
Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 1

Temporal Data and The
Relational Model

Hugh Darwen
hugh@dcs.warwick.ac.uk

www.dcs.warwick.ac.uk/~hugh

Warwick University

Based on the book of the same title,
by C.J. Date, Hugh Darwen, and Nikos A. Lorentzos

summarised in C.J. Date: Introduction to Database
Systems (8th edition, Addison-Wesley, 2003), Chapter 23.

CS319

for

2

Temporal Data and The Relational Model

Authors: C.J. Date, Hugh Darwen,
Nikos A. Lorentzos

A detailed investigation into the application of
interval and relation theory to the problem of
temporal database management

Morgan-Kaufmann, 2002
ISBN 1-55860-855-9

Caveat: not about technology available anywhere today!

But MighTyD deserves a mention!

And we need to talk about new temporal features in SQL:2011

3

The Book’s Aims

• Describe a foundation for inclusion of support for temporal data in a truly
relational database management system (TRDBMS)

• Focussing on problems related to data representing beliefs that hold throughout
given intervals (usually, of time).

• Propose additional operators on relations and relation variables ("relvars")
having interval-valued attributes.

• Propose additional constraints on relation variables having interval-valued
attributes.

• All of the above to be definable in terms of existing operators and constructs.

• And explore some interesting side issues.

4

Contents (Parts I and II)

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts
Chapter 2: An Overview of Tutorial D

Part II: Laying the Foundations

Chapter 3: Time and the Database
Chapter 4: What Is the Problem?
Chapter 5: Intervals
Chapter 6: Operators on Intervals
Chapter 7: The COLLAPSE and EXPAND Operators
Chapter 8: The PACK and UNPACK Operators
Chapter 9: Generalising the Relational Operators

5

Contents (Part III)

Part III: Building on the Foundations

Chapter 10: Database Design
Chapter 11: Integrity Constraints I: Candidate Keys and Related Constraints
Chapter 12: Integrity Constraints II: General Constraints
Chapter 13: Database Queries
Chapter 14: Database Updates
Chapter 15: Stated Times and Logged Times
Chapter 16: Point and Interval Types Revisited

6

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts

Introduction; The running example (based on Date's familiar "suppliers
and parts" database); Types; Relation values; Relation variables; Integrity
constraints; Relational operators; The relational model; Exercises (as for
every chapter).

Chapter 2: An Overview of Tutorial D

A relational database language devised for tutorial purposes by Date
and Darwen in “Databases, Types, and The Relational Model: The Third
Manifesto" (3rd edition, Addison-Wesley, 2005). Also used in 8th edition of
Date's "Introduction to Database Systems".

Introduction; Scalar type definitions; Relational definitions; Relational
expressions; Relational assignments; Constraint definitions; Exercises.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 2

7

Chapter 3: Time and the Database

Introduction

Timestamped propositions
E.g. "Supplier S1 was under contract throughout the period from

1/9/1999 (and not immediately before that date) until 31/5/2002
(and not immediately after that date)."

"Valid time" vs. "transaction time"

Some fundamental questions:
Introduction of quantisation and its consequences.

8

9

Example: Current State Only

S2

S3

S4

S5

S1

S#

P4S4

P2S4

P2S3

P2S2

P1S2

P6S1

P5S1

P4S1

P3S1

P2S1

P1S1

P5S4

P#S#S SP

“Suppliers and Shipments”

Predicate:
"Supplier S# is
under contract"

Predicate:
"Supplier S# is able
to supply part P#"

Consider queries: Which suppliers can supply
something? Which suppliers cannot supply
anything?

10

“Semitemporalising”

S5

S4

S3

S2

S1

S#

d02

d04

d03

d07

d04

SINCE

P5

P4

P2

P2

P2

P1

P6

P5

P4

P3

P2

P1

P#

d04S4

d06S4

d08S3

d09S2

d08S2

d06S1

d04S1

d05S1

d09S1

d05S1

d04S1

d05S4

SINCES#S_SINCE SP_SINCE

Predicate:
"Supplier S# has
been under
contract since
day SINCE"

Predicate:
"Supplier S# has
been able to supply
part P# since day
SINCE"

Consider queries: Since when has supplier S#
been able to supply anything? (Not too difficult)
Since when has supplier S# been unable to supply
anything? (Impossible)

11

“Fully temporalising” (try 1)

d10d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d10

d10

d10

d04

d10

TO

d10d08P2S2

d03d03P2S2

d05

d04

d06

d09

d02

d08

d06

d04

d05

d09

d05

d04

FROM

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

d08S4

d09S4

d10S3

d04S2

d10S2

d10S1

d10S1

d10S1

d10S1

d10S1

d10S1

d10S4

TOS#S_FROM_TO SP_FROM_TO

Predicate:
"Supplier S# was
under contract
from day FROM
to day TO."

Predicate:
"Supplier S# was
able to supply
part P# from day
FROM to day
TO."

Consider queries: During which times was supplier
S# able to supply anything? (Very difficult)
During which times was supplier S# unable to
supply anything? (Very difficult)

Interpretation? Are those FROM and TO dates
included? E.g. Was supplier S1 under contract on
day 10?

d10d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d10

d10

d10

d04

d10

TOS_FROM_TO

12

Required Constraints

d10d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d10

d10

d10

d04

d10

TO

d10d08P2S2

d03d03P2S2

d05

d04

d06

d09

d02

d08

d06

d04

d05

d09

d05

d04

FROM

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

d08S4

d09S4

d10S3

d04S2

d10S2

d10S1

d10S1

d10S1

d10S1

d10S1

d10S1

d10S4

TOS#S_FROM_TO SP_FROM_TO

Same supplier
can't be under
contract during
distinct but
overlapping or
abutting intervals.

Same supplier
can't be able to
supply same part
during distinct but
overlapping or
abutting intervals

These are very difficult!

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 3

13 14

“Fully temporalising” (try 2)

[d07:d10]S2

[d02:d10]

[d04:d10]

[d03:d10]

[d02:d04]

[d04:d10]

DURING

S5

S4

S3

S2

S1

S#

[d08:d10]P2S2

[d03:d03]P2S2

[d05:d10]

[d04:d08]

[d06:d09]

[d09:d10]

[d02:d04]

[d08:d10]

[d06:d10]

[d04:d10]

[d05:d10]

[d09:d10]

[d05:d10]

[d04:d10]

DURING

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S2

S1

S1

S1

S1

S1

S1

S4

S#S_DURING SP_DURING

Introduction of
interval types
and their
point types.

Here, the type of the DURING attributes is perhaps
named INTERVAL_DATE (its point type being DATE).

A point type requires a successor function - in this case
NEXT_DATE (d). This is based on the scale of the
point type.

15

“Fully temporalising” in SQL:2011

d11d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d11

d11

d11

d05

d11

TO

d11d08P2S2

d04d03P2S2

d05

d04

d06

d09

d02

d08

d06

d04

d05

d09

d05

d04

FROM

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

d09S4

d10S4

d11S3

d05S2

d11S2

d11S1

d11S1

d11S1

d11S1

d11S1

d11S1

d11S4

TOS#S_DURING SP_DURING

Consider queries: During which times was supplier
S# able to supply anything? (Very difficult)
During which times was supplier S# unable to
supply anything? (Very difficult)

Interpretation? FROM dates are included, TO
dates are not included: the “closed-open”
convention.

16

17

Interval Selectors

INTERVAL_INTEGER ([1:10]) =
INTERVAL_INTEGER ((0:10]) =
INTERVAL_INTEGER ([1:11)) =
INTERVAL_INTEGER ((0:11))

In Tutorial D, we make the type name part of the
operator name. E.g.:

INTERVAL_INTEGER ([1:10])

Note special syntax for denoting bounds. Square bracket
denotes a closed bound, round one an open bound. Thus:

So the problem of interpretation does not arise.

Note special syntax for denoting bounds. Square bracket
denotes a closed bound, round one an open bound. Thus:

18

Interval Selectors in SQL:2011

SQL:2011 does not support intervals.

Interval types are not to be confused with INTERVAL types,
that have been in standard SQL since 1992.

An INTERVAL value in SQL denotes a duration, not an interval!
(So we will say no more about SQL INTERVAL types.)

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 4

19

Monadic Operators on Intervals

For a given interval, i:

PRE (i) gives open begin bound
BEGIN (i) gives closed begin bound
END (i) gives closed end bound
POST (i) gives open end bound

COUNT (i) gives length (number of points)

20

SQL:2011 Counterparts of
Monadic Operators on Intervals

For a given from-to pair, <f,t>, representing interval i, where
f and t are expressions of type DATE (for example):

PRE (i) f - 1 DAY
BEGIN (i) f
END (i) t - 1 DAY
POST (i) t

COUNT (i) t - f

Tutorial D SQL

SQL INTERVAL values!
(Actually durations, not intervals)

21

Comparisons of Two Intervals

For given intervals, i1 and i2:

i1 = i2
i1 MEETS i2
i1 OVERLAPS i2
i1 SUCCEEDS i2
i1 PRECEDES i2
i1  i2

i1 BEGINS i2
i1 ENDS i2

i1  i2
i1  i2
i1  i2

i1 MERGES i2

Allen’s operators
(James F. Allen, 1983)

Allen uses DURING for 

Allen uses STARTS and ENDS

Added by Date, Darwen, Lorentzos

MERGES = MEETS OR OVERLAPS

22

Some Pictorial Definitions

i1 = i2

i1 MEETS i2

i1 OVERLAPS i2

i1 SUCCEEDS i2

i1 PRECEDES i2

i1  i2

i1  i2

i1 BEGINS i2

i1 ENDS i2

or

or

or

23

Interval Comparison in SQL:2011

For given from-to pairs, <f1, t1> and <f2, t2> :

i1 = i2
i1 MEETS i2

i1 OVERLAPS i2
i1 SUCCEEDS i2
i1 PRECEDES i2
i1  i2

i1 BEGINS i2
i1 ENDS i2

i1  i2
i1  i2
i1  i2

i1 MERGES i2

<f1,t1> EQUALS <f2,t2>
<f1,t1> IMMEDIATELY PRECEDES <f2,t2> OR

<f2,t2> IMMEDIATELY PRECEDES <f1,t1>
<f1,t1> OVERLAPS <f2,t2>
<f1,t1> SUCCEEDS <f2,t2>
<f1,t1> PRECEDES <f2,t2>
<f2,t2> CONTAINS <f1,t1>

f1 = f2
t1 = t2

<f1,t1> CONTAINS <f2,t2>
<f2,t2> CONTAINS <f1,t1> AND NOT(<f1,f2> EQUALS <t1,t2>)
<f1,t1> CONTAINS <f2,t2> AND NOT(<f1,f2> EQUALS <t1,t2>)

Sorry, not enough room on slide! (Exercise for reader)

Tutorial D SQL

24

How to Express <f, t> in SQL:2011

In general:

PERIOD (f, t)

where f and t are DATE, TIME or TIMESTAMP expressions
of the same type (i.e., same precision and scale)

Special case:

pn

where pn is a defined period name (see later)

N.B. PERIOD is not an operator! It’s just a “noise” word.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 5

25

Comment on SQL:2011 IMMEDIATELY
operators

Consider:
PERIOD (f1, t1) IMMEDIATELY PRECEDES

PERIOD (f2, t2)

Is this a handy addition to the language in SQL:2011?

Well, we have always been able to write t1 = f2 !

Allen’s MEETS seems rather more useful.

26

More Dyadic Operators

p  i1 or p IN i1 (where p is a point)

i1 UNION i2

i1 INTERSECT i2

i1 MINUS i2

Membership test:

Dyadic operators that return intervals:

Defined only for cases where the
result is a single, nonempty* interval.

* empty intervals, such as INTERVAL_INTEGER ([1:1)), are not supported at all!

No direct counterparts of UNION, INTERSECT, MINUS in SQL:2011.

i1 CONTAINS p in SQL:2011

27 28

Sets of Intervals

Let SI1 and SI2 be sets of intervals—e.g., {[1:2], [4:7], [6:9]}

We define an equivalence relationship:

SI1  SI2 iff every point in an interval in SI1 is a
point in some interval in SI2, and vice versa.

Under this equivalence relationship we then define two
canonical forms: collapsed form and expanded form.

In each of these forms, no point appears more than once.

29

Collapsed Form

So the collapsed form of {[1:2], [4:7], [6:9]} is {[1:2], [4:9]}.

No two elements, i1 and i2 (i1i2) are such that
i1 MERGES i2.

30

Expanded Form

So the expanded form of {[1:2], [4:7], [6:9]}
is {[1:1], [2:2], [4:4], [5:5], [6:6], [7:7], [8:8], [9:9]}.

Every element is a unit interval
(i.e., consists of a single point)

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 6

31

COLLAPSE and EXPAND

Then:
COLLAPSE(SI) denotes the collapsed form of SI.
EXPAND(SI) denotes the expanded form of SI.

Let SI be a set of intervals.

These operators are handy for definitional purposes (as
we shall see) but are not required to exist in the
database language.

32

33

Packed Form and Unpacked Form

Canonical forms for relations with one or more interval-
valued attributes.

Based on collapsed and expanded forms.

Both forms avoid redundancy (“saying the same thing”
more than once).

34

Packed Form

Packed form of
SD_PART

“on DURING”:

[d02:d05]S4

[d09:d10]

[d04:d06]

[d03:d05]

[d02:d04]

DURING

S4

S4

S2

S2

S#

PACK SD_PART ON (DURING)

SD_PART

[d02:d06]S4

[d09:d10]

[d02:d05]

DURING

S4

S2

S#

35

Unpacked Form

[d05:d05]S2

[d03:d03]S4

[d04:d04]S4

[d05:d05]S4

[d06:d06]S4

[d04:d04]S2

[d02:d02]S4

[d10:d10]

[d09:d09]

[d03:d03]

[d02:d02]

DURING

S4

S4

S2

S2

S#Unpacked form of SD_PART “on DURING”:

[d02:d05]S4

[d09:d10]

[d04:d06]

[d03:d05]

[d02:d04]

DURING

S4

S4

S2

S2

S#

UNPACK SD_PART ON (DURING)

SD_PART

36

Properties of PACK and UNPACK

Packing and unpacking on no attributes:

Unpacking on several attributes:

Packing on several attributes:

• Although redundancy is eliminated, result can be of
greater cardinality than r.

• Important degenerate cases
• Each yields its input relation

• UNPACK r ON (a1, a2) 
UNPACK (UNPACK r ON a1) ON a2 
UNPACK (UNPACK r ON a2) ON a1

• PACK r ON (a1, a2) 
PACK (PACK (UNPACK r ON (a1,a2)) ON a1) ON a2
not: PACK (PACK(UNPACK r ON (a1,a2)) ON a2) ON a1
and not: PACK (PACK r ON a1) ON a2

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 7

37

Packed and Unpacked Form in
SQL:2011

• SQL:2011 does not support a PACK operator

• SQL:2011 does not support an UNPACK operator

Even though both were once (in the 1990s) included
in Part 7, SQL/Temporal, a working draft that was
never published and eventually abandoned.

38

39

Tutorial D’s Relational Operators

UNION
MATCHING
NOT MATCHING
restriction (WHERE)
projection ({…})
JOIN
EXTEND
SUMMARIZE
etc.

New syntax for invoking each operator:

USING (ACL)  rel op inv 

where ACL is an attribute-name
commalist and rel op inv an invocation
of a relational operator.

Common semantics:
1. Unpack the operand(s) on ACL
2. Evaluate rel op inv on unpacked forms.
3. Pack result of 2. on ACL

40

USING Example 1

USING (DURING)  SP_DURING { S#, DURING } 

We call this “U_project”.

gives (S#, DURING) pairs such that supplier S# was able
to supply some part throughout the interval DURING.

U_project is an example of what we call a “U_ operator”.

Other examples are U_JOIN, U_UNION, U_restrict, etc.

41

Example 2: U_NOT MATCHING

USING (DURING)
 S_DURING NOT MATCHING SP_DURING 

gives (S#, DURING) pairs such that supplier S# was under
contract but unable to supply any part throughout the
interval DURING.

Note: We have now solved the two query problems mentioned in Chapter 4,
“What’s the Problem?”

42

Example 3: U_SUMMARIZE

USING (DURING)
 SUMMARIZE SP_DURING

PER (S_DURING { S#, DURING }) :
{ NO_OF_PARTS := COUNT () } 

gives (S#, NO_OF_PARTS, DURING) triples such that
supplier S# was able to supply NO_OF_PARTS parts
throughout the interval DURING.

SUMMARIZE SP PER (S { S# }) :
{ NO_OF_PARTS := COUNT () }

Temporal counterpart of:

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 8

43

U_SUMMARIZE is Interesting (1)

USING (DURING)
SUMMARIZE SP_DURING

PER (S_DURING { DURING }) :
{ NO_OF_PARTS := COUNT() } 

• note lack of S# from PER relation
• gives (NO_OF_PARTS, DURING) pairs such that

NO_OF_PARTS parts were available from some supplier
throughout the interval DURING.

44

U_SUMMARIZE is Interesting (2)

USING (DURING)
SUMMARIZE SP_DURING

PER (S_DURING { S# }) :
{ NO_OF_CASES := COUNT () }

• note lack of DURING from PER relation
• gives (S#, NO_OF_CASES) pairs such that there are

NO_OF_CASES distinct cases of S# being able to supply
some part on some date.

45

USING in SQL:2011

• SQL:2011 does not support USING

46

47

Contents

Chapter 10: Database Design

• Introduction
• Current relvars only
• Historical relvars only
• Sixth normal form (6NF)
• "The moving point now"
• Both current and historical relvars
• Concluding remarks
• Exercises

At last, we focus on specifically temporal issues!

48

Current Relvars Only

30

20

30

10

20

STATUS

Adams

Clark

Blake

Jones

Smith

SNAME

S5

S4

S3

S2

S1

S#

Athens

London

Paris

Paris

London

CITY

P2S2

P5

P4

P2

P2

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S1

S1

S1

S1

S1

S1

S4

S#SSSC SP

Note: keys indicated by underlining
attribute names

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 9

49

Semitemporalizing SSSC (try 1)

Athens

London

Paris

Paris

London

CITY

d09

d09

d02

d05

d04

SINCE

30

20

30

10

20

STATUS

Adams

Clark

Blake

Jones

Smith

SNAME

S5

S4

S3

S2

S1

S#SSSC

Problem: SINCE gives date of last update for that supplier.
So we cannot tell:
since when a given supplier’s STATUS has held, or
since when a given supplier’s CITY has held, or
since when a given supplier’s NAME has held, or even
since when a given supplier has been under contract.

50

Semitemporalizing SSSC (try 2)

VAR S_SINCE
BASE RELATION
{ S# S#, S#_SINCE DATE,

SNAME CHAR, SNAME_SINCE DATE,
STATUS INT, STATUS_SINCE DATE,
CITY CHAR, CITY_SINCE DATE }

KEY { S# } ;

Predicate:
Supplier S# has been under contract since S#_SINCE,
has been named NAME since NAME_SINCE,
has had status STATUS since STATUS_SINCE and
has been located in city CITY since CITY_SINCE.

But we clearly cannot develop a fully temporalized
counterpart on similar lines!

51

Fully Temporalizing SSSC

VAR S_DURING
BASE RELATION
{ S# S#,

DURING INTERVAL_DATE }
KEY { S#, DURING } ;

Predicate: Supplier S# was under
contract throughout DURING and neither
immediately before nor immediately after
DURING.

VAR S_NAME_DURING
BASE RELATION
{ S# S#,

SNAME CHAR,
DURING INTERVAL_DATE }

KEY { S#, DURING } ;

Predicate: Supplier S# was named
SNAME throughout DURING and neither
immediately before nor immediately after
DURING.

And so on. We call this process vertical decomposition.

52

Sixth Normal Form (6NF)

Recall: A relvar R is in 5NF iff every nontrivial join
dependency that is satisfied by R is implied by a
candidate key of R.

A relvar R is in 6NF iff R satisfies no nontrivial join
dependencies at all (in which case R is sometimes said to
be irreducible).

SSSC and SSSC_SINCE are in 5NF but not 6NF (which
is not needed).

S_DURING, SNAME_DURING and so on are in 6NF,
thus allowing each of the supplier properties NAME, CITY
and STATUS, which vary independently of each other
over time, to have its own recorded history (by supplier).

53

“Circumlocution” and 6NF

[d07:d09]30SmithS1

[d01:d06]20SmithS1

DURINGSTATUSNAMES#

[d01:d09]SmithS1

DURINGNAMES#

[d07:d09]30S1

[d01:d06]20S1

DURINGSTATUSS#

Note S1 named Smith throughout [d01:d09], split across tuples.
We call this possibly undesirable phenomenon circumlocution.
Decompose to 6NF, using U_projection:

54

Fully Temporalizing SSSC in SQL:2011

CREATE TABLE S_DURING
(S# S#,
S#_FROM DATE,
S#_TO DATE,
PERIOD FOR DURING (S#_FROM, S#_TO),
PRIMARY KEY (S#, S#_FROM, S#_TO) ;

CREATE TABLE S_NAME_DURING
(S# S#,
SNAME VARCHAR(50),
SNAME_FROM DATE,
SNAME_TO DATE,
PERIOD FOR DURING (SNAME_FROM, SNAME_TO),
PRIMARY KEY (S#, SNAME_FROM, SNAME_TO) ;

And so on. No more than one application time period name per base table.

an application time period name

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 10

55

Using SQL:2011 Period Names in
Queries

SELECT S1.S# AS S#1, S1.S#_FROM AS F1, S1.S#_TO AS T1
S2.S# AS S#2, S2.S#_FROM AS F2, S1.S#_TO AS T2

FROM S_DURING S1, S_DURING S2
WHERE S1.DURING OVERLAPS S2.DURING

E.g., to find pairs of suppliers who were under contract
at the same time:

Note:
• can’t use period names in SELECT clause
• period names not defined for result, so are lost when any subquery
referencing S_DURING is used in a FROM clause or a view definition

56

“The Moving Point NOW”

We reject any notion of a special marker, NOW, as an
interval bound. (It is a variable, not a value. Its use
would be as much a departure from the Relational Model
as NULL is!)

(We reject the use of NULL too, obviously.)

If current state is to be recorded, along with history, in
S_DURING, S_NAME_DURING, S_STATUS_DURING
and S_CITY_DURING, then we have a choice of evils:

Better instead to use horizontal decomposition

• guess when, in the future, current state will change
• assume current state will hold until the end of time

57

Horizontal Decomposition

A very loose term! Components do not have exactly the
same structure:

1. The current state component (S_SINCE)
2. The past history component, with DURING in place of

S_SINCE’s SINCE.

The past history component is then vertically
decomposed as already shown, giving
S_DURING, S_NAME_DURING,
S_STATUS_DURING, and S_CITY_DURING.

Having accepted the occasional (perhaps frequent)
inevitability of vertical and horizontal decomposition, we
need to consider the consequences for constraints ...

58

“The Moving Point NOW” in SQL:2011

NULL is not used.

23:59:59.999999 on December 31st, 9999

SQL uses “the end of time”. So what’s that in SQL?

Hooray! for that.

59 60

Candidate Keys and Related Constraints

Example database:

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
SP_SINCE { S#, P#, SINCE }
S_DURING { S#, DURING }
S_STATUS_DURING { S#, STATUS, DURING }
SP_DURING { S#, P#, DURING }

We first examine three distinct problems:
• The redundancy problem
• The circumlocution problem
• The contradiction problem

A fourth problem, concerning "density", will come later.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 11

61

The Redundancy Problem

Consider:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, { S#, DURING } doesn't prevent this:

S4 shown twice as having status 25 on day 6.

Avoided in the packed form of S_STATUS_DURING.

S# STATUS DURING

S4 25 [d05 : d06]

S4 25 [d06 : d07]

62

The Circumlocution Problem

Still considering:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, {S#, DURING } doesn't prevent this:

Longwinded way of saying that S4 has status 25 from day 5 to day 7.

Also avoided in the packed form of S_STATUS_DURING.

S# STATUS DURING
S4 25 [d05 :d05]

S4 25 [d06 :d07]

63

Solving The Redundancy and Circumlocution
Problems

VAR S_STATUS_DURING RELATION
{ S# S#,

STATUS INT, DURING INTERVAL_DATE }
KEY { S#, DURING }
PACKED ON (DURING) ;

PACKED ON (DURING) causes an update to be rejected if
acceptance would result in

S_STATUS_DURING ≠ PACK S_STATUS_DURING ON (DURING)

This kills two birds with one stone. We see no compelling reason
for distinct shorthands to separate the two required constraints.

64

The Contradiction Problem

Still considering:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, { S#, DURING } and PACKED ON (DURING) don't
prevent this:

S# STATUS DURING

S4 25 [d04 :d06]

S4 10 [d05 :d07]

S4 has two statuses on days 5 and 6.

Easily avoidable in the unpacked form of S_STATUS_DURING!

65

Solving The Contradiction Problem

VAR S_STATUS_DURING RELATION
{ S# S#,

STATUS CHAR, DURING INTERVAL_DATE }
KEY { S#, DURING }
PACKED ON (DURING)
WHEN UNPACKED ON (DURING)

THEN KEY { S#, DURING } ;

WHEN UNPACKED_ON (DURING) THEN KEY { S#, DURING }
causes an update to be rejected if acceptance would result in
failure to satisfy a uniqueness constraint on { S#, DURING } in the
result of UNPACK S_STATUS_DURING ON (DURING).

66

Solving The Redundancy and Contradiction
Problems in SQL:2011

CREATE TABLE S_STATUS_DURING
(S# S#,

STATUS INTEGER,
STATUS_FROM DATE,
STATUS_TO DATE,
PERIOD FOR DURING (STATUS_FROM, STATUS_TO),
PRIMARY KEY (S#, DURING WITHOUT OVERLAPS) ;

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 12

67

Solving The Circumlocution Problem in
SQL:2011

SQL:2011 offers no solution to the circumlocution problem

68

WHEN / THEN without PACKED ON

Example (presidential terms):

TERM

Obama[2009 : 2012]

Clinton[1997 : 2000]

Obama[2013 : 2016]

Clinton[1993 : 1996]

Reagan[1985 : 1988]

Reagan[1981 : 1984]

Carter[1977 : 1980]

Ford[1974 : 1976]

PRESIDENTDURING

PACKED ON (DURING) not desired because it would lose distinct
consecutive terms by same president (e.g., Reagan and Clinton)
But we can't have two presidents at same time!
Perhaps not good design (better to include a TERM# attribute?) but
we don't want to legislate against it.

69

Neither WHEN / THEN nor PACKED ON

Example (measures of inflation):

INFLATION

But the predicate for this is not:

DURING PERCENTAGE
[m01:m03] 18

[m04:m06] 20

[m07:m09] 20

[m07:m07] 25

.......... ..
[m01:m12] 20

"Inflation was at PERCENTAGE throughout the interval DURING"

but rather, perhaps:

"Inflation was measured to be PERCENTAGE over the interval DURING"
70

WHEN / THEN and PACKED ON both
required

VAR S_STATUS_DURING RELATION
{ S# S#,

STATUS CHAR, DURING INTERVAL_DATE }
USING (DURING)  KEY { S#, DURING }  ;

USING (ACL)  KEY { K } , where K includes ACL, is
shorthand for: WHEN UNPACKED ON (ACL)

THEN KEY { K }
PACKED ON (ACL)
KEY { K }

(KEY { K } is implied by WHEN/THEN + PACKED ON anyway)

We call this constraint a "U_key" constraint.

71 72

General Constraints

Example database is still:

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
SP_SINCE { S#, P#, SINCE }
S_DURING { S#, DURING }
S_STATUS_DURING { S#, STATUS, DURING }
SP_DURING { S#, P#, DURING }

with added U_keys. But more constraints are needed.

We examine nine distinct requirements, in three groups of three.
In each group, one requirement relates to redundancy (and
sometimes also to contradiction), one to circumlocution and
one to denseness.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 13

73

Requirement Group 1

Requirement R1:
If the database shows supplier Sx as being under contract on day d,
then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R2:
If the database shows supplier Sx as being under contract on days d
and d+1, then it must contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R3:
If the database shows supplier Sx as being under contract on day d,
then it must also show supplier Sx as having some status on day d.
Note: to do with denseness

74

Requirement Group 2

Requirement R4:
If the database shows supplier Sx as having some status on day d,
then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy and contradiction

Requirement R5:
If the database shows supplier Sx as having status s on days d and
d+1, then it must contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R6:
If the database shows supplier Sx as having some status on day d,
then it must also show supplier Sx as being under contract on day d.
Note: to do with denseness

75

Requirement Group 3

Requirement R7:
If the database shows supplier Sx as being able to supply part Py
on day d, then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R8:
If the database shows supplier Sx as being able to supply part Py
on days d and d+1, then it must contain exactly one tuple that
shows that fact.
Note: avoiding circumlocution

Requirement R9:
If the database shows supplier Sx as being able to supply some
part on day d, then it must also show supplier Sx as being under
contract on day d.
Note: to do with denseness

76

Meeting the Nine Requirements (a):
current relvars only

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
KEY { S# }

CONSTRAINT CR6 IS_EMPTY
(S_SINCE WHERE STATUS_SINCE < S#_SINCE)

SP_SINCE { S#, P#, SINCE }
KEY { S#, P# }
FOREIGN KEY { S# } REFERENCES S_SINCE

CONSTRAINT CR9 IS_EMPTY
((S_SINCE JOIN SP_SINCE)

WHERE SINCE < S#_SINCE)

77

Meeting the Nine Requirements (b):
historical relvars only

S_DURING { S#, DURING }
USING (DURING)  KEY { S#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_STATUS_DURING 

S_STATUS_DURING { S#, STATUS, DURING }
USING (DURING)  KEY { S#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_DURING 

SP_DURING { S#, P#, DURING }
USING (DURING)  KEY { S#, P#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_DURING 
78

SQL:2011’s Counterpart of U_foreign key

CREATE TABLE S_STATUS_DURING
(S# S#,
STATUS INTEGER,
STATUS_FROM DATE,
STATUS_TO DATE,
PERIOD FOR DURING (STATUS_FROM, STATUS_TO),
PRIMARY KEY (S#, DURING WITHOUT OVERLAPS) ,
FOREIGN KEY (S#, PERIOD DURING)

REFERENCES S_DURING (S#, PERIOD DURING);

A foreign key thus specified is equivalent to a USING
foreign key constraint in Tutorial D. Note that the
referenced columns and PERIOD spec must be given.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 14

79

Meeting the Nine Requirements (c):
current and historical relvars

Very difficult, even with shorthands defined so far. E.g.,

Requirement R9:
If the database shows supplier Sx as being able to supply any part Py on day
d, then it must also show supplier Sx as being under contract on day d.

CONSTRAINT BR9_A IS_EMPTY
((S_SINCE JOIN SP_SINCE) WHERE S#_SINCE > SINCE)

CONSTRAINT BR9_B
WITH (EXTEND S_SINCE :

{ DURING := (INTERVAL_DATE ([S#_SINCE : LAST_DATE ()])
}) { S#, DURING } AS T1,

(T1 UNION S_DURING) AS T2,
SP_DURING { S#, DURING } AS T3 :

USING (DURING)  T3  T2 

(Note U_ form of relational comparison operator)
80

So, to cut a long story short:
VAR S_SINCE RELATION
{ S# S#,
S#_SINCE DATE SINCE_FOR { S# }

HISTORY_IN (S_DURING),
STATUS INTEGER,
STATUS_SINCE DATE SINCE_FOR { STATUS }

HISTORY_IN
(S_STATUS_DURING) }

KEY { S# } ;

VAR SP_SINCE RELATION
{ S# S#, P# P#,
SINCE DATE SINCE_FOR { S#, P# }

HISTORY_IN (SP_DURING) }
KEY { S#, P# }
FOREIGN KEY { S# } REFERENCES S_SINCE ;

and we conjecture that the historical relvar definitions can be generated automatically.

Special Treatment for
Current and Historical Relvars

81

Current and Historical Relvars in SQL:2011

SQL:2011 offers no special support for
horizontal decomposition.

82

83

Database Queries

In Chapter 13, twelve generic queries of varying complexity are presented
and then solved:
a. for current relvars only
b. for historical relvars only
c. for both current and historical relvars

The c. section raises requirement for virtual relvars (views)
that "undo" horizontal decomposition, such as:

VAR S_DURING_NOW_AND_THEN VIRTUAL
S_DURING UNION
((EXTEND S_SINCE :

{ DURING := INTERVAL_DATE ([S#_SINCE : LAST_DATE ()] })
{ S#, DURING })

84

Query Example

WITH (EXTEND SP_SINCE :
{ DURING := INTERVAL_DATE ([SINCE : LAST_DATE ()])
}) { S#, P#, DURING } AS T1 ,

(SP_DURING UNION T1) AS T2 ,

(T2 WHERE P# = P# ('P1')) { S#, DURING } AS T3 ,

(T2 WHERE P# = P# ('P2')) { S#, DURING } AS T4 ,

(USING (DURING)  T3 JOIN T4 ) AS T5 :

T5 { S# }

Example for c. (both current and historical relvars):

Get supplier numbers for suppliers who were able to supply both part P1
and part P2 at the same time

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 15

85 86

The Example Database

[d07:d10]S2

[d02:d10]

[d04:d10]

[d03:d10]

[d02:d04]

[d04:d10]

DURING

S5

S4

S3

S2

S1

S#

[d08:d10]P2S2

[d03:d03]P2S2

[d05:d10]

[d04:d08]

[d06:d09]

[d09:d10]

[d02:d04]

[d08:d10]

[d06:d10]

[d04:d10]

[d05:d10]

[d09:d10]

[d05:d10]

[d04:d10]

DURING

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S2

S1

S1

S1

S1

S1

S1

S4

S#S_DURING SP_DURING

Predicate:
"Supplier S# was
under contract
throughout
DURING (and
not immediately
before or after
DURING)."

Predicate:
"Supplier S# was
able to supply
part P#
throughout
DURING (and
not immediately
before or after
DURING).”

Regular INSERT, UPDATE,
DELETE become too difficult for
many common purposes …

87

What Are The Problems?

Thirteen generic update operations of varying complexity are presented
in terms of addition, removal or replacement of propositions. E.g.:

Add the proposition "Supplier S2 was under contract from day 5 to day 6".

Remove the proposition "Supplier S1 was able to supply part P1 from
day 5 to day 6".

Replace the proposition "Supplier S2 was able to supply part P1
from day 3 to day 4" by the proposition "Supplier S2 was able to
supply part P1 from day 5 to day 7".

Inevitable conclusion is need for U_update operators ...

88

U_ update operators

"U_INSERT":

USING (ACL)  INSERT R r  ;
is shorthand for
R := USING (ACL)  R UNION r ;

"U_DELETE":

USING (ACL)  DELETE R WHERE p  ;
is shorthand for
R := USING (ACL)  R WHERE NOT p  ;

and there's "U_UPDATE" too, of course (difficult to define formally)

But U_update operators aren't all that's needed ...

89

The PORTION Clause
S_DURING S# DURING

S1 [d03 : d10]

S2 [d02 : d05]

Replace the proposition "Supplier S1 was under contract from day 4
to day 8" by "Supplier S2 was under contract from day 6 to day 7".
(A trifle unreasonable but must be doable!)

We introduce PORTION:

UPDATE S_DURING WHERE S# = S# ('S1')
PORTION { DURING = INTERVAL_DATE ([d04 : d08]) }

(S# := S# ('S2') ,
DURING := INTERVAL_DATE ([d06 : d07])) ;

yielding: S# DURING
S1 [d03 : d03]

S1 [d09 : d10]

S2 [d02 : d07] 90

U_ update operators in SQL:2011

SQL:2011 has no counterparts of U_ update operators.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 16

91

The PORTION Clause in SQL:2011

UPDATE S_DURING
FOR PORTION OF DURING FROM d06 TO d08
SET S# := S# ('S2')
WHERE S# = S# ('S1') ;

d02

d03

FROM

S2

S1

S#

d06

d11

TOS_DURING

d02

d03

FROM

S2

S1

S#

d06

d11

TOS_DURING

d06d02S2

d06

d03

FROM

S2

S1

S#

d08

d06

TOyielding

note circumlocution

92

“Deleting a Portion” in SQL:2011

DELETE S_DURING
FOR PORTION OF DURING FROM d06 TO d08
WHERE S# = S# ('S1') ;

d02

d03

FROM

S2

S1

S#

d06

d11

TOS_DURING

d02

d03

FROM

S2

S1

S#

d06

d11

TOS_DURING

d06d02S2

d08

d03

FROM

S1

S1

S#

d11

d06

TOyielding

93

Updating the Combination View

Finally, we need to be able to apply update operators to the virtual
relvar that combines current state with history.

So we propose to add a COMBINED_IN specification to relvar
declaration syntax, for that express purpose. E.g.:

VAR S_SINCE RELATION
{ S# S#,
S#_SINCE DATE SINCE_FOR { S# }

HISTORY_IN (S_DURING)
COMBINED_IN (S_DURING_NOW_AND_THEN),

STATUS INTEGER,
STATUS_SINCE DATE SINCE_FOR { STATUS }

HISTORY_IN
(S_STATUS_DURING)

COMBINED_IN
(S_STATUS_ DURING_NOW_AND_THEN)

KEY { S# } ;

94

95

Proposed Terminology

Stated times = "valid times"
Logged times = "transaction times"

Justification for proposed terms:
The stated times of proposition p are times when,
according to our current belief, p was, is or will be true.
The logged times of proposition q are times (in the past
and present only) when the database recorded q as being
true.

[If q includes a stated time, then some might call "q
during logged time [t1:t2]" a "bitemporal" proposition
and hence talk about "bitemporal relations". We don't.]

96

Special Treatment for Logged Times

We propose a LOGGED_TIMES_IN specification to be
available in relvar declarations. E.g.:

VAR S_DURING RELATION
{ S# S#,
DURING INTERVAL_DATE }

USING (DURING)  KEY { S#, DURING } 
LOGGED_TIMES_IN (S_DURING_LOG) ;

Attributes of S_DURING_LOG are S#, DURING and a
third one, for logged times.

Temporal Data and The Relational Model 26 November, 2013

CS319: Theory of Databases 17

97

Logged Times in SQL:2011

CREATE TABLE S_DURING
(S# S#,
S#_FROM DATE,
S#_TO DATE,
SYS_FROM TIMESTAMP,
SYS_TO TIMESTAMP,
PERIOD FOR DURING (S#_FROM, S#_TO),
PERIOD FOR SYSTEM_TIME (SYS_FROM, SYS_TO),
PRIMARY KEY (S#, DURING WITHOUT OVERLAPS))
WITH SYSTEM VERSIONING – optional extra ;

Some people call this a “bitemporal table”.

No more than one system time period spec allowed.

98

“System Versioning” in SQL:2011

WITH SYSTEM VERSIONING implies:

• rows with end-of-time “to” system time values are current

• other rows are historical

• updates are applied to current rows only but result in
new historical rows being inserted

• table referenced in FROM clause yields current rows
only unless overridden by a FOR SYSTEM TIME
specification

• e.g. FOR SYSTEM TIME FROM t1 TO t2

BETWEEN t1 AND t2
AS OF t

99

Chapter 16: Point Types Revisited

Detailed investigation of point types and the significance of scale
(preferred term to "granularity"). Includes discussion of:

If point type pt2 is a proper subtype of pt1 (under specialisation by
constraint), what are the consequences for types INTERVAL_pt2
and INTERVAL_pt1?
(E.g.: EVEN_INTEGER and INTEGER)

What about nonuniform scales, as with pH values, Richter values
and prime numbers?

What about cyclic point types, such as WEEKDAY and times of day?

Consequences of a < b being equivalent to a ≠ b for all (a,b), leading

to modified definitions of various interval operators.

Is there any point in considering continuous point types? We
conclude not, because you lose some operators and gain none.

100

The End

