

IS_CALLED

StudentIId [SID]	Name [CHAR]
S1	Anne
S2	Boris
S3	Cindy
S4	Devinder
S5	Boris

Student StudentId is called Name

IS_ENROLLED_ON

StudentId $[\mathrm{SID}]$	CourseId $[\mathrm{CID}]$
S 1	C 1
S 1	C 2
S 2	C 1
S 3	C 3
S 4	C 1

Student StudentId is enrolled on course CourseId

Relations and Predicates (1)

Consider the predicate: StudentId is called Name
\ldots is called ..-. is the intension (meaning) of the predicate.
The parameter names are arbitrary. " S is called N " means the same thing (has the same intension).

The extension of the predicate is the set of true propositions that are instantiations of it:
\{ S 1 is called Anne, S 2 is called Boris, S 3 is called Cindy, S4 is called Devinder, S5 is called Boris \}
Each tuple in the body of the relation provides the values to substitute for the parameters in one such instantiation.

Relations and Predicates (2)

Moreover, each proposition in the extension has exactly one corresponding tuple in the relation.

This 1:1 correspondence reflects the Closed World Assumption:
A tuple representing a true instantiation is in the relation. A tuple representing a false one is out.

The Closed World Assumption underpins the operators we are about to meet.

Relational Algebra

Operators that operate on relations and return relations.
In other words, operators that are closed over relations. Just as arithmetic operators are closed over numbers.
Closure means that every invocation can be an operand, allowing expressions of arbitrary complexity to be written. Just as, in arithmetic, e.g., the invocation $b-c$ is an operand of $a+(b-c)$.
The operators of the relational algebra are relational counterparts of logical operators: AND, OR, NOT, EXISTS Each, when invoked, yields a relation, which can be interpreted as the extension of some predicate.

Logical Operators

Because relations are used to represent predicates, it makes sense for relational operators to be counterparts of operators on predicates. We will meet examples such as these:

Student StudentId is called Name AND StudentId is enrolled on course CourseId.
Student StudentId is enrolled on some course.
Student StudentId is enrolled on course CourseId AND StudentId is NOT called Devinder.

Student StudentId is NOT enrolled on any course OR StudentId is called Boris.

A Bit of History

1970, E.F. Codd: Codd's algebra was incomplete (no extension, no attribute renaming) and somewhat flawed (Cartesian product).

1975, Hall, Hitchcock, Todd: An Algebra of Relations for Machine Computation. Fixed the problems, but not everybody noticed! Used in language ISBL.

1998, Date and Darwen: Tutorial D, a complete programming language, implemented in Rel (D. Voorhis). Relational operators based largely on ISBL.

2011, Elmasri and Navathe: Database Systems. Repeats Codd's flaw, offers flawed version of RENAME.

JOIN (= AND)

StudentId is called Name AND StudentId is enrolled on Courseld.

IS_CALLED		JOIN	IS_ENROLLED_ON	
Name [CHAR]	$\underset{\substack{\text { SSID] }]}}{\substack{\text { Studentd } \\ \hline}}$		$\underset{\substack{\text { SIDI }]}}{\text { StudentId }}$	CourseId [CID]
Anne	S1		S1	C1
Boris	S2		S1	C2
Cindy	S3		S2	C1
Devinder	S4		S3	C3
Boris	S5		S4	C1

IS_CALLED JOIN IS_ENROLLED_ON

StudentId SSD]	Name [CHAR] $]$	CourseId $[\mathrm{CLD]}]$
S1	Anne	C 1
S1	Anne	C 2
S2	Boris	C 1
S3	Cindy	C 3
S4	Devinder	C 1

Note how this has "lost" the second Boris, not enrolled on any course.

Definition of JOIN

Let $s=r 1$ JOIN $r 2$. Then:

The heading $H s$ of s is the union of the headings of $r 1$ and $r 2$.
The body of s consists of those tuples having heading $H s$ that can be formed by taking the union of $t 1$ and $t 2$, where $t 1$ is a tuple of $r l$ and $t 2$ is a tuple of $r 2$.
If c is a common attribute, then it must have the same declared type in both $r 1$ and $r 2$. (I.e., if it doesn't, then $r 1$ JOIN $r 2$ is undefined.)
Note: JOIN, like AND, is both commutative and associative.

Sid 1 is called Name
IS_CALLED RENAME (StudentId AS Sid1)

StudentId $[\mathrm{SDD]}]$	Name [CHAR]
S1	Anne
S2	Boris
S3	Cindy
S4	Devinder
S5	Boris

Sid1 [SID]	Name [CHAR] $]$
S1	Anne
S2	Boris
S3	Cindy
S4	Devinder
S5	Boris

Definition of RENAME

```
Let \(s=r\) RENAME ( \(A 1\) AS \(B 1, \ldots A n\) AS \(B n\) )
```

The heading of s is the heading of r except that attribute $A 1$ is renamed to $B 1$ and so on.

The body of s consists of the tuples of r except that in each tuple attribute $A 1$ is renamed to $B 1$ and so on.

This definition stands in contrast to that offered by,
e.g., Elmasri and Navathe. See the notes on this slide.

Wikipedia gives a good definition, using ρ as the operator name.

RENAME and JOIN

Sidl is called Name AND so is Sid2
IS_CALLED RENAME (StudentId AS Sid1) JOIN IS_CALLED RENAME (StudentId AS Sid2)

Sid1 $[\mathrm{SID]}]$	Name $[\mathrm{CHAR}]$	Sid2 $[\mathrm{SID]}]$
S1	Anne	S1
S2	Boris	S2
S2	Boris	S5
S5	Boris	S2
S3	Cindy	S3
S4	Devinder	S4
S5	Boris	S5

Interesting Properties of JOIN

It is commutative: $r 1$ JOIN $r 2 \equiv r 2 \mathrm{JOIN} r 1$

It is associative: $(r 1 \mathrm{JOIN} r 2) \mathrm{JOIN} r 3 \equiv r 1 \mathrm{JOIN}(r 2 \mathrm{JOIN} r 3)$ So Tutorial D allows JOIN $\{r 1, r 2, \ldots\}$ (note the braces)

We note in passing that these properties are important for optimisation (in particular, of query evaluation).

Of course it is no coincidence that logical AND is also both commutative and associative.

Projection (= EXISTS)

Student StudentId is enrolled on some course.
IS_ENROLLED_ON \{ StudentId \}
= IS_ENROLLED_ON \{ ALL BUT CourseId \}
Given:

StudentId $[$ SID $] ~$	CourseId [CID]
S 1	C 1
S 1	C 2
S 2	C 1
S 3	C 3
S 4	C 1

To obtain:

StudentId $[$ SID $]$
S1
S2
S3
S4

Definition of Projection

Special Cases of Projection

What is the result of r \{ALL BUT \}?

What is the result of $r\}$?
A relation with no attributes at all, of course!
There are two such relations, of cardinality 1 and 0 . The pet names TABLE_DEE and TABLE_DUM have been advanced for these two, respectively.

Special Case of AND (1)

StudentId is called Name AND Name begins with the letter Initial.

Given:		To obtain:		
StudentId [SID]	Name [CHAR]	StudentId [SID]	Name [CHAR]	Initial [CHAR]
S1	Anne	S1	Anne	A
S2	Boris	S2	Boris	B
S3	Cindy	S3	Cindy	C
S4	Devinder	S4	Devinder	D
S5	Boris	S5	Boris	B

Much too difficult with JOIN. Why?

Definition of Extension

Let $s=\mathbf{E X T E N D} r:\{\mathrm{A} 1:=\exp 1, \ldots, A n:=\exp n\}$
exp1, ..., expn are open expressions, mentioning attributes of r. The heading of s consists of the attributes of the heading of r plus the attributes $A 1 \ldots A n$. The declared type of attribute $A k$ is that of exp-k.
The body of s consists of tuples formed from each tuple of r by adding n additional attributes $A 1$ to $A n$. The value of attribute $A k$ is the result of evaluating formula- k on the corresponding tuple of r.

[^0]
Special Case of AND (2)

StudentId is called Boris
Can be done using JOIN and projection, like this:
(IS_CALLED JOIN
RELATION \{ TUPLE \{ Name NAME ('Boris') \} \})
\{ StudentId \}
but it's easier using restriction (and projection again):
$($ IS_CALLED WHERE Name $=$ NAME ('Boris')) \{ StudentId \}

result: | StudentId |
| :---: |
| S2 |
| S5 |

"EXISTS Name such that StudentId is called Name AND Name is Boris" 24

Definition of Restriction

Let $s=r$ WHERE c, where c is a conditional expression on attributes of r.
The heading of s is the heading of r.
The body of s consists of those tuples of r for which the condition c evaluates to TRUE.

So the body of s is a subset of that of r.
Can also be defined in terms of previously defined operators (see the notes for this slide).

EXAM MARK

CourseId [CID]	Title [CHAR]
C 1	Database
C 2	HCI
C 3	Op Systems
C 4	Programming

StudentId [SID]	CourseId $[$ CIID]	Mark [INTEGER]
S1	C 1	85
S1	C 2	49
S2	C 1	49
S 3	C 3	66
S4	C 1	93

StudentId scored Mark in the exam for course CourseId

Aggregate Operators

An aggregate operator is one defined to operate on a relation and return a value obtained by aggregation over all the tuples of the operand. For example, simply to count the tuples:

COUNT (IS_ENROLLED_ON) $=5$
COUNT (IS_ENROLLED-ON
WHERE CourseId $=$ CID (${ }^{C} 1$ ' $)$) $=3$
COUNT is an aggregate operator.

More Aggregate Operators

```
SUM ( EXAM_MARK, Mark ) = 342
AVG( EXAM_MARK, Mark )=68.4
MAX ( EXAM_MARK, Mark ) = 93
MIN ( EXAM_MARK, Mark ) = 49
MAX ( EXAM_MARK
    WHERE CourseId = CID ( 'C2' ), Mark ) = 49
```


Relations within a Relation

CourseId [CID]	Exam Result [RELATION $\{$ StudentID SID, Mark INTEGER\}]	
C1	StudentId	Mark
	S1	85
	S2	49
	S4	93
C2	StudentId	Mark
	S1	49
C3	StudentId	Mark
	S3	66
C4	StudentId	Mark

To obtain C_ER from COURSE and EXAM_MARK:

EXTEND COURSE ADD (
(EXAM MARK JOIN
RELATION \{ TUPLE \{ CourseId CourseId \} \})
\{ ALL BUT CourseId \}
AS Exam_Result)
\{ CourseId, Exam_Result \}

Nested Relations and Agg Ops

The top score in the exam on course Courseld was TopScore

CourseId [CID]	TopScore [INTEGER]
C 1	93
C 2	49
C 3	66

EXTEND C_ER WHERE COUNT (Exam_Result) >0 :
\{TopScore := MAX (Exam_Result, Mark)\}
\{ CourseId, TopScore \}
Note the application of agg ops on image relations.

SUMMARIZE BY

A shorthand for aggregation over image relations. For example, those top scores in each exam can be obtained directly from EXAM_MARK by:

SUMMARIZE EXAM_MARK BY \{ CourseId \} : $\{$ TopScore := MAX (Mark) \}

The usual first operand of the "agg op" is now omitted because it is implied by the combination of the SUMMARIZE operand (EXAM_MARK) and the BY operand (\{CourseId \}).

SUMMARIZE PER

Takers is how many people took the exam on course Courseld
SUMMARIZE EXAM_MARK PER COURSE \{ CourseId \} :
\{ Takers := COUNT() \}
result:

CourseId [CID]	Takers [INTEGER]
C 1	3
C 2	1
C 3	1
C 4	0

So EXAM_MARK BY \{ CourseId \} is shorthand for EXAM_MARK PER EXAM_MARK \{ CourseId $\}$.

UNION (restricted OR)

StudentId is called Devinder OR StudentId is enrolled on C1.

StudentId
S 1
S 2
S 4

(IS_CALLED WHERE Name = NAME ('Devinder')) \{ StudentId \} UNION
(IS_ENROLLED_ON WHERE CourseId = CID ('C1')) \{ StudentId \}

Definition of UNION

Let $s=r l \mathbf{U N I O N} r 2$. Then:
$r 1$ and $r 2$ must have the same heading.
The heading of s is the common heading of $r 1$ and $r 2$.

The body of s consists of each tuple that is either a tuple of $r 1$ or a tuple of $r 2$.

Is UNION commutative? Is it associative?

Restricted NOT

StudentId is called Name AND is NOT enrolled on any course.

StudentId	Name
S5	Boris

IS_CALLED NOT MATCHING IS_ENROLLED_ON
Sometimes referred to as "semidifference"

Definition of NOT MATCHING

Let $s=r 1$ NOT MATCHING $r 2$. Then:
The heading of s is the heading of $r 1$.
The body of s consists of each tuple of $r l$ that matches no tuple of $r 2$ on their common attributes.

It follows that in the case where there are no common attributes, s is equal to $r l$ if $r 2$ is empty, and otherwise is empty.
When all attributes are common, we get Codd's original

Constraints

Constraints express the integrity rules for a database.
Enforcement of constraints by the DBMS ensures that the database is at all times in a consistent state.

A constraint is a truth-valued expression, such as a comparison, declared as part of the logical schema of the database.

The comparands of a constraint are typically relation expressions or invocations of aggregate operators. difference operator (MINUS in Tutorial D).

But the commonest kinds of constraint are expressed using special shorthands, like KEY, FOREIGN KEY, IS_EMPTY.

IS_EMPTY Example			
$\begin{aligned} & \text { This might be subject } \\ & \text { to the constraint: } \\ & 0 \leq \text { Mark } \leq 100 \end{aligned}$	EXAM_mark		
	Sudentd	Courseld	Mark
	SI	${ }^{\text {c }}$	${ }^{85}$
is empty EXAM_MARK WHERE Mark < 0 OR Mark > 100)	S2	Cl^{1}	49
	${ }_{5} 3$	${ }^{\text {c }}$	66
	54	Cl	${ }_{93}$
			*

[^0]: If we accept extension as primitive (which we must),
 then the formerly defined RENAME doesn't have to be regard as primitive. See the notes.

