
Past Exam Questions — Page 1 of 19

Selected Past CS319 and CS253 Exam Questions

Hugh Darwen

These questions from former CS319 and CS253 exams were set on my lectures on Temporal
Data, The Askew Wall, and How To Handle Missing Information Without Using NULL.

A. Temporal Data

Question 1

A relation variable (relvar) RoomAvailability is declared to record the times during
which each of the university's lecture rooms is available for teaching purposes, on which
dates. Here is how it is declared (in Temporal Tutorial D):

VAR RoomAvailability BASE RELATION
{ Room# CHAR,
Date DATE
During INTERVAL_ToD }

USING During ◀ KEY { Room#, Date, During } ▶ ;

You may assume that a value of type ToD represents a given time of day, on a scale of one
minute.

(a) Complete the following predicate for RoomAvailability:

Room Room# is or was available for teaching purposes on Date ... [2]

(b) Write down the constraint declarations that need to be added to the relvar declaration
below, which records lectures that have been or are scheduled to be given. Your
constraints should ensure that:

 no two lectures can be in progress in the same room at the same time;

 no member of staff can be giving more than one lecture at the same time; and

 the room allocated for a lecture is indeed available for the duration of that lecture:

VAR Lecture BASE RELATION
{ Room# CHAR,

Date DATE,
Module# CHAR,
Staff# CHAR,
During INTERVAL_ToD }

... ; [3]

CS319 Past Exam Questions

Page 2 of 19 —Past Exam Questions

(c) Write a Temporal Tutorial D expression to yield a relation giving (Room#, Date,
During) combinations where During gives a maximal interval throughout which
room Room# is or was available but not allocated for a lecture on Date. [4]

(d) Give three advantages of using interval-typed attributes rather than separate attributes
for the beginnings and ends of time intervals? [3]

(e) With reference to operators involving intervals and relations with interval attributes,
discuss the justification for quantisation, under which the concept of unit interval is
defined for each interval type, according to the scale of that interval type. [4]

(f) Lecture is not in sixth normal form (6NF). Show how it could be decomposed to
give an equivalent 6NF design. State, giving your reasons, whether you would
recommend this alternative design. [4]

(g) It is proposed to extend the database by showing which members of staff were or are
currently appointed as lecturers on which modules. For appointments that are not
current, the start and end times are both recorded, but no attempt is to be made to
estimate when any current appointment is to terminate. Describe the four methods
that have been advanced for recording such information and comment briefly (2-3
sentences) on their respective merits. [5]

Question 2

(a) Which of the following comparisons, each of two integer intervals, yields true?

(i) [22:24] OVERLAPS [19:22]

(ii) (3:9] MEETS [-1:3)

(iii) (-4:9] BEGINS [-3:10)

(iv) (-14:-9] BEFORE (-9:-4)

(b) Write down, using closed-closed notation for each element, the collapsed form of the set
consisting of each of the intervals appearing in part (a). Recall that closed-closed
notation uses square brackets for both bounds, as shown in (a)(i).

(c) Boris and Cindy, both studying computer science in the same year at Warwick
University, live together and have just one computer. They are planning their revision
for the various exams they have to take later this term. They decide to use a Temporal
Tutorial D (TTD) database to record their revision schedule. The version of TTD they
are using supports a type, HOUR, whose values are times on a scale of 1 hour; e.g.,
13:00 on 16/06/2007. The type INTERVAL_HOUR therefore represents intervals of
type HOUR, such as the 2-hour interval [13:00 on 16/06/2007 : 14:00 on 16/06/2007].

A revision period is defined to show exactly when a student (Boris or Cindy) plans to
start revising for a particular exam, and when to stop. For example, Boris might plan to
start a revision period for the CS319 exam at 6:00 on 24/05/2007, ending in time for

Past Exam Questions CS319

Past Exam Questions — Page 3 of 19

breakfast at 9:00 the same morning. Cindy might plan to revise for CS301 from 8:00 to
10:00 that same day, then at 11:00 switch to revising for CS319.

A student cannot be revising for more than one exam at the same time. Boris and Cindy
can be revising at the same time but they cannot both be using the computer at the same
time. Therefore the database needs to show when the computer is in use, and by whom,
for revision.

The last revision period for a particular exam must obviously be over in time for that
exam. Therefore the database has to include a relvar showing the schedule for the
relevant exams. Here is its TTD definition:

VAR exam BASE RELATION { ModuleId CHAR,
StartTime HOUR }

KEY { ModuleId } ;

Predicate for exam: The exam for module ModuleId starts at StartTime.

The relvars for revision periods and computer use look like this:

VAR revision BASE RELATION { Sname CHAR,
ModuleId CHAR,
during INTERVAL_HOUR }

KEY { Sname, during } ;

CONSTRAINT before_exam IS_EMPTY ((revision JOIN exam
) WHERE END(during) >= StartTime) ;

VAR pcinuse BASE RELATION { Sname CHAR,
during INTERVAL_HOUR }

KEY { ALL BUT } ;

(Recall that { ALL BUT } denotes all the attributes of the relevant relation or relvar.)

Predicate for revision: Student Sname is revising for module ModuleId, starting at
the beginning of during and finishing at the end of during.

Predicate for pcinuse: The computer is being used for revision by student Sname,
starting at the beginning of during and finishing at the end of during.

(i) What are the so-called problems of redundancy, circumlocution, and
contradiction that are observed in connection with temporal data? You may use
Boris and Cindy's database as an example to illustrate your explanations.

(ii) The constraints defined so far do not meet the stated requirements. In particular:

 they permit the same person to be revising more than one module at the
same time;

 they permit both students to be using the computer for revision at the same
time;

CS319 Past Exam Questions

Page 4 of 19 —Past Exam Questions

 they permit the computer to be allocated at a time when neither student is
revising; and

 they permit the relvars revision and pcinuse to suffer from both
redundancy and circumlocution.

What constraints should be written in place of and in addition to the existing KEY
constraints? (Indications will do if you can't give exact TTD syntax for these.)

(iii) Write TTD expressions for the following queries:

 Show for each student Sname intervals throughout which Sname is
revising.

 Show intervals throughout which some student is revising but the
computer is not in use.

(d) As exam time draws near Boris and Cindy get a bit panicky and decide to put in some
extra, unplanned revision periods. When they start these periods they don't even know
how long they will last, but as soon as they start they want the database to record the
fact that they are currently revising, and the exam they are revising for. When they
finish such an ad hoc revision period, they update the database again to reflect that.
Suggest:

(i) How the existing database might be used for this purpose without any change at
all.

(ii) A suitable extension to the database for the same purpose, addressing any
problems that you perceive with your solution (i).

Question 3

(a) According to Wikipedia's entry for temporal database, a temporal table "gets two extra
fields, Valid-From and Valid-To" as compared with its nontemporal (current state only)
counterpart. Most authorities actually recommend just one "extra field"in relational
terms, a single attribute. For example, if Wikipedia's extra fields would be of type
DATE, the declared type of the single attribute preferred by most authorities would be
one representing intervals of dates, perhaps named INTERVAL_DATE.

(i) Give three advantages of the proposed single attribute over Wikipedia's "two extra
fields".

(ii) List the dates contained in the interval

INTERVAL_DATE ([DATE ('01 Jan 2008'):
DATE ('04 Jan 2008')))

(iii) What is meant by the point type of an interval type? What properties must a type
have to qualify as a point type?

Past Exam Questions CS319

Past Exam Questions — Page 5 of 19

(b) Consider the relation Rab represented by the following table:

A B

1 [1:4]
1 [4:6)
1 [7:7]

Using similar tabular notation, give the result of

(i) PACK Rab ON B

(ii) UNPACK Rab ON B

(iii) USING(B) Rab NOT MATCHING
RELATION { TUPLE { A 1, B INTERVAL_INTEGER((3:4]) }
}

(c) Consider the following Tutorial D relvar definition:

VAR xyHistory BASE RELATION { x CHAR, y
INTERVAL_DATE }

KEY { x, y } ;

representing intervals y throughout which person x was in full-time education.

Describe the problems of redundancy, circumlocution, and contradiction exhibited by
this definition, and how those problems could be addressed by inclusion of suitable
PACKED ON, WHEN/THEN and/or "U_key" constraints.

Question 4

I've started to design a relational database in which to record my family tree as far back as I
can trace it. Here is what I've got so far (in Temporal Tutorial D):

VAR person BASE RELATION { name CHAR,
gender CHAR,
during INTERVAL_DATE }

KEY { name } ;

Predicate for person: Person name of gender gender was alive from the beginning to the
end of during.

CONSTRAINT m_or_f person { gender }
RELATION {TUPLE { gender 'F' },

TUPLE { gender 'M' } } ;

VAR parent_of BASE RELATION { parent CHAR,
child CHAR }

KEY { parent, child } ;

Predicate for parent_of: Person parent was the mother or father of child.

CS319 Past Exam Questions

Page 6 of 19 —Past Exam Questions

CONSTRAINT one_of_each
COUNT (parent_of RENAME (parent AS name) JOIN person

WHERE gender = 'F') = 1 AND
COUNT (parent_of RENAME (parent AS name) JOIN person

WHERE gender = 'M') = 1) ;

VAR marriage BASE RELATION { wife CHAR,
husband CHAR,
during INTERVAL_DATE }

KEY { wife, husband } ;

Predicate for marriage: Female person wife was married to male person husband from the
beginning to the end of during.

CONSTRAINT hetero
marriage { wife }
RELATION { TUPLE { gender 'F' } } AND
marriage { husband }
RELATION { TUPLE { gender 'M' } } ;

(a) I notice that the Wikipedia entry for temporal database would suggest a to and from
attribute, each of type DATE, instead of my single attribute during in relvars person
and marriage. Should I switch to Wikipedia's suggestion? If so, why? If not, why
not?

(b) I'm not happy with the constraints defined for marriage:

 they permit the same person to be married to more than one other person at the
same time (which I regard as impossible);

 they don't restrict marriages to the lifetimes of the people involved; and

 I might discover a couple that got divorced and later remarried—my existing
KEY constraint wouldn't permit that.

What constraints should I write in place of the existing KEY constraint? (Indications
will do if you can't give me exact Temporal Tutorial D syntax for these.)

(c) How could I write a constraint to make sure everybody's mother was alive on their date
of birth? (Again, an indication will do if you can't give me exact Temporal Tutorial D
syntax.)

(d) I want to extend my definition to permit inclusion of family members who are still
alive. Please suggest some ways in which I can achieve that and point out for me their
relative advantages and disadvantages.

Past Exam Questions CS319

Past Exam Questions — Page 7 of 19

Question 5

(a) Assume that type OneTwoThree is defined in Tutorial D to consist of just three
values, the integers 1, 2, and 3.

(i) What are the properties of OneTwoThree, in Tutorial D with added support for
interval types, that enable us to assume that type INTERVAL_OneTwoThree
also exists? 2 marks

(ii) How many distinct values are there of type INTERVAL_OneTwoThree?
1 mark

(iii) i1 and i2 are values of type INTERVAL_OneTwoThree such that i1 MERGES
i2 and i1 PRECEDES i2 are both false. What are i1 and i2? 1 mark

(iv) Explain why there is only one value of type INTERVAL_OneTwoThree that
can be denoted using open-open notation for intervals. 1 mark

(b) Consider the relation Rab represented by the following table:

A B

1 [2:4)
1 [4:6)
1 [0:1)

Using similar tabular notation, and the same closed-open notation for the intervals, give
the result of

(i) PACK Rab ON B 2 marks

(ii) UNPACK Rab ON B 2 marks

(iii) USING(B) Rab JOIN
RELATION { TUPLE { C 2, B INTERVAL_INTEGER((3:5]) } }

2 marks

(c) Consider the SQL database fragment defined as follows:

CREATE TABLE HireHistory (E# CHAR(5) NOT NULL,
HiredOn DATE NOT NULL,
LeftOn DATE,

PRIMARY KEY (E#, HiredOn) ;

CREATE TABLE Absence (E# CHAR(5) NOT NULL,
AbsentFrom DATE NOT NULL,
AbsentTo DATE NOT NULL,
Reason VARCHAR(30) NOT NULL,

PRIMARY KEY (E#, AbsentFrom) ;

CS319 Past Exam Questions

Page 8 of 19 —Past Exam Questions

No other constraints are defined relevant to these two tables.

HireHistory records the hire date, HiredOn, of every person, E#, that has ever
been employed by the company and, where applicable, the date (LeftOn) on which
that hiring was terminated. The key, (E#, HiredOn), is explained by the fact that
sometimes a person who has left the company is subsequently re-employed, so there can
be more than one row for the same employee. For people currently employed the
LeftOn values are recorded as NULL.

Absence records, for each employee, all of that employee’s periods of absence from
work during a period of employment. It includes planned future absences of current
employees, as well as actual past periods of absence. In each case, the reason for the
absence (such as sickness or vacation) is recorded.

(i) The lack of constraints, apart from those shown, exposes this design to several
problems concerning integrity. Describe these problems. 6 marks

(ii) Using Tutorial D with temporal extensions, give VAR declarations and any
additional CONSTRAINT declarations that might be needed, to replace those SQL
CREATE TABLE statements and address the problems you identified in (i). You
may assume that type DATE is available. 5 marks

(iii) Explain how your solution to (ii) represents current employees (i.e., those for
whom the LeftOn value is NULL in the SQL implementation). Briefly describe
an alternative approach to the same problem. Note: For marking we treat the two
approaches as equally valid; and you are not asked to give your reasons for
preferring the approach you chose. 4 marks

Past Exam Questions CS319

Past Exam Questions — Page 9 of 19

B. The Askew Wall

Question 6

Consider the following list of DBMS features prescribed by E.F. Codd's relational model of
data (1970).

(a) The DBMS provides uniformity of data structure and method of access. [2]
(b) There is a value for every attribute in every tuple of every relation. [4]
(c) The same tuple cannot appear more than once in a relation. [4]
(d) There is no significance to the ordering of the attributes of a relation. [4]
(e) There is no significance to the ordering of the tuples of a relation. [2]
(f) No attribute value shall be a pointer. [3]
(g) All queries and constraints are to be expressed declaratively, not procedurally. [3]
(h) Types are orthogonal to relations. [3]

Assess SQL's adherence to or deviation from each of these prescriptions. In each case justify
your claim with reference to specific operators and/or statement types and, where SQL
deviates, briefly mention any adverse or advantageous consequences of the deviation. Where
appropriate, you are encouraged to give at least one complete example in SQL syntax (minor
syntax errors will not be penalised).

Question 7

(a) T is an SQL base table with columns A, B, and C.

(i) Write an SQL query to yield a table equivalent to the relational projection of T
over A and B except that the columns of the result are both named X.

(ii) Explain in a single sentence why your query represents a deviation from relational
theory.

(iii) What problems can arise from the fact that your query is acceptable in SQL?
(Think of operations that in Tutorial D you could perform on any relation but in
SQL could not be performed on this table.)

(b) T1 is an SQL base table whose definition is not given except that it has columns named
A, and B of type INTEGER and C1 and C2 of type VARCHAR(5). It is updated
nightly. Each of the following observations were obtained at 9:00am on different days.
In each case give a possible explanation for the phenomenon observed and state any
deviation from relational theory by SQL that is involved in your explanation.

(i) The result of SELECT COUNT(*) AS T1_count FROM T1 is

T1_count

100

CS319 Past Exam Questions

Page 10 of 19 —Past Exam Questions

And yet the result of
SELECT COUNT(*) AS U_count FROM
(SELECT * FROM T1 UNION SELECT * FROM T1) AS U

is:

U_count

1

(ii) SELECT * FROM T1 UNION SELECT * FROM T1
yields a result containing several rows and yet
SELECT * FROM (T1 NATURAL JOIN T1) AS J
yields an empty table.

(iii) SELECT * FROM T1 UNION SELECT * FROM T1
yields a result consisting of just row and yet
SELECT * FROM (T1 NATURAL JOIN T1) AS J
yields one consisting of four rows.

(iv) SELECT * FROM T1
WHERE C1 = C2 AND (C1 || C2) <> (C2 || C1)
yields a table containing several rows.
|| is the string concatenation operator in SQL
e.g., 'SQ' || 'L' = 'SQL'.

(v) SELECT SUM(A) + SUM(B) AS SUMAB1,
SUM(A + B) AS SUMAB2

FROM T1
yields:

SUMAB1 SUMAB2

200 100

(c) r1 is a relvar whose definition is not given apart from the fact that it has an attribute
named a and does not have an attribute named x.

(i) Write a Tutorial D expression to yield a relation that is identical to r1 except that
the attribute name x appears in place of the attribute name a.

(ii) Now suppose you are asked to write an equivalent SQL expression. Explain how
you would approach this task.

(iii) Suggest an improvement to SQL to make this task a little easier.

Question 8

(a) Define the terms heading and body, as applied to relations in relational database theory.
Describe the various ways in which tables resulting from evaluation of SQL queries can

Past Exam Questions CS319

Past Exam Questions — Page 11 of 19

have headings or bodies that deviate from these definitions. (It will be helpful to
number your deviations, for ease of reference in your solution to part (b)).

(b) For each of the following queries explain whether any of SQL's deviations referred to in
part (a) might be exhibited by the result. Assume that T is a base table defined by

CREATE TABLE T (A INTEGER NOT NULL,
B VARCHAR(10),
C INTEGER NOT NULL,
K1 CHAR(1),
K2 CHAR(1),

PRIMARY KEY (K1, K2))

(i) SELECT K2, A, C FROM T WHERE A > B

(ii) SELECT * FROM T

(iii) SELECT SUM(C) FROM T

(iv) SELECT * FROM T T1, T T2 WHERE T1.K1 = T2.K2

(v) SELECT DISTINCT K2, C FROM T
UNION ALL
SELECT K1 AS K2, COUNT(*) AS C
FROM T
GROUP BY K1
HAVING SUM(C) IS NULL

(c) Translate the following Tutorial D expression into SQL:

(r1{a,b} RENAME (a AS x, b AS y)
UNION
(r2{a,b} RENAME (a AS y, b AS x)

Question 9

(a) Assume that T is the only base table in the database and is defined in SQL by

CREATE TABLE T (A INTEGER,
PRIMARY KEY (A)) ;

Assume also that T contains just two rows, with A = 1 and A = 2.

For each of the following, give an example of an SQL query that exhibits the given
properties.

(i) The query contains just one FROM clause. The SELECT clause contains only
column references (no literals or operators). The result consists of two identical
rows.

CS319 Past Exam Questions

Page 12 of 19 —Past Exam Questions

(ii) No FROM clause contains a comma or the key word JOIN. No SELECT clause
contains a literal or an operator. The result consists two identical rows.

(iii) The query contains just one FROM clause. The FROM clause does not contain a
comma or the key word JOIN. The result contains two columns with the same
name.

(iv) The query contains just one FROM clause, preceded by SELECT *. The result
contains two columns with the same name.

(v) The result contains a column that has no name.

(vi) The key word NULL does not appear in the query. The query contains just one
FROM clause. The FROM clause does not contain a comma or the key word JOIN.
The result contains a column named X such that X IS NULL would evaluate to
true for at least one row.

(b) With T as defined and populated in (a), consider the following two SQL queries, each
resulting in a table with one row and one column:

SELECT SUM(X) + SUM(Y) AS SUMXY1
FROM (SELECT A AS X FROM T) T1 LEFT JOIN

(SELECT A AS Y FROM T WHERE A = 2) T2
ON (T1.X = T2.Y)

and
SELECT SUM(X+Y) AS SumXY2
FROM (SELECT A AS X FROM T) T1 LEFT JOIN

(SELECT A AS Y FROM T WHERE A = 2) T2
ON (T1.X = T2.Y)

What are the values of SUMXY1 and SUMXY2?

(c) Relvars r1 and r2 are defined in Tutorial D as follows:

VAR r1 BASE RELATION { a INTEGER, b INTEGER } KEY{ a
};
VAR r2 BASE RELATION { b INTEGER, a INTEGER } KEY{
b };

(i) Write equivalent SQL CREATE TABLE statements, including constraints to
ensure that equivalence, for r1 and r2.

(ii) Translate the following Tutorial D expression into SQL:

r1 UNION r2

Past Exam Questions CS319

Past Exam Questions — Page 13 of 19

Question 10

(a) Describe how an SQL user can obtain a table, one of whose columns has no name.
3 marks

(b) Describe two ways in which an SQL user can obtain a table in which two or more
distinct columns have the same name. 4 marks

(c) Assume that SQL query Q results in a table whose columns are all named and no two of
those columns have the same name. What SQL operations can be applied to Q that
could not be applied, or could only be applied with restrictions, if its result columns
were not so named? 5 marks

(d) Describe two ways in which an SQL user can obtain a table in which the same row
appears more than once, even when every base table has a primary key defined for it.

4 marks

(e) Identical base tables, BT, are created using two different implementations of SQL. One
of the columns of BT is defined as C1 VARCHAR(10) NOT NULL. Exactly the same
rows are inserted into both tables. It is observed that the two implementations give
different results for the query SELECT MAX(C1) FROM BT, even though both
implementations conform to the international standard for SQL. How can this be
explained? 5 marks

(f) Give two possible explanations for the fact that the following two queries do not give
the same results: 4 marks

SELECT SUM(x+y) AS Sumxy
FROM T

SELECT SUM(z) AS Sumxy
FROM (SELECT SUM(x) AS z FROM T

UNION
SELECT SUM(y) AS z FROM T) Q

CS319 Past Exam Questions

Page 14 of 19 —Past Exam Questions

C. How To Handle Missing Information Without Using NULL

Question 11

(a) In each of the following lists, for each SQL expression n>1 state, giving reasons,
whether it is equivalent to expression 1.

(i) 1. SELECT * FROM t WHERE x = y
2. SELECT * FROM t WHERE NOT (x <> y)

(ii) 1. SELECT * FROM t
2. SELECT * FROM t WHERE x = y OR NOT (x = y)

(iii) 1. SELECT SUM(x) + SUM(y) FROM t
2. SELECT SUM(x+y) FROM t

(iv) 1. (x, y) IS NOT NULL
2. x IS NOT NULL AND y IS NOT NULL
3. NOT ((x, y) IS NULL)

(v) 1. (x, y) IS NULL
2. x IS NULL AND y IS NULL
3. NOT (x IS NOT NULL AND y IS NOT NULL)
4. NOT (x IS NOT NULL) AND NOT (y IS NOT NULL)
5. NOT ((x, y) IS NOT NULL)

(b) A software development organization has an SQL database concerning its various
projects. The database include a table that was created by

CREATE TABLE project
(project# INTEGER PRIMARY KEY,
title VARCHAR(30) NOT NULL,
dept# INTEGER NOT NULL REFERENCES dept,
completed DATE);

NULL is used in the completed column for cases where the completion date is not (yet)
known, also for projects that are considered to be indefinitely ongoing. They are
unhappy with this design. For one thing they keep making mistakes with their queries
because of the strange behaviour of NULL, resulting in bad decisions by misinformed
executives. For another, they would like to be able to distinguish among ongoing
projects, projects that haven't been completed yet, and completed projects whose
completion dates are unknown.

You, the organization's DBA for this database, are tasked with the necessary redesign.
You decide on an approach based on proposals you were taught in CS253, but you
discover that SQL still lacks certain features without which the redesigned database will
be exposed to a grave risk of inconsistency.

Past Exam Questions CS319

Past Exam Questions — Page 15 of 19

Draft some notes for use in a requirements statement to be submitted to the committee
responsible for the SQL international standard. The notes should include CREATE
TABLE statements for the new design, explanation of the perceived integrity exposure
resulting from it, and suggestions for extensions to the language by which that exposure
could be addressed. (You are not expected to suggest precise syntax for these
extensions. Just give the committee sufficient information for them to devise such
syntax.)

Question 12

(a) Give a possible explanation for

(i) SELECT * FROM t WHERE x = y OR NOT (x = y)
gives a result that is empty even though t contains 100 rows. 2 marks

(ii) SELECT * FROM t WHERE (x, y) IS NOT NULL
and
SELECT * FROM t WHERE NOT ((x, y) IS NULL)
where t contains just one row, give different results. 2 marks

(iii) SELECT SUM(x) + SUM(y) AS SumXY FROM t
and
SELECT SUM(x+y) AS SumXY FROM t
where t contains just two rows, give different results, neither of which contains
an appearance of NULL for the column SumXY. 2 marks

(iv) SELECT * FROM t WHERE 0 = (SELECT SUM(1) FROM t
WHERE y > y)

gives an empty result, whereas
SELECT * FROM t WHERE 0 = (SELECT COUNT(*) FROM t

WHERE y > y)
gives the same result as SELECT * FROM t. 2 marks

(b) The CS252 course work assignment in November, 2007, required you to create a single
table for all transactions against bank accounts. Each transaction is of one of the four
kinds: payment in, payment by cheque, payment by direct debit, payment by debit card.
A possible solution was something like this:

CS319 Past Exam Questions

Page 16 of 19 —Past Exam Questions

CREATE TABLE Transaction (Transaction# INTEGER,
Account# CHAR(8),
DateReceived DATE NOT NULL,
TimeReceived TIME NOT NULL,
Amount DECIMAL(9,2) NOT NULL,
Source VARCHAR(100),
Cheque# CHAR(6),
Payee VARCHAR(50),
DateWritten DATE,
Card# CHAR(9),

PRIMARY KEY (Transaction#, Account#),
FOREIGN KEY (Account#) REFERENCES Account,

UNIQUE (Cheque#, Account#),
FOREIGN KEY (Card#, Account#)

REFERENCES DebitCard(Card#, Account#
),

CHECK (expression to check consistency of
nullable columns) ;

A payment in, identified by the Amount being negative, has a Source value and
requires the other nullable columns to be NULL. A payment by cheque has Cheque#,
Payee, and DateWritten values and requires the other nullable columns to be
NULL. A payment by direct debit has a Payee value and requires the other nullable
columns to be NULL. A payment by debit card has Payee and Card# values and
requires the other nullable columns to be NULL.

Recall that the DebitCard table has Card# as primary key but includes the
redundant constraint UNIQUE (Card#, Account#) as a workaround to enable
the foreign key referencing DebitCard to include a check that the debit card used for
the payment really is for use with the relevant account.

You would like to redesign this part of the database to avoid using NULL. You would
like your redesign to consist of a single table having all the columns that are common to
all transactions plus a separate table for each of the four transaction types, with just the
columns needed for the type in question. You would also like each of these five tables
to be in fifth normal form (5NF). Unfortunately, you are using an SQL implementation
that does not support constraints containing subqueries.

(i) Give an SQL CREATE TABLE statement for each of the five tables required in
your redesign. You may omit the data types of the columns and the words
CREATE TABLE. For each table, include a PRIMARY KEY declaration and
other constraints to meet as many of the requirements as possible. 5 marks

(ii) Describe the required constraints that you could not express in your solution to
(ii). 4 marks

Past Exam Questions CS319

Past Exam Questions — Page 17 of 19

(iii) Describe any additional enhancements to SQL that you would need to support
your redesign. 3 marks

Question 13

(a) Give a possible explanation for

(i) SELECT COUNT(*) AS number_of_rows1
FROM (SELECT c1 FROM t UNION

SELECT c1 FROM t) x
gives a result of 1 for number_of_rows1, whereas
SELECT COUNT(*) AS number_of_rows2
FROM (SELECT c1 FROM t) x1 NATURAL JOIN

(SELECT c1 FROM t) x2
gives a result of 0 for number_of_rows2 and
SELECT COUNT(*) AS number_of_rows3 FROM t
gives a result of 100 for number_of_rows3. 2 marks

(ii) In addition to the phenomena observed in (i),
SELECT * FROM t WHERE c2 = c2
where column c2 is of type ROW(a INTEGER, b INTEGER), gives a result
that is empty, whereas the result of
SELECT * FROM t WHERE c2 IS NOT NULL
contains 100 rows. 2 marks

(iii) SELECT CASE WHEN c3 = c4 THEN 0 ELSE 1 END AS x FROM t
and
SELECT CASE WHEN c3 <> c4 THEN 1 ELSE 0 END AS x FROM t
give different results. 2 marks

(iv) In addition to the phenomena observed in (i),
SELECT * FROM t WHERE c5 > c6
gives an empty result, whereas
ALTER TABLE t ADD CONSTRAINT c5gtc6 CHECK (c5 > c6);
is accepted (does not give rise to an error). 2 marks

(c) My collection of classical music consists of various kinds of piecessymphonies,
concertos, string quartets, sonatas, and so onon CDs (usually several pieces per CD).
Here, in a single table, is my first attempt to devise an SQL database in which to record
my collection:

CS319 Past Exam Questions

Page 18 of 19 —Past Exam Questions

CREATE TABLE Piece
(CDid VARCHAR(8),
Title VARCHAR(100) NOT NULL,
Type VARCHAR(30) NOT NULL

CHECK Type IN ('symphony',
'concerto',
'chamber',
'sonata',
'other'),

Composer VARCHAR(30) NOT NULL,
Opus# INTEGER NOT NULL,
Orchestra VARCHAR(30),
Conductor VARCHAR(30),
Leader VARCHAR(30),
Soloist VARCHAR(30),
Accompanist VARCHAR(30),
Ensemble VARCHAR(30),
Movements INTEGER NOT NULL,
PRIMARY KEY (CDid, Composer, Opus#),
FOREIGN KEY (CDid) REFERENCES CD,
CONSTRAINT difficult_one CHECK (...) ;

Note that the code for CONSTRAINT difficult_one is missing. I tried to write it
but it proved too difficult for me. Here is what it is required to express:

 every symphony or concerto has an orchestra
 no sonata or piece of chamber music has an orchestra
 every piece that has an orchestra has a leader
 every piece that has a leader has an orchestra
 every piece that has a conductor has an orchestra
 every sonata has a soloist
 every concerto has either a soloist or an ensemble, but not both
 every piece of chamber music has an ensemble

I have decided to avoid all use of NULL and instead to replace Piece by several tables,
using horizontal and/or vertical decomposition. But I need your help.

(i) Clearly, each of the tables in the new design will have
PRIMARY KEY (CDid, Composer, Opus#).
For each table that you think I will need:

 suggest a table name
 if it has any non-key columns, list their names, using the names given in

the definition of Piece

 list the names of any tables it should be referencing by foreign keys

Past Exam Questions CS319

Past Exam Questions — Page 19 of 19

For example, if you think I need a table called Symphony with extra columns
Conductor and Soloist and a foreign key referencing a table named Piece, write
Symphony(Conductor, Soloist) FK to Piece 5 marks

(ii) Describe the additional constraints that are required. 3 marks

(iii) Suggest enhancements to SQL that might be needed to support your all the
constraints needed in your redesign. 4 marks

End of past exam questions

