME”.

The binary relation corresponding to the predicate “Name begins with Initial” contains a 2-tuple for
every value of type CHAR paired with its first character. To write this relation out in full would
take forever (nearly), and that’s why an equivalent expression using JOIN is impractical.
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23. Definition of Extension

Now that we have defined extension, we can revisit RENAME and define it in terms of extension
and projection: » RENAME {4 AS B} is equivalent to (EXTEND r: {B:=A4 ){ALL BUT 4}.

Exercise:

Assume the existence of the following relvars:
CUST with attributes C# and DISCOUNT
ORDER with attributes O#, C#, and DATE
ORDER_ITEM with attributes O#, P#, and QTY
PRODUCT with attributes P# and UNIT_PRICE

The underlined attributes are those specified in a KEY declaration for each relvar. Thus, for
example, there cannot be more than one order item for the same part in the same order.

The price of an order item can be calculated by the formula QTY*UNIT PRICE*(1-
(DISCOUNTY/100)).

Write down a relation expression to yield a relation with attributes O#, P#, and PRICE, giving the
price of each order item.

24. Special Case of AND (2)

The very special case here is a simple substitution of a value, NAME ('Boris'), for one of the
predicate variables, yielding a 1-place predicate. The corresponding relation therefore has just a
single attribute, Studentld. We achieve this by a combination of restriction (the new operator,
WHERE, introduced on this slide) and projection.

Beware! Codd’s name for this operator was SELECT. It was changed to restriction when SQL
came along in 1979 and injudiciously used the key word SELECT for a different purpose
altogether. Unfortunately not all the books have yet (2013) caught up with this change.

It is the restriction that is a relational counterpart of AND. The predicate for the entire expression,
as shown on the slide, is

There exists a Name such that Studentld is called Name and Name is Boris.

The projection over Studentld corresponds to the “There exists a Name such that” part of the
predicate. The text following “such that” is the predicate for the WHERE invocation:

Studentld is called Name and Name is Boris.

In general, the expression that appears after the key word WHERE is a conditional expression,
typically involving comparisons, possibly combined using the usual logical operators, AND, OR
and NOT.

Note that the conditional expression can, and typically does, reference attributes of the input
relation.

Alert regarding Rel: If you try this example in Rel, you will have to write just 'Boris' in place of
NAME('Boris') if the attribute Name is of type CHAR.

Now, the notes for Slide 15 promise a solution to the problems arising from reflexivity and
symmetry. Let s be the relation shown in Slide 15. Then s WHERE NOT(Sid1 = Sid2) eliminates
the cases where students are shown as having the same name as themselves. Moreover, if we can
assume that values of type SID (the type of the attributes Sidl and Sid2) are ordered so that the
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operator < is defined for this type, then s WHERE Sid1 < Sid2 eliminates the redundant cases
arising from symmetry as well as those arising from reflexivity.

Note how s WHERE Sid1 < Sid2 cannot conveniently be expressed by a JOIN, as we did in Slide 3,
with a relation of degree 1 and cardinality 1, to obtain student ids of students called Boris. If we
tried a similar technique here, we would have to join with a binary relation giving all pairs of
student ids where the first compares less than the second. When would we ever stop writing?

Now we know why WHERE is a very useful shorthand for many cases of predicates involving
AND.

25. Definition of Restriction

“On attributes of 7’ simply means that ¢ can contain zero or more references to attributes of r.If ¢
contains no references to attributes of 7, then its result (TRUE or FALSE) is the same for each tuple
of r.

As for the alternative definition mentioned in the slide, r WHERE c is equivalent to

((EXTEND r : { X := ¢ }) JOIN RELATION{TUPLE{X TRUE}}) {ALL BUT X}
Explanation:
1. (EXTEND r : { X := c }),where Xisnot an attribute name of , extends » with an
attribute X of type BOOLEAN, giving the result of evaluating the condition ¢ for each tuple
of r.
2. RELATION{TUPLE{X TRUE}} is a relation literal (Tutorial D notation) denoting the

relation whose only tuple is the 1-tuple whose attribute X has the value TRUE.
Joining the results of Steps 1 and 2 eliminates the tuples for which c evaluates to FALSE.

4. The final projection eliminates the attribute X added in Step 1, such that the result has the
same heading as 7.

26. Two More Relvars
Exercise:

Write down a relational expression to give, for each pair of students sitting the same exam,
the absolute value of the difference between their marks. Assume you can write ABS(x) to
obtain the absolute value of x.

But I am introducing exam marks to illustrate our next subject, aggregation ...

27. Aggregate Operators

COUNT (IS_ENROLLED_ON ) is an invocation of COUNT. In general, the operand of COUNT
is any relation » and COUNT ( r) gives the cardinality of r.

I use “=" here just to show you the result of the invocation when it is applied to the value of
IS ENROLLED_ON that we are running with.
28. More Aggregate Operators

These should all be self-explanatory, but note that, unlike COUNT, these all have a second
parameter, an expression denoting the values, obtained from the tuples of the first operand, whose
sum, average, maximum value, or minimum value is to be computed.
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29. Relations within a Relation

Here I’m only showing that such relations do exist. We’ll see the real significance of this one
shortly. A possible predicate for this one is “Exam_Result gives the marks obtained by all the
students who took the exam for course Courseld.”

Note that the information content of C_ER is identical to the combined information content of
COURSE and EXAM_MARKS.

Relations that are attribute values are sometimes referred to as nested relations.

C_ER can be obtained, using relational operators we have already learned, from the COURSE and
EXAM_MARKS relvars just shown ...

30. To obtain C_ER from COURSE and EXAM_MARK:

EXTEND COURSE : { ExamiReSult =
( EXAM MARK JOIN
RELATION { TUPLE { CourseId CourseId } } )
{ ALL BUT CourseId } }
{ Courseld, Exam Result }

Here the extension formula for the added attribute Exam_Result is a relation expression.
Explanation:

1. RELATION { TUPLE { CourseId CourseId } } isan open expression to be
evaluated against each tuple # of COURSE. It denotes the relation whose only attribute is
named CourseId and whose only tuple has as its only value that of the CourseId
attribute of £. CourseId CourseId looks a bit funny, especially in black and white, so
let me explain in more detail:

In the Powerpoint slide the first CourseId appears in blue, indicating an attribute name.
The second appears in black, indicating an expression denoting a value. So CourseId
CourseId specifies that the value for the CourseId attribute of the tuple is to be the
value of the CourseId attribute taken from that tuple # of COURSE.

2. Joining that single-tuple relation with EXAM MARK yields the relation consisting of just this
tuples of EXAM MARK that have the value of CourseId in tuple t. Note how this yields an
empty relation for course C4. The result relation is known as the image relation of tuple ¢ in
EXM MARK.

3. Projecting that on { ALL BUT CourseId } eliminates the now redundant CourseId
attribute—its value in each tuple is given by the CourseId attribute of COURSE.

“Courseld Courseld” looks a bit funny, especially in black and white. In the real slide the first
Courseld appears in blue, indicating an attribute name. The second appears in black, indicating an
expression denoting a value. So “Courseld Courseld” specifies that the value for the Courseld
attribute of the tuple is to be the value of the Courseld attribute taken from each tuple in turn of
COURSE.

The projection over {ALL BUT Courseld } yields the binary relations you see nested inside C_ER.
In the next lecture you learn the Tutorial D “shorthand”, COMPOSE, which combines JOIN and
projection. If I replace the word JOIN by COMPOSE in this slide, the projection over {ALL BUT
Courseld} can be omitted. COMPOSE does a join and then projects the result over the noncommon
attributes only.
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The final projection merely discards the Title attribute to give the result as shown on the previous
slide.

31. Nested Relations and Agg Ops

Since C_ER doesn’t exist as a relvar but rather has to be derived by the expression given earlier, it
would be rather nice to have a shorthand to operate on EXAM_MARK and do the whole job.

Enter SUMMARIZE ...

32. SUMMARIZE BY

This is the operator proposed by the ISBL team (and appearing in Baroque form in SQL). It is
pretty useful, but what if we want the result to include information about exams that nobody took?
In that case we need an operator that can be used to bring COURSE into the picture, too ...

33. SUMMARIZE PER

This variety was proposed by Date and Darwen to address the problem just mentioned with
SUMMARIZE BY. SUMMARIZE PER raises the question of what to do about aggregation over
the empty set.

COUNT and SUM are both easy. The sum of no numbers is zero, and so is their count. Their
average, alas, has to be undefined, because the average is the sum divided by the count and division
by zero is undefined.

The maximum of no numbers appears to be undefined, but given that our types are finite, there is
some number that is the lowest one representable (i.e., the lowest member of the type)—some very
large negative number. In theory, that could be taken as the maximum of no numbers, as I now try
to explain.

SUM is repeated addition. The so-called identity under addition—that number that when added to
any number 7 yields n itself, is zero. To determine the result of applying some operator
“repeatedly” to the empty set, we take the identity under that operation if one exists.

MAX is repeated “take the higher of”. The identity under “take the higher of” is that number that is
higher than no number.

By a similar argument, the minimum of no numbers is the highest number of the type in question.

In practice, the highest and lowest members of types are not always defined and so MAX and MIN
on empty relations are not always defined either.

34. OR

The dotted line indicates that the table depicting the relation that would represent the extension of
that predicate is incomplete; for the relation, under our Closed World Assumption, must include
every tuple that satisfies either of the two disjuncts (Studentld is called Name, and Studentld is
enrolled on Courseld).

It is neither reasonable nor very practical to require the DBMS to support evaluation of such huge
relations, so Codd sought some restricted support for disjunction that would be sufficient to meet
the perceived practical requirement ...
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35. UNION (restricted OR)

As it happens, analogous restrictions are typically found in other logic-based languages, such as
Prolog. By enforcing the operands to be type compatible (i.e., have the same heading), the
combinatorial explosion depicted on the previous slide is avoided!

36. Definition of UNION

Recall that 7/ INTERSECT r2 is traditionally permitted in the special case where the heading of the
operands are identical. In basic set theory, we have union, intersection, and difference. It seems
that Codd thought his relational algebra would seem psychologically incomplete unless it had a
counterpart of each of those three.

Exercises:
1. What is the result of » UNION #?

2. Is UNION commutative? IL.e., do »/ UNION r2 and »2 UNION r/ always denote the same
relation?

3. Is UNION associative? I.e., do (#/ UNION r2) UNION r3 and »/ UNION (2 UNION r3)
always denote the same relation?

37. NOT

Again the Closed-World Assumption makes general support for negation a no-no (pun intended!).

Codd’s solution was the same as with disjunction, with his definition of MINUS (see later), but
after Codd a significantly less restrictive approach was discovered ...

38. Restricted NOT

We define an operator, NOT MATCHING, that combines negation with conjunction, thus avoiding
the combinatorial explosion. Again, analogous restrictions are found in other logic-based
languages.

39. Definition of NOT MATCHING

Tutorial D also has an operator, MATCHING, where »r MATCHING s is equivalent to ( JOIN s){
Hr }, where Hr is a list of attribute names representing the heading of . Thus, the result is the
relation consisting of every tuple of » whose common attributes with s match those of at least one
tuple of s. Thus, MATCHING is not a primitive operator even though its converse, NOT
MATCHING, is.

MATCHING and NOT MATCHING both appeared (under different names) in ISBL, as
generalisations of Codd’s intersection and difference operators, respectively. The name semijoin
was advanced for MATCHING in the late 1970s, presumably on the grounds that it does half the
job, so to speak, of a join. The name semidifference came much later, as a companion to semijoin,
but it’s hard to think of this operator as doing half the job of difference.

Exercises: State the result of

1. 7 NOT MATCHING TABLE DEE

2 » NOT MATCHING TABLE DUM

3. 7 NOT MATCHING r

4 (r NOT MATCHING r ) NOT MATCHING r
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5. » NOT MATCHING (» NOT MATCHING r)
Is NOT MATCHING associative? Is it commutative?

MINUS is Tutorial D’s difference operator. Like TIMES and INTERSECT it is not needed but is
kept for historical reasons. It completes Codd’s trio of counterparts of the basic set operators. You
might like to use MINUS in place of NOT MATCHING when it is appropriate to do so. If it turns
out not be appropriate, you get a syntax error, and that might be helpful to you if it reveals that you
were under some false assumption. A similar comment could be made in favour of using
INTERSECT or TIMES instead of JOIN, when appropriate.

To define MINUS in terms of NOT MATCHING is trivial, for »/ MINUS r2, for all the cases
where it is defined, is equivalent to »/ NOT MATCHING r2. Similarly, »/ INTERSECT 12 and r/
TIMES r2 are equivalent to »/ JOIN r2 for all the cases where they are defined.

Exercise: Define 7/ NOT MATCHING r2 in terms of MINUS and other operators.

40. Constraints

Avoid the terrible mistake of thinking of a constraint as a condition applying to “data to be entered
into the system”.

You should be familiar with key constraints and foreign key constraints, for example. A key
constraint on a relvar, such as KEY { Studentld } for IS CALLED, specifies that no relation
containing two or more tuples with identical values for the specified attribute(s) can ever be the
value assigned to that relvar. Checking the constraint when tuples are inserted or updated entails
looking at the current value of the relvar as well as the inserted or updated tuples.

A foreign key constraint, such as FOREIGN KEY { Studentld } REFERENCES IS CALLED
defined for relvar IS_ENROLLED_ON, requires that every value appearing for the foreign key in
the referencing relvar appears also as a key value in the referenced relvar. It needs to be checked
not only on inserts and updates to IS CALLED in the example but also on deletions and updates to
IS_ENROLLED ON.

41. IS_EMPTY Example

Even here the notion of applying the constraint to “data being entered into the system” is misleading
and inappropriate, even though it is obviously sufficient to check a tuple presented for insertion
without looking at the current value of EXAM_MARK. Consider an update that adds 10 to every
student’s mark. That would violate the constraint if the existing value shows any student as having
scored more than 90 in some exam.

By the way, Tutorial D does not provided special syntax for foreign key constraints. The one
suggested in the notes for Slide 40 can be expressed simply as [S EMPTY(IS_ENROLLED ON
NOT MATCHING IS_CALLED).

42. The End

One final remark: As I said, relational algebra, of itself, has nothing to do with databases and
updating, but the examples clearly show its applicability to various problems in connection with
databases and its use in a computer language addressing those problems: expressing queries and
defining database constraints, for example. Note also that it can be used for updating too, by
assignment of a relational expression to a relation variable, just as numerical expressions can be
assigned to numerical variables. Indeed, the familiar update operators, INSERT, DELETE,
UPDATE, are all defined in terms of such assignment. For example,
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IS CALLED := IS CALLED WHERE NOT ( Name = 'Boris' ) ; and
DELETE IS_CALLED WHERE Name = 'Boris' ;

are equivalent. As an exercise, you might like to express the following as direct assignments too:

INSERT IS CALLED RELATION{TUPLE{StudentId SID('S6'), Name
'Eve'}} ;

UPDATE EXAM MARK : { Mark := Mark + 5 } ;

End of Notes
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