
HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 1

1

Relational Algebra

Hugh Darwen
(invited lecturer)

hughdarwen@gmail.com
www.dcs.warwick.ac.uk/~hugh

CS319: Relational Algebra
(revisited, reviewed, revised, simplified)

2

Anatomy of a Relation

Anne

Name
[CHAR]

C1S1

CourseId
[CID]

StudentId
[SID]

attribute name attribute values n-tuple, or tuple.
This is a 3-tuple.
The tuples
constitute the body
of the relation.
The number of
tuples in the body
is the cardinality of
the relation.

Heading (a set of attributes)
The degree of this heading is 3,
which is also the degree of the relation.

type name

3

Running Examples

DevinderS4

CindyS3

Boris

Boris

Anne

Name
[CHAR]

S5

S2

S1

StudentId
[SID]

C3S3

C1S4

C1S2

C2S1

C1S1

CourseId
[CID]

StudentId
[SID]

IS_CALLED IS_ENROLLED_ON

Student StudentId is called
Name

Student StudentId is enrolled on
course CourseId

4

Relations and Predicates (1)

Consider the predicate: StudentId is called Name

… is called --- is the intension (meaning) of the predicate.

The parameter names are arbitrary. “S is called N” means the
same thing (has the same intension).

The extension of the predicate is the set of true propositions that
are instantiations of it:
{ S1 is called Anne, S2 is called Boris, S3 is called Cindy,
S4 is called Devinder, S5 is called Boris }

Each tuple in the body of the relation provides the values to
substitute for the parameters in one such instantiation.

5

Relations and Predicates (2)

Moreover, each proposition in the extension has exactly one
corresponding tuple in the relation.

This 1:1 correspondence reflects the Closed World Assumption:

The Closed World Assumption underpins the operators we are
about to meet.

A tuple representing a true instantiation is in the relation.
A tuple representing a false one is out.

6

Relational Algebra

Operators that operate on relations and return relations.

In other words, operators that are closed over relations. Just as
arithmetic operators are closed over numbers.

Closure means that every invocation can be an operand, allowing
expressions of arbitrary complexity to be written. Just as, in
arithmetic, e.g., the invocation b-c is an operand of a+(b-c).

The operators of the relational algebra are relational
counterparts of logical operators: AND, OR, NOT, EXISTS.
Each, when invoked, yields a relation, which can be
interpreted as the extension of some predicate.

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 2

7

Logical Operators

Because relations are used to represent predicates, it makes sense for
relational operators to be counterparts of operators on predicates.
We will meet examples such as these:

Student StudentId is called Name AND StudentId is enrolled on
course CourseId.

Student StudentId is enrolled on some course.

Student StudentId is enrolled on course CourseId AND StudentId is
NOT called Devinder.

Student StudentId is NOT enrolled on any course OR StudentId is
called Boris.

8

Relational Operators

(semi)difference (NOT MATCHING, –)AND NOT

UNION ()OR

attribute renaming (RENAME,)

projection (r{attribute names},)EXISTS

JOIN (, *)
restriction (WHERE,)
extension(EXTEND)
summarization (SUMMARIZE)

AND

Logic Relational counterpart

9

A Bit of History

1970, E.F. Codd: Codd’s algebra was incomplete (no extension,
no attribute renaming) and somewhat flawed (Cartesian product).

1975, Hall, Hitchcock, Todd: An Algebra of Relations for
Machine Computation. Fixed the problems, but not everybody
noticed! Used in language ISBL.

1998, Date and Darwen: Tutorial D, a complete programming
language, implemented in Rel (D. Voorhis). Relational
operators based largely on ISBL.

2011, Elmasri and Navathe: Database Systems. Repeats
Codd’s flaw, offers flawed version of RENAME.

10

JOIN (= AND)

StudentId is called Name AND StudentId is enrolled on CourseId.

IS_CALLED JOIN IS_ENROLLED_ON

S4Devinder

Boris

Cindy

Boris

Anne

Name
[CHAR]

S3

S5

S2

S1

StudentId
[SID]

C3S3

C1S4

C1S2

C2S1

C1S1

CourseId
[CID]

StudentId
[SID]

11

IS_CALLED JOIN IS_ENROLLED_ON

C3CindyS3

Devinder

Boris

Anne

Anne

Name
[CHAR]

C1S4

C1S2

C2S1

C1S1

CourseId
[CID]

StudentId
[SID]

Note how this has “lost” the second Boris, not enrolled on any
course.

12

Definition of JOIN

Let s = r1 JOIN r2. Then:

The heading Hs of s is the union of the headings of r1 and r2.

The body of s consists of those tuples having heading Hs that can
be formed by taking the union of t1 and t2, where t1 is a tuple of
r1 and t2 is a tuple of r2.

If c is a common attribute, then it must have the same declared
type in both r1 and r2. (I.e., if it doesn’t, then r1 JOIN r2 is
undefined.)

Note: JOIN, like AND, is both commutative and associative.

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 3

13

RENAME

DevinderS4

CindyS3

Boris

Boris

Anne

Name
[CHAR]

S5

S2

S1

Sid1
[SID]

DevinderS4

CindyS3

Boris

Boris

Anne

Name
[CHAR]

S5

S2

S1

StudentId
[SID]

Sid1 is called Name

IS_CALLED RENAME (StudentId AS Sid1)

14

Definition of RENAME

Let s = r RENAME (A1 AS B1, … An AS Bn)

The heading of s is the heading of r except that attribute A1 is
renamed to B1 and so on.

The body of s consists of the tuples of r except that in each tuple
attribute A1 is renamed to B1 and so on.

This definition stands in contrast to that offered by,
e.g., Elmasri and Navathe. See the notes on this slide.
Wikipedia gives a good definition, using as the
operator name.

15

RENAME and JOIN
Sid1 is called Name AND so is Sid2

IS_CALLED RENAME (StudentId AS Sid1) JOIN
IS_CALLED RENAME (StudentId AS Sid2)

S2BorisS2

S5BorisS2

Boris

Devinder

Cindy

Boris

Anne

Name
[CHAR]

S5

S4

S3

S2

S1

Sid2
[SID]

S4

S3

S5

S5

S1

Sid1
[SID]

16

Special Cases of JOIN

What is the result of r JOIN r?

What if all attributes are common to both operands?

What if no attributes are common to both operands?

r

It is called “intersection”.

It is called “Cartesian product” (TIMES, X)

17

Interesting Properties of JOIN

It is commutative: r1 JOIN r2 ≡ r2 JOIN r1

It is associative: (r1 JOIN r2) JOIN r3 ≡ r1 JOIN (r2 JOIN r3)
So Tutorial D allows JOIN{r1, r2, …} (note the braces)

Of course it is no coincidence that logical AND is also both
commutative and associative.

We note in passing that these properties are important for
optimisation (in particular, of query evaluation).

18

Projection (= EXISTS)

Student StudentId is enrolled on some course.

C3S3

C1S4

C1S2

C2S1

C1S1

CourseId
[CID]

StudentId
[SID]

Given:

S3

S4

S2

S1

StudentId
[SID]

To obtain:

IS_ENROLLED_ON { StudentId }

= IS_ENROLLED_ON { ALL BUT CourseId }

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 4

19

Definition of Projection

Let s = r { A1, … An }
(= r { ALL BUT B1, … Bm })

The heading of s is the subset of the heading of r, given by { A1,
… An }, equivalently by eliminating { B1, … Bm }.

The body of s consists of each tuple that can be formed from a
tuple of r by removing from it the attributes named B1, … Bm.

Note that the cardinality of s can be less than that of r but
cannot be more than that of r.

20

Special Cases of Projection

What is the result of r { ALL BUT }?

What is the result of r{ }?

r

A relation with no attributes at all, of course!

There are two such relations, of cardinality 1 and 0.
The pet names TABLE_DEE and TABLE_DUM have
been advanced for these two, respectively.

21

Special Case of AND (1)

StudentId is called Name AND Name begins with the letter Initial.

DevinderS4

CindyS3

Boris

Boris

Anne

Name
[CHAR]

S5

S2

S1

StudentId
[SID]

Boris

Devinder

Cindy

Boris

Anne

Name
[CHAR]

DS4

CS3

B

B

A

Initial
[CHAR]

S5

S2

S1

StudentId
[SID]

Given: To obtain:

Much too difficult with JOIN. Why?

22

Extension

StudentId is called Name AND Name begins with the letter Initial.

EXTEND IS_CALLED : { Initial := SUBSTRING (Name, 0, 1) }

Boris

Devinder

Cindy

Boris

Anne

Name
[CHAR]

DS4

CS3

B

B

A

Initial
[CHAR]

S5

S2

S1

StudentId
[SID]

Result:

23

Definition of Extension

Let s = EXTEND r : { A1 := exp1, …, An := expn }

exp1, …, expn are open expressions, mentioning attributes of r.
The heading of s consists of the attributes of the heading of r
plus the attributes A1 … An. The declared type of attribute Ak is
that of exp-k.

The body of s consists of tuples formed from each tuple of r by
adding n additional attributes A1 to An. The value of attribute
Ak is the result of evaluating formula-k on the corresponding
tuple of r.

If we accept extension as primitive (which we must),
then the formerly defined RENAME doesn’t have to
be regard as primitive. See the notes.

24

Special Case of AND (2)

StudentId is called Boris

Can be done using JOIN and projection, like this:

(IS_CALLED JOIN
RELATION { TUPLE { Name NAME (‘Boris’) } })

{ StudentId }

but it’s easier using restriction (and projection again):

(IS_CALLED WHERE Name = NAME (‘Boris’)) { StudentId }

S2

S5

StudentIdresult:

“EXISTS Name such that StudentId is called Name AND Name is Boris”

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 5

25

Definition of Restriction

Let s = r WHERE c, where c is a conditional expression on
attributes of r.

The heading of s is the heading of r.

The body of s consists of those tuples of r for which the
condition c evaluates to TRUE.

So the body of s is a subset of that of r.

Can also be defined in terms of previously defined
operators (see the notes for this slide).

26

Two More Relvars

Op SystemsC3

Programming

HCI

Database

Title
[CHAR]

C4

C2

C1

CourseId
[CID]

C1

C3

C1

C2

C1

CourseId
[CID]

66S3

93S4

49S2

49S1

85S1

Mark
[INTEGER]

StudentId
[SID]

COURSE EXAM_MARK

CourseId is titled Title StudentId scored Mark in the exam
for course CourseId

27

Aggregate Operators

An aggregate operator is one defined to operate on a relation
and return a value obtained by aggregation over all the tuples
of the operand. For example, simply to count the tuples:

COUNT (IS_ENROLLED_ON) = 5
COUNT (IS_ENROLLED_ON

WHERE CourseId = CID (‘C1’)) = 3

COUNT is an aggregate operator.

28

More Aggregate Operators

SUM (EXAM_MARK, Mark) = 342

AVG (EXAM_MARK, Mark) = 68.4

MAX (EXAM_MARK, Mark) = 93

MIN (EXAM_MARK, Mark) = 49

MAX (EXAM_MARK
WHERE CourseId = CID (‘C2’), Mark) = 49

29

Relations within a Relation

C3

Exam_Result
[RELATION{StudentID SID, Mark INTEGER}]

C4

C2

C1

CourseId
[CID]

49S2

93S4

85S1

MarkStudentId

49S1

MarkStudentId

66S3

MarkStudentId

MarkStudentId

Call this
C_ER
for future
reference.

The Exam_Result
values are called
image relations, in
EXAM_MARK, of
tuples in COURSE.

30

To obtain C_ER from COURSE
and EXAM_MARK:

EXTEND COURSE ADD (
(EXAM_MARK JOIN

RELATION { TUPLE { CourseId CourseId } })
{ ALL BUT CourseId }

AS Exam_Result)

{ CourseId, Exam_Result }

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 6

31

Nested Relations and Agg Ops

The top score in the exam on course CourseId was TopScore

66C3

49

93

TopScore
[INTEGER]

C2

C1

CourseId
[CID]

EXTEND C_ER WHERE COUNT (Exam_Result) > 0 :
{TopScore := MAX (Exam_Result, Mark)}
{ CourseId, TopScore }

Note the application of agg ops on image relations.

32

SUMMARIZE BY

A shorthand for aggregation over image relations. For example,
those top scores in each exam can be obtained directly from
EXAM_MARK by:

SUMMARIZE EXAM_MARK BY { CourseId } :
{ TopScore := MAX (Mark) }

The usual first operand of the “agg op” is now omitted
because it is implied by the combination of the SUMMARIZE
operand (EXAM_MARK) and the BY operand ({CourseId }).

33

SUMMARIZE PER

Takers is how many people took the exam on course CourseId

SUMMARIZE EXAM_MARK PER COURSE { CourseId } :
{ Takers := COUNT() }

So EXAM_MARK BY { CourseId } is shorthand for
EXAM_MARK PER EXAM_MARK { CourseId }.

1C3

0C4

1

3

Takers
[INTEGER]

C2

C1

CourseId
[CID]

result:

34

OR

StudentId is called Name OR StudentId is enrolled on CourseId.

NOT SUPPORTED!

C4AnneS1

Anne

Zorba

Boris

Anne

Name

C943S1

C1S1

C1S1

C1S1

CourseIdStudentId

and so on ad infinitum (almost!)

35

UNION (restricted OR)

StudentId is called Devinder OR StudentId is enrolled on C1.

S4

S2

S1

StudentId

(IS_CALLED WHERE Name = NAME (‘Devinder’)) { StudentId }
UNION
(IS_ENROLLED_ON WHERE CourseId = CID (‘C1’)) { StudentId }

36

Definition of UNION

Let s = r1 UNION r2. Then:

The heading of s is the common heading of r1 and r2.

The body of s consists of each tuple that is either a tuple of r1
or a tuple of r2.

r1 and r2 must have the same heading.

Is UNION commutative? Is it associative?

HACD.4: Relational Algebra, Principles and Part I 27/09/2013

CS252: Fundamentals of Relational Databases 7

37

NOT

StudentId is NOT called Name

BorisS1

CindyS1

Hugh

Zorba

Quentin

Name

S1

S1

S1

StudentId

and so on ad infinitum (almost!)

NOT SUPPORTED!

38

Restricted NOT

StudentId is called Name AND is NOT enrolled on any course.

IS_CALLED NOT MATCHING IS_ENROLLED_ON

BorisS5

NameStudentId

Sometimes referred to as “semidifference”

39

Definition of NOT MATCHING

Let s = r1 NOT MATCHING r2. Then:

The heading of s is the heading of r1.

The body of s consists of each tuple of r1 that matches no tuple
of r2 on their common attributes.

It follows that in the case where there are no common attributes,
s is equal to r1 if r2 is empty, and otherwise is empty.

When all attributes are common, we get Codd’s original
difference operator (MINUS in Tutorial D).

40

Constraints

Constraints express the integrity rules for a database.

Enforcement of constraints by the DBMS ensures that the
database is at all times in a consistent state.

A constraint is a truth-valued expression, such as a comparison,
declared as part of the logical schema of the database.

The comparands of a constraint are typically relation expressions
or invocations of aggregate operators.

But the commonest kinds of constraint are expressed using
special shorthands, like KEY, FOREIGN KEY, IS_EMPTY.

41

IS_EMPTY Example

C1

C3

C1

C2

C1

CourseId

66S3

93S4

49S2

49S1

85S1

MarkStudentId

EXAM_MARK

This might be subject
to the constraint:
0 ≤ Mark ≤ 100

IS_EMPTY (
EXAM_MARK WHERE
Mark < 0 OR Mark > 100)

42

The End

