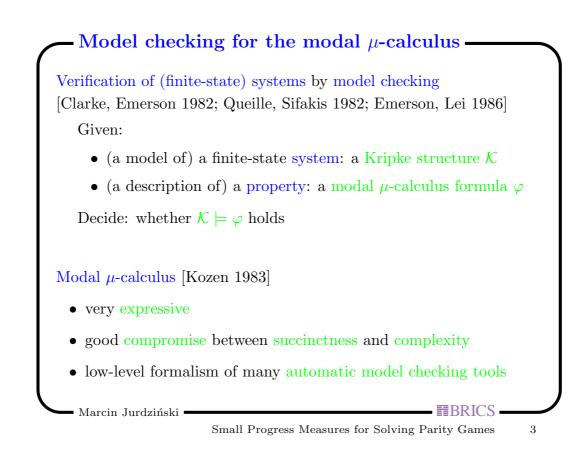
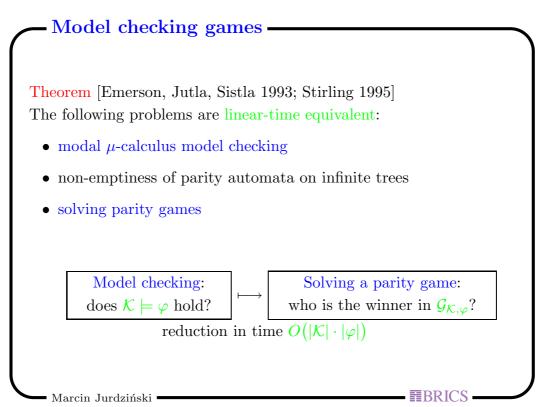
Small Progress Measures for Solving Parity Games

Marcin Jurdziński ≣BRICS University of Aarhus Denmark

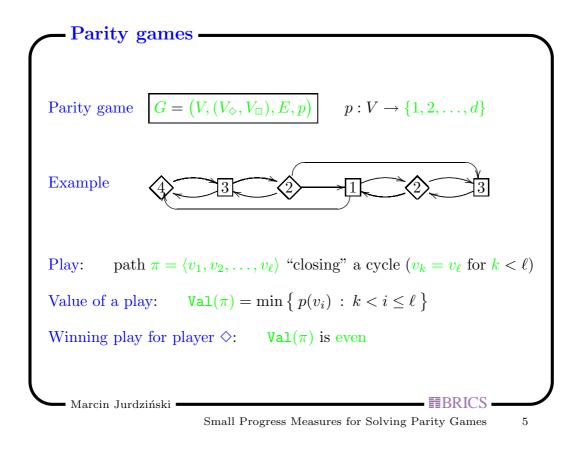
Lille, France, 18 February 2000

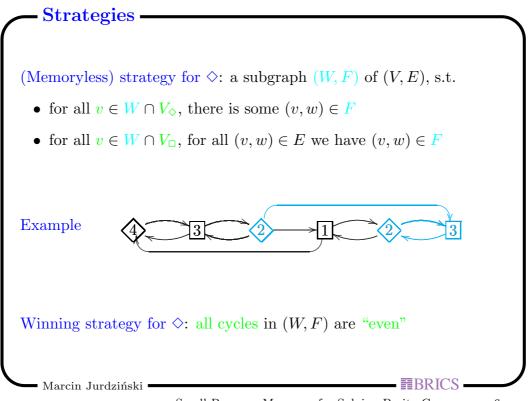
- Plan



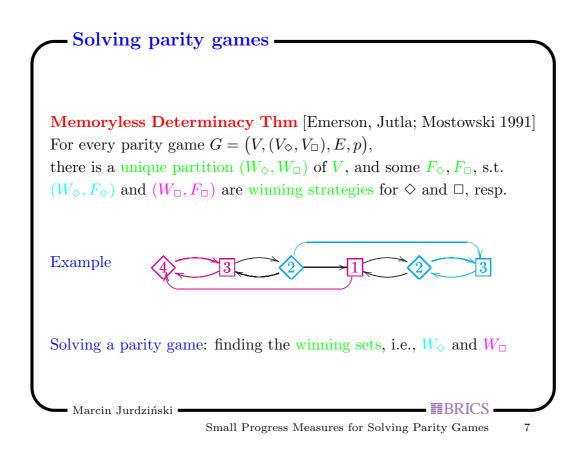


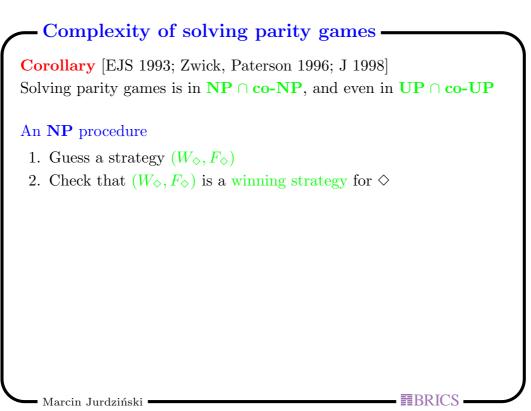
 $\mathbf{4}$

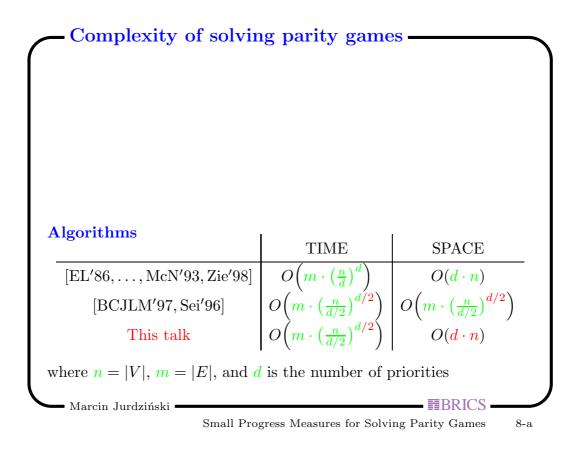


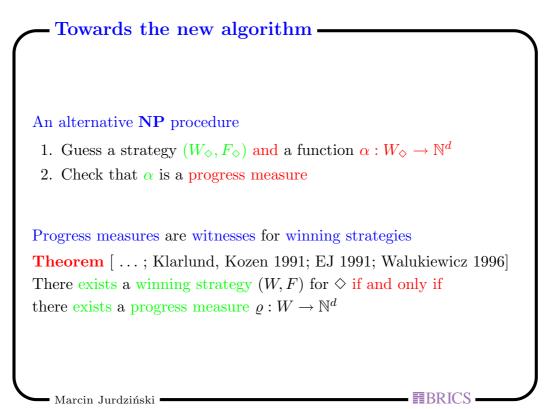


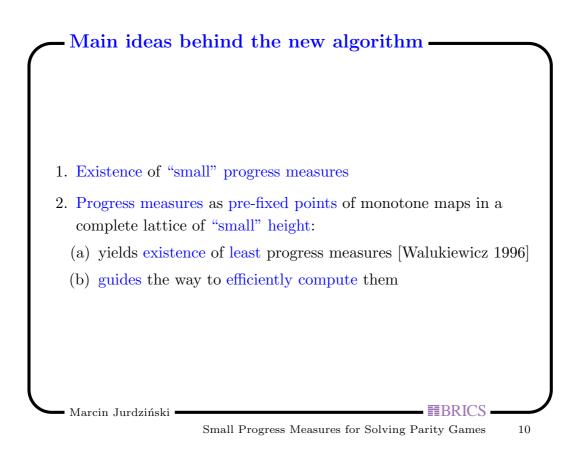
Small Progress Measures for Solving Parity Games

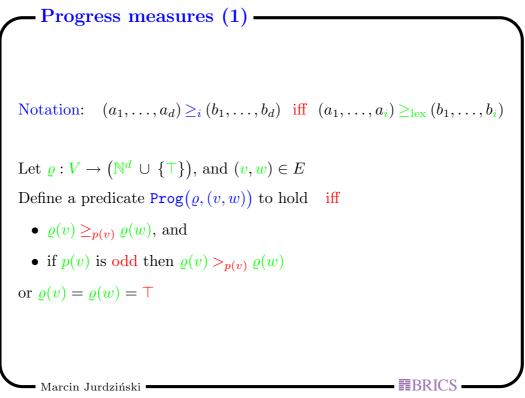


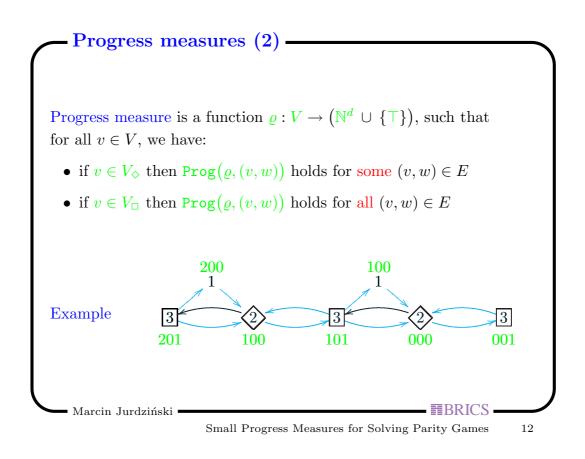












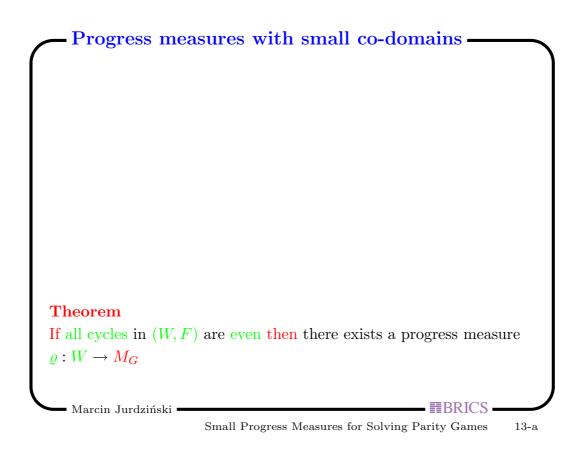
– Progress measures with small co-domains

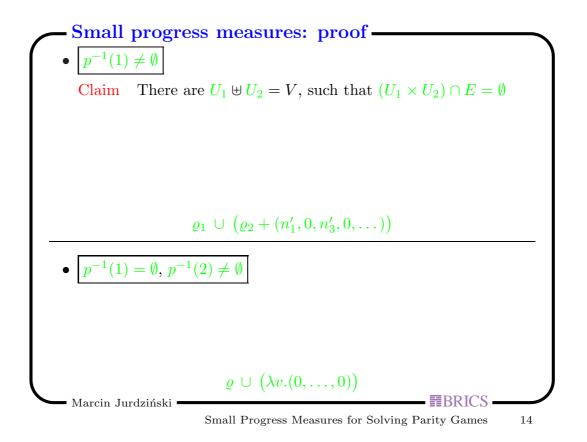
Theorem (Small progress measure) If \diamond has a winning strategy (W, F) in game $G = (V, (V_\diamond, V_\Box), E, p)$ then there exists a progress measure $\varrho : V \to (M_G \cup \{\top\})$ where $M_G = ([n_1] \times [0] \times [n_3] \times \cdots \times [0] \times [n_{d-1}] \times [0])$ and $n_i = |p^{-1}(i)|$, and $[i] = \{0, 1, \dots, i\}$, and

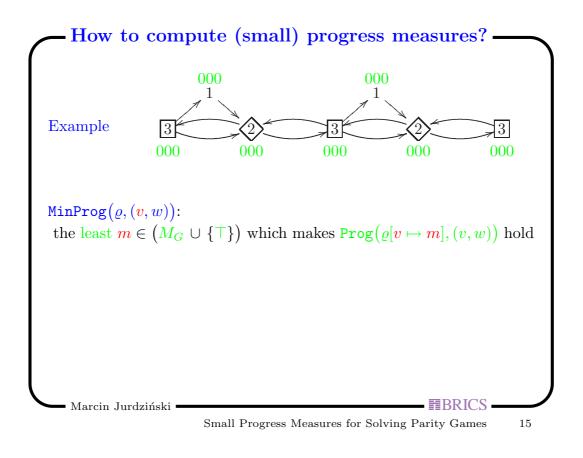
 $\varrho(w) \neq \top$ for all $w \in W$

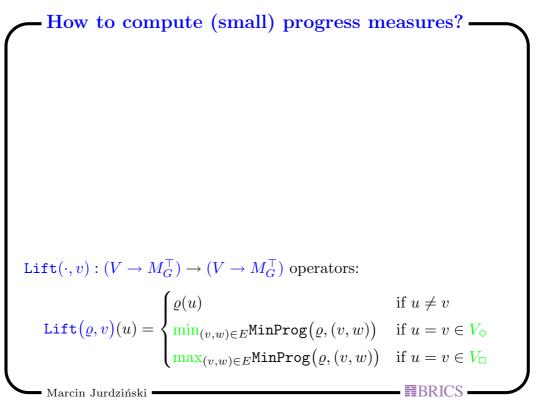
Marcin Jurdziński

BRICS

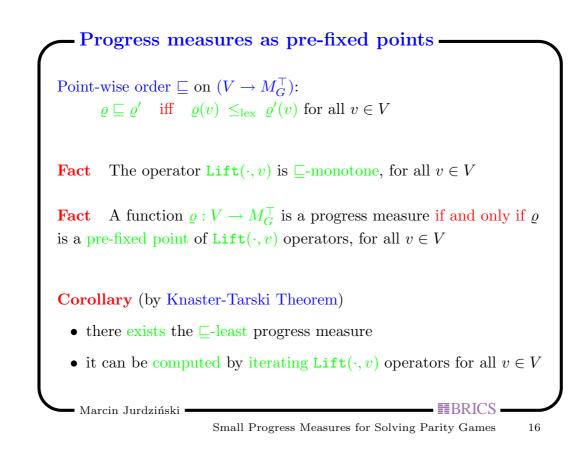








Small Progress Measures for Solving Parity Games 15-a



 The algorithm

 ProgressMeasureLifting

 $\mu := \lambda v \in V.(0, ..., 0)$

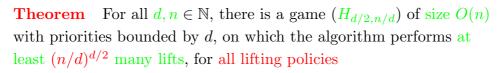
 while $\mu \sqsubset \text{Lift}(\mu, v)$ for some $v \in V$ do $\mu := \text{Lift}(\mu, v)$

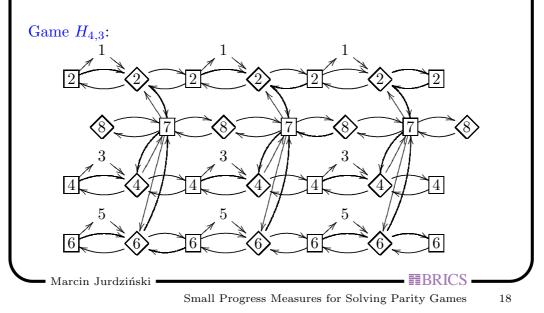
 Space: $O(d \cdot n)$

 Time: $O\left(\sum_{v \in V} d \cdot \deg(v) \cdot |M_G|\right) = O\left(d \cdot m \cdot |M_G|\right)$
 $|M_G| = \prod_{i=1}^{d/2} (n_{2i-1} + 1) \le \left(\frac{n}{d/2}\right)^{d/2}$

 Marcin Jurdziński

Worst-case performance





- Conclusion

Main points

- Solving parity games: the algorithmic essence of the modal μ -calculus model checking
- Progress measures: witnesses for winning strategies
- Progress measures as pre-fixed points
 - existence of least progress measures
 - a guide for efficient computation of witnesses

Questions

- Is it a local model checking algorithm?
- Can it be refined to a **P**-time algorithm?