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Small Progress Measures for Solving Parity Games 2

BRICS



Verification of (finite-state) systems by model checking
[Clarke, Emerson 1982; Queille, Sifakis 1982; Emerson, Lei 1986]

Given:

• (a model of) a finite-state system: a Kripke structure K
• (a description of) a property: a modal μ-calculus formula ϕ

Decide: whether K |= ϕ holds

Modal μ-calculus [Kozen 1983]

• very expressive

• good compromise between succinctness and complexity

• low-level formalism of many automatic model checking tools

Model checking for the modal µ-calculus
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Theorem [Emerson, Jutla, Sistla 1993; Stirling 1995]
The following problems are linear-time equivalent:

• modal μ-calculus model checking

• non-emptiness of parity automata on infinite trees

• solving parity games

Model checking:
does K |= ϕ hold?

�−→ Solving a parity game:
who is the winner in GK,ϕ?

reduction in time O
(|K| · |ϕ|)

Model checking games

Marcin Jurdziński
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Parity game G =
(
V, (V�, V�), E, p

)
p : V → {1, 2, . . . , d}

Example 4 �� 3��
��
2 ����
�� �� ��

1
��

���	�� 2 ���� 3��

Play: path π = 〈v1, v2, . . . , v�〉 “closing” a cycle (vk = v� for k < �)

Value of a play: Val(π) = min
{

p(vi) : k < i ≤ �
}

Winning play for player �: Val(π) is even

Parity games
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(Memoryless) strategy for �: a subgraph (W, F ) of (V, E), s.t.

• for all v ∈ W ∩ V�, there is some (v, w) ∈ F

• for all v ∈ W ∩ V�, for all (v, w) ∈ E we have (v, w) ∈ F

Example 4 �� 3��
��
2 ���� 1

��
���	�� 2�� �� 34 3 2

�� �� ��
1 2 �� 3��

Winning strategy for �: all cycles in (W, F ) are “even”

Strategies
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Memoryless Determinacy Thm [Emerson, Jutla; Mostowski 1991]
For every parity game G =

(
V, (V�, V�), E, p

)
,

there is a unique partition (W�, W�) of V , and some F�, F�, s.t.
(W�, F�) and (W�, F�) are winning strategies for � and �, resp.

Example 4 �� 3��
��
2 ���� 1

��
���	�� 2�� 34 �� 3�� 2 1���	�� 2 34 3 2

�� �� ��
1 2 �� 3��

Solving a parity game: finding the winning sets, i.e., W� and W�

Solving parity games
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Corollary [EJS 1993; Zwick, Paterson 1996; J 1998]
Solving parity games is in NP ∩ co-NP, and even in UP ∩ co-UP

An NP procedure

1. Guess a strategy (W�, F�)
2. Check that (W�, F�) is a winning strategy for �

Complexity of solving parity games
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Algorithms
TIME SPACE

[EL′86, . . . , McN′93, Zie′98] O
(
m · (n

d

)d
)

O(d · n)

[BCJLM′97, Sei′96] O
(
m · ( n

d/2

)d/2
)

O
(
m · ( n

d/2

)d/2
)

This talk O
(
m · ( n

d/2

)d/2
)

O(d · n)

where n = |V |, m = |E|, and d is the number of priorities

Complexity of solving parity games

Marcin Jurdziński

Small Progress Measures for Solving Parity Games 8-a

BRICS

An alternative NP procedure

1. Guess a strategy (W�, F�) and a function α : W� → N
d

2. Check that α is a progress measure

Progress measures are witnesses for winning strategies

Theorem [ . . . ; Klarlund, Kozen 1991; EJ 1991; Walukiewicz 1996]
There exists a winning strategy (W, F ) for � if and only if
there exists a progress measure � : W → N

d

Towards the new algorithm
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1. Existence of “small” progress measures

2. Progress measures as pre-fixed points of monotone maps in a
complete lattice of “small” height:

(a) yields existence of least progress measures [Walukiewicz 1996]

(b) guides the way to efficiently compute them

Main ideas behind the new algorithm
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Notation: (a1, . . . , ad)≥i (b1, . . . , bd) iff (a1, . . . , ai)≥lex (b1, . . . , bi)

Let � : V → (
N

d ∪ {�}), and (v, w) ∈ E

Define a predicate Prog
(
�, (v, w)

)
to hold iff

• �(v) ≥p(v) �(w), and

• if p(v) is odd then �(v) >p(v) �(w)

or �(v) = �(w) = �

Progress measures (1)
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Progress measure is a function � : V → (
N

d ∪ {�}), such that
for all v ∈ V , we have:

• if v ∈ V� then Prog
(
�, (v, w)

)
holds for some (v, w) ∈ E

• if v ∈ V� then Prog
(
�, (v, w)

)
holds for all (v, w) ∈ E
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Progress measures (2)
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Theorem (Small progress measure)
If � has a winning strategy (W, F ) in game G =

(
V, (V�, V�), E, p

)
then there exists a progress measure � : V → (

MG ∪ {�}) where

MG =
(
[n1] × [0] × [n3] × · · · × [0] × [nd−1] × [0]

)

and ni =
∣∣p−1(i)

∣∣, and [i] = {0, 1, . . . , i}, and

�(w) �= � for all w ∈ W

Progress measures with small co-domains
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Small Progress Measures for Solving Parity Games 13

BRICS



Theorem
If all cycles in (W, F ) are even then there exists a progress measure
� : W → MG

Progress measures with small co-domains
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• p−1(1) �= ∅
Claim There are U1 � U2 = V , such that (U1 × U2) ∩ E = ∅

�1 ∪ (
�2 + (n′

1, 0, n′
3, 0, . . . )

)

• p−1(1) = ∅, p−1(2) �= ∅

� ∪ (
λv.(0, . . . , 0)

)

Small progress measures: proof
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Example
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MinProg
(
�, (v, w)

)
:

the least m ∈ (
MG ∪ {�}) which makes Prog

(
�[v �→ m], (v, w)

)
hold

How to compute (small) progress measures?
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Lift(·, v) : (V → M�
G ) → (V → M�

G ) operators:

Lift
(
�, v

)
(u) =

⎧⎪⎪⎨
⎪⎪⎩

�(u) if u �= v

min(v,w)∈EMinProg
(
�, (v, w)

)
if u = v ∈ V�

max(v,w)∈EMinProg
(
�, (v, w)

)
if u = v ∈ V�

How to compute (small) progress measures?
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Point-wise order � on (V → M�
G ):

� � �′ iff �(v) ≤lex �′(v) for all v ∈ V

Fact The operator Lift(·, v) is �-monotone, for all v ∈ V

Fact A function � : V → M�
G is a progress measure if and only if �

is a pre-fixed point of Lift(·, v) operators, for all v ∈ V

Corollary (by Knaster-Tarski Theorem)

• there exists the �-least progress measure

• it can be computed by iterating Lift(·, v) operators for all v ∈ V

Progress measures as pre-fixed points
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ProgressMeasureLifting
μ := λv ∈ V.(0, . . . , 0)
while μ � Lift(μ, v) for some v ∈ V do μ := Lift(μ, v)

Space: O(d · n)

Time: O
(∑

v∈V d · deg(v) · |MG|
)

= O
(
d · m · |MG|

)

|MG| =
d/2∏
i=1

(n2i−1 + 1) ≤
( n

d/2

)d/2

The algorithm
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Theorem For all d, n ∈ N, there is a game (Hd/2,n/d) of size O(n)
with priorities bounded by d, on which the algorithm performs at
least (n/d)d/2 many lifts, for all lifting policies

Game H4,3:
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Worst-case performance
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Main points

• Solving parity games: the algorithmic essence of the modal
μ-calculus model checking

• Progress measures: witnesses for winning strategies

• Progress measures as pre-fixed points

– existence of least progress measures

– a guide for efficient computation of witnesses

Questions

• Is it a local model checking algorithm?

• Can it be refined to a P-time algorithm?

Conclusion
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