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(— Complexity of parity games — motivations —\

e Equivalent to modal p-calculus model checking
[Emerson, Jutla, Sistla 1993; Stirling 1995]

Model checking: Solving a parity game:
—
does hold? who is the winner in ?

reduction in time

e Intriguing complexity-theoretic status
— in NP N co-NP [EJS’93] (even in UP N co-UP [J'98])
— no polynomial time algorithm known
[EL’86, ..., EJS'93, BCJLM’94, Sei’96, J’00]
— parity games <!°87SPace mean payoff games <log—space

discounted payoff games <198=sPace gimple stochastic games
[Condon’92, Puri’95, ZP’96]
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(— Strategy improvement algorithms — history —\

1966 Hoffman-Karp’s algorithm for stochastic games
received a lot of attention in Operations Research community

1995 Puri’s algorithm for discounted payoff games

Drawbacks of Puri’s algorithm:

e Inefficient in practice
— solving linear programming instances

— high precision arithmetic

e Hard to analyze/understand
— manipulates real number encodings of discrete values

— proof of correctness uses continuous methods

(e.g., Banach fixed point theorem)
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(— Discrete strategy improvement algorithm —\

We alleviate drawbacks of Puri’s algorithm

e Fast implementation

— O(n - m) discrete algorithm for strategy improvement step

e Hope for easier analysis/better understanding;:
— manipulates discrete values explicitly

— proof of correctness uses only discrete arguments

Experimental evidence: small number of strategy improvement steps

Open problem: is it a polynomial time algorithm?
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(— Plan

1. Definition of parity games

2. Solving parity games
(a) as a decision problem

(b) as an optimization problem

3. Strategy Improvement Algorithm
(a) generic idea

(b) our implementation
4. Time complexity

5. Open problems
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(— Parity games — definition

o D € MEven§ <> S MDdd

G = (V7 E, (MEvem Moaa))

b V:{071727"'7n}:MEvenLﬂMOdd

@C?@
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(— Winning play

Ve

~
Play P: 5] 6 /3( 0] 4] @

Loop(P) = {0,2,3,4} A(P) = max ({0,2,3,4}) =4

Loop value of a play P is defined by
= max (Loop(P))

Play /7 is a winning play for Even iff

A(P) is even
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Strategies

Function is a strategy for Even iff

(v, a(v)) € F for every v € Mgyen

T

Play P = (v1,v9, ..., vx) is consistent with strategy o iff

vi+1 = o(v;) for every v; € Mgyen

IR G N
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(— Winning strategies

is defined to be the set of plays
— starting from v, and

— consistent with o

Strategy o is a winning strategy for Even from v iff
every play P € Plays,(v) is winning for Even
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(— Solving parity games — decision problem —\

The winning set

= { v € V : there is a winning strategy for Even from v }

The problem of solving parity games
Given: a parity game G = (V, E, (Mgyen, MOdd))

Find: the winning set Wgyen €V
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(— Solving parity games — optimization problem —\

C is a partial order on Strategies

Postulates for
1. The C-maximum strategy exists

2. The C-maximum element is a strategy

winning from every vertex in Wegyen

The problem of solving parity games
Given: a parity game G = (V, E, (Mgyen, MOdd))
Find: the C-maximum strategy
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(— Generic Strategy Improvement Algorithm —\
Postulates for a function
(Strategies, )
: Strategies — Strategies

I

1. (Strategy Improvement)
If o is not the E-maximum strategy

then o C Improve(o)

2. (Optimum Strategy)
If 0 is the C-maximum strategy

then Improve(o) = o

Strategy Improvement Algorithm:

pick a strategy o for player Even
while o # Improve(o)
do o := Improve(o)
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(—Ingredients of Strategy Improvement Algorithm \

In this talk:
1. Definition of a partial order [ on Strategies

2. Definition of a function : Strategies — Strategies

In (full versions of) the paper:
1. Proofs of postulates for

2. Proofs of postulates for
(a) Proof of Strategy Improvement Lemma

(b) Proof of Optimum Strategy Lemma

3. Efficient implementation of
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(— Our proposal for C-order on Strategies —\

Assume we are given:

1. (PlayValues, <): a linear order < on PlayValues

2. © :Plays — PlayValues: value of a play

(V —PlayValues) point-wise extension
? ——
(Strategies, ) ( , )

IA}

: V. — PlayValues
= minﬂ{ O(P) : P € Plays,(v) }

Intuition: €2, is the value of the best counter-strategy against o
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(— Our proposal for Improve function on Strategies \
: Strategies — Strategies

: MEven - V

(v) = the successor of v maximizing €2, (w.r.t. <)

Improve(o) @

because Qg (u1) > Qg (usz)
.\@

Improvement step for strategy o in a nutshell:

1. global minimization: find €2, the best counter-strategy against o

2. local maximization: point Improve(o) to <-maximum €2, values
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(— PlayValues and function O : Plays — PlayValues —\

~
Play F: 5] 6 /3( 0] 4] <2>

-

Prefix(P) = {0,3,5,6}
ANP)=4,n(P)={5,6}, #(P) =4

Primary path value = Prefix(P) N {v : v>A(P)}
Secondary path value = |Prefix(P)|
Vxp(V)xN

——
Value of a play function © : Plays — is defined by:
= (A(P), 7(P), #(P))
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(— Our proposal for < order on PlayValues —\

C VxplV)xN

on PlayValues is the lexicographic order on V' x p(V) x N
e We define a < linear order on loop values V'
e We define a < linear order on primary path values p(V)

e We use standard < linear order on secondary path values N
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(— The < linear orders on V and p(V) \

Definition (The ~ linear order on loop values V)

(2k—1) <+ <5-3~1-0-2~4-6~<- <2k

Definition (The < linear order on primary path values p(V))

iff FirstDiff(P;Q) < FirstDiff(Q;P)

Example

N
—

Q =
R =

NI NI N
EN N BN
vV V. V
o o o
vV V. V
B ot
Vo=V

2}
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Proof techniques

1. Efficient implementation of Improve; computing {2,
e solving
(for player 0dd: minimization instead of maximization)

e solving special instances of

2. Strategy Improvement and Optimum Strategy Lemmas
e local characterization of €, ( )

e relaxations of valuations ( and )
Lemma 1. If = is an under-valuation for G, then = < ),
Lemma 2. If = is an over-valuation for G, then U, < =

e application of lemmas 1. and 2.

Prop.1. €2, is an under-valuation for G'prove(s)

Prop.2. If Improve(o) = o then €, is an over-valuation

for GE
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Time complexity

Parameters of interest

e The needed to perform a
— A discrete O(n - m) time algorithm
(efficient implementation in a companion paper [SV’00])
e The of
— An obvious ], ¢, out-deg(v) upper bound

— Prop. O(n?3) strategy improvement steps suffice for one-player
parity games (cf. [Melekopoglou, Condon 1994))
— Prop. There exists a policy of improvement at one vertex at a

time terminating in at most n steps (cf. [J°00])

— Prop. There are only O(n?) improvement steps
Experimental evidence. Small, often O(1) number of

non-substantial improvement steps. (see [SV’00])
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Open problems
S )

1.

Does our algorithm with the standard improvement policy

terminate in polynomial number of strategy improvement steps?
If not: exhibit families of hard examples

Are there polynomial time improvement policies for which our
algorithm terminates in polynomial number of strategy

improvement steps?

If not: exhibit families of hard examples

Define and study other partial orders __ on Strategies and
other operators

Develop other algorithms than strategy improvement algorithm
for the optimization problem we have defined
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