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Abstract. With POWERS a new generation of POWER processors
became available. This architecture features a moderate number of cores,
each of which expose a high amount of instruction-level as well as thread-
level parallelism. The high-performance processing capabilities are inte-
grated with a rich memory hierarchy providing high bandwidth through
a large set of memory chips. For a set of applications with significantly
different performance signatures we explore efficient use of this processor
architecture.

1 Introduction

With power consumption limiting the performance of scalar processors there
is a growing trend in high-performance computing (HPC) towards low clock
frequencies but extremely parallel computing devices to achieve high floating-
point compute performance. A remarkable increase in the number of systems
exploiting accelerators like GPGPUs and Xeon Phi for leading Top500 systems
can be observed. The POWER server processors, while providing increasing on-
chip parallelism, continue to be optimized for high single-thread performance. In
June 2014 the most recent generation of POWER processors, namely POWERS,
became available in a pre-release program. In this paper we investigate the
performance of this processor for a set of micro-benchmarks as well as mini-
applications based on real-life scientific HPC applications.

A description of the processor architecture with up to 12 cores be found in [1]
and [2]. POWERS complies with version 2.07 of the Power ISA like its predecessor,
but features changes to the underlying micro-architecture. For an early evaluation
of the architecture we used a single SMP server with two dual-chip-modules
(DCM) and a total of twenty cores. Each core can be clocked at up to 4.2 GHz
and is capable of running up to eight hardware threads per core in simultaneous
multi-threading (SMT) mode. Per core there are two floating point pipelines
capable of executing single and double precision scalar instruction or vector
instructions on 128 bit registers. Alternatively, this VSX unit can operate on



fixed point vectors. Further, two fixed point pipelines are present. All arithmetic
functional units can execute fused-multiply-add instructions and variants thereof.
The interface to the memory system consists of two load/store units and two
dedicated load units. All of these may execute simple fixed point computations.
The dispatch unit is capable of out-of-order execution.

The cache hierarchy consists of three levels. L1 and L2 are core private and
inclusive. L1 is split between data and instructions with a capacity of 64 KiB
and 32 KiB, respectively. The 512 KiB L2 cache is unified. The L2 caches are
connected via a cache coherency protocol and can move data between caches.
The store engine is located in L2, with L1 being write-through. L3 consists of
8 MiB of embedded DRAM (eDRAM) per core and functions as a victim cache
for the local L2 and remote L3 caches. The pre-fetch engine pulls data into L3
directly and into L1 over the normal demand load path.

One of the differentiating features of the POWERS architecture is the inclusion
of external memory interface chips with an integrated cache, the Centaur chip. Its
additional cache level of 16 MiB eDRAM is some times referred to as the fourth
level cache (I.4). Each link connecting processor and memory buffer offers an
8 GB/s to 9.6 GB/s write and 16 GB/s to 19.2 GB/s read bandwidth. With up to
8 links the aggregate peak bi-section bandwidth per socket is 192 to 230.4 GB/s.
The dual-socket system evaluated in this paper featured an aggregated read
bandwidth of 256 GB/s and 128 GB/s for write access.

We used a pre-release version of Red Hat Enterprise Linux 7.0 which features
support for the POWERS architecture. In this paper we only report on results
obtained using the GCC compiler version 4.8.2 which includes POWERS support
and offers access to vector intrinsics.

As SMP domains grow in size and heterogeneity, the placement of memory
allocations becomes more important. The test system comprises four NUMA
domains, as each socket consists of a dual-chip-module. The standard tool numactl
was used for pinning allocations.

With this paper we make the following contributions:

— Performance evaluation of different aspects of the POWERS through micro-
benchmarks.

— Performance characterization on POWERS for different scientific applications.

— Identification of a set of events relevant for analyzing performance of such
applications.

2 Related Work

Recently various papers have been published exploring the POWERT architecture
and investigating its performance. Very few papers have been published about
the new POWERS processor.

The approach taken in [3] is close to our’s in the sense that the performance
of relevant scientific applications was analysed on a POWERT7-IH system. In
this paper a system comprising 8 nodes and a total of 256 POWERTY cores was
used. Focussing on scale-up capabilities of POWERY, analysis of data transport



performance, like memory-to-processor or processor-to-processor, was given more
attention than evaluation of the micro-architecture which is the focus of this
paper.

The performance evaluation presented in [4] takes a more architectural ap-
proach by analysing the performance benefits of specific features of the POWER7
processor like different SMT modes, support of different clock speeds and the
use of (at that time new) VSX instructions. For this purpose synthetic bench-
marks are used. Detailed information on the POWERYT performance measurement
capabilities is given.

First papers on POWERS [2, 1] mainly focus on chip design, applied technolo-
gies and I/O capabilities.

3 Methodology

3.1 Hardware counters

The POWERS processor allows for monitoring of up to six hardware events in
a single set. These events can be chosen out of more than a thousand defined
counters. We identify those that map to the functional units at the disposal of
the core:

Unit Counter

Vector Scalar Units VSU{0,1}_FIN
Fixed Point Units FXU{0,1}_FIN
Branch Unit BRU_FIN

The common prefix PM_ has been suppressed for brevity in all counter names. We
use PAPI version 5.3.2 to access the counter values via the interface to platform
specific hardware counters [5]. In Fig. 1 we summarize our analysis of the memory
architecture for the propagation of load requests. As to our knowledge, all counters
are specific to the core executing the read request. However, some information is
missing, like how to compute data movements from L2 to L3 and from L1 to L2.

3.2 Performance metrics

In [6] a set of performance metrics was defined in order to characterize application
behavior on the BG/Q architecture. We use these metrics as a basis for our
work on the POWERS architecture. However, we focus on those relevant to the
core micro-architecture, mainly instruction counts and their interplay with the
available functional units. Further we address the data movement between the
CPU and memory, as well as chip-internal traffic. We give a summary in table 1.
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Fig. 1: Memory hierarchy for load request propagation and prefetch resolution.
All values have to be scaled by the width of a cache line of 128 B, except the
traffic between register file and L1 where the factor is the register width of 8 B.

3.3 Porting and tuning

All applications and micro-benchmarks were ported to the POWERS architecture.
We give results for the optimal performance we were able to attain. Details
for tuning applications can be found in the relevant sections, but we give some
general methods here.

OpenMP Thread placement — the mapping of threads to CPU cores — is a critical
factor for the performance of concurrent applications beyond modest numbers
of threads. We use the GNU OpenMP runtime control variables to control the
layout. The best results are achieved by using a round-robin allocation with
stride s = min(8, &) for T' threads.

NUMA The Linux tool numactl was used to tune memory allocation, where the
interleaving of the four NUMA domains shows the best results.

4 Micro-Benchmark Results

We investigated the baseline of available performance in terms of instruction
throughput, memory bandwidth and multi-threading overhead by a series of
micro-benchmarks.

4.1 Instruction throughput and latency

We use an in-house tool to measure the latency and saturated throughput of
various assembly instructions. The basic approach is to time a tight loop of



Name Description Formula

twe Wallclock time cyc*

N, Instructions INST_CMPL

Nrx Fixed point instructions FXU{01}_FIN + LSU_FX_FIN
Npp Floating point instructions > VSU{01}_nFLOP

Nrs Load/Store instructions LD_CMPL + ST_FIN

NBr Branch instructions BRU_FIN

Nfp—op  FLOPs >, VSU{01}nFLOP
Reg«+L1$ Data read from L1 8 - (LD_CMPL + LSU_LDX)B
Reg—L2$ Data written L21 8 - (ST_CMPL + VSU{01}_SQ)B
L1$+L2$ Data from L2 into L1 128 - DATA_FROM_L2B
L1$+L3$ Data from L3 into L1 128 - DATA_ALL FROM_L3B

L1$+Mem Data from memory into L1 128 - (DATA_ALL_FROM_{LDR}MEM+
DATA_ALL FROM_{LDR}L4) B

L3$+Mem Data from memory into L3 128 - (L3_PREF_ALL)B

L3$— Mem Data into memory from L3 128 - (L3_.CO_ALL)B

Noem Total data from/to memory L1$+Mem + L3$+Mem + L3$—Mem

Table 1: Performance metrics for characterizing applications on POWERS.
* Only incremented while thread is active.

t L1 is store-through.

T L1 and L2 have the same prefetch states, so no prefetch is excluded.

assembly instructions, which is then repeatedly executed to achieve stable results.
Using independent instructions allows for estimating the maximum throughput,
while the introduction of dependencies will yield the minimal latency between
instructions. Results for a selection of assembly instructions are given in table 2.

4.2 Memory sub-system (STREAM)

We first investigated the behavior of the memory sub-system under an artifi-
cial load designed to exercise the memory bandwidth. We used version 5.9 of
the STREAM benchmark [7], which we tuned for the POWERS architecture.
STREAM consists of four micro-benchmarks on the vectors a, b, ¢ and a scalar

copy € < a scale b <+ s ¢
sum a+ b+c triada< s-b+c

The GCC compiler fails to recognize the opportunity to vectorize the copy
benchmark. The necessary vectorization was done by hand using VSX intrinsics.
To achieve better parallel performance, core binding and NUMA placement were
investigated, see section 3.

First, we turn to the raw bandwidth between CPU and main memory. The
working set size was chosen to be 512 MiB per array in order to avoid cache
effects. As the STREAM benchmarks are highly regular, the efficiency of the



Instruction Type Latency Throughput

add Fixed 8 1
1d Memory - 1
st Memory - 1
ld+st Memory - 17
xsmuldp 64b Floating 6 1
xsdivdp 64b Floating 33 1/29

Table 2: Latency and maximum throughput for examples of fixed point, simple
and complex floating point and memory access instructions.

pre-fetching mechanism has a large impact on the results. To obtain statistically
sound results, we repeated the measurements 1000 times. We give the optimal
results as the median values for all four benchmarks in Fig. 2 as a function of
the number of threads. We find sustainable bandwidths for triad of just over
320 GB/s, corresponding to roughly 84.6 % of the maximum sustained bandwidth.
the achievable bandwidth for copy and scale is lower than for sum and triad. The
later use two load and one store streams which fits the balance of the memory
links exactly. The peak performance is achieved with 40 threads, at which point
every LSU is busy. For this case, the inset in Fig. 2 shows the distribution of the
results over 1000 runs of the benchmark. We notice a clearly peaked distribution
at the median and a quite long tail towards smaller values.

Next, we investigate the impact of the different cache levels. Due to the
prefetch mechanism, we expect only the first and third level to have impact on
the STREAM benchmarks. Cache lines recognized as part of a prefetch stream
are fetched into L1 and L2 up to six cache lines ahead of the stream. These
requests traverse the cache hierarchy like demand loads. The last level cache L3
is populated by the prefetcher directly from the memory up to 16 lines ahead of
the stream. STREAM is perfectly regular, so we expect no significant impact of
the L2 on the memory bandwidths. In the steady state of the prefetch engine,
every load request must hit in L1 as it is large enough to hold three streams
for eight threads per core. Prefetch requests themselves miss L2, as it has the
same data prefetched, and hit L3 as it is ahead of the L1 prefetch. Every line is
only traversed once. We monitor hardware counters to understand the impact of
the prefetcher and cache hierarchy, and recorded the counter values for different
array lengths. The data for the copy benchmark is presented in Fig. 3. Despite
the effort of rotating the arrays to avoid such behavior, for small n, when the
majority of the working set fits in L2, it supplies the full data to the core. For
larger n, the traffic from L2 into L1 drops to a constant, due to remnants of the
working set in L2. The last level cache satisfies almost all requests, including
prefetches, beyond the size of L2. A constant amount of data is fetched directly
from memory into L1, most likely before prefetch streams are established.
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Fig. 2: Median bandwidths for the STREAM benchmarks over number of threads.
We mark the thread counts where every core is occupied by single thread (#Core),
by two threads (#LSU) and the SMT capacity is fully used (#HWT). Beyond
using every LSU on all cores, the achievable bandwidth drops off sharply.
Inset: Probability density estimates for the bandwidths at 40 threads over 1000
repetitions of the experiment. Note the clear peak at the median value and the
relatively long tail towards smaller values, most probably indicating other system
activity at the time of the iteration.

The traffic volumes between the register file and the L1 cache fit the prediction
of 8-nB perfectly, as does the store volume (not shown). The accumulated transfers
into L1, from L2, L3 and memory, sum up to the same values within the margin
of error. We find a clear effect of cache sizes as the data set grows too large for
each level. The impact of the second level cache at small sizes is explained by
the fact that at this point the full working set fit into L2. Although the design of
the benchmark tries to avoid caching effects by rotating the assignments, this
does not fully work for small sizes n.

4.3 OpenMP overheads

The POWERS system is relying on thread-level parallelism for optimal per-
formance. A total of 20 threads are needed to occupy all cores with a single
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Fig.3: Memory traffic as derived by monitoring hardware counters over the
number of double precision array elements for STREAM copy. Counters were
summarized into traffic volumes according to section 3.1 and scaled into units of
bytes. The predicted value of 8 - nB perfectly matches the line for Reg«L18$.

thread (ST mode). Further gains may be achieved by using multiple threads
on a single core in simultaneous multi-threading mode (SMT). This has the
benefit of issuing more instructions per cycle, thus utilizing voids in the execution
pipelines. However, as more threads are executing on the same hardware, the
overheads for managing these threads, synchronization and bookkeeping grow.
Since almost all applications and micro-benchmarks in this study are parallelized
using OpenMP, we can estimate an upper bound for the number of threads to be
used productively.

We use the OpenMP micro-benchmark suite (version 3.X) from EPCC to
quantify these overheads [8]. The overhead 7(n) at n threads is here defined as
the difference in execution time between expected and measured timings. We
execute independent workloads, essentially empty loops, for a given number of
iterations and time the execution t(n) with n threads

7(n) = t(n) — ©

n
where t is the timing of serial execution of the same workload. The whole
measurement is repeated to achieve a representative result.

The central component is the GNU OpenMP runtime shipped with GCC
4.8.2 and its interaction with the test-system. Relevant environment variables for
distributing threads over cores and tuning thread migration and waiting policy
are tuned for performance as described in section 3.3.
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Fig.4: Overheads for OpenMP threading as measured by the EPCC suite v3.X.
The baseline cost setting up worksharing constructs and synchronization is well
below one micro-second.

Left: Explicit synchronization constructs. The most expensive statement to use
is barrier, consuming up to 0.75ms on 160 threads.

Right: Implicit synchronization by closing a parallel region and the overhead of
various worksharing constructs. Apart from a few outliers, we observe overheads
of 0.6us to 0.7ms.

Fig 4 summarizes our findings for the impact of various explicit and implicit
synchronization constructs. These are the relevant sources of overhead for the fur-
ther workloads in this report. The large overhead at the maximum number of 160
threads of around a millisecond suggests that using this level of concurrency will
generally not be beneficial for worksharing. Regarding explicit synchronization,
using atomic sections is to be preferred over the alternatives.

5 Application Performance Results

We present results on the analysis of three scientific applications on the POWERS
architecture: Lattice Boltzmann, MAFIA and NEST. The applications cover a
wide scientific field: fluid dynamics (LB), data analysis (MAFTA) and neuronal
networks (NEST). Furthermore, their performance profiles are diverse and gives
good coverage of the architectural features.



Fig.5: The 37 element stencil for the propagate function.

5.1 Lattice Boltzmann Performance Results

The Lattice Boltzmann (LB) method is widely used in computational fluid
dynamics, to numerically solve the equation of motion of flows in two and
three dimensions. While conceptually less efficient than spectral methods, LB
approaches are able to handle complex and irregular geometries as well as complex
and multi-phase flows. From a computational point of view, LB methods are
“easy” to implement and a large degree of parallelism is exposed.

LB methods (see, e.g., [9] for an introduction) are discrete in position and
momentum spaces; they are based on the synthetic dynamics of populations
located at the sites of a discrete lattice. At each time step, populations are
propagated from lattice-site to lattice-site and then incoming populations collide
among one another, that is, they mix and their values change accordingly.

LB models in x dimensions with y populations are labeled as DzQy. Here, we
consider the D237 a state-of-the-art bi-dimensional model with 37 populations
per site, see fig 5, that correctly reproduces the thermo-hydrodynamical equations
of motion of a fluid in two dimensions and automatically enforces the equation
of state for an ideal gas (p = pT') [10, 11].

From a computational point of view the most relevant steps performed by a
LB simulations are the computation of the propagate and collide functions:

1. propagate moves populations across lattice sites according to a stencil extent
pattern of 7 x 7 excluding corners; it collects at each site all populations that
will interact at the next phase: collide. Implementation-wise, propagate
moves blocks of memory locations allocated at sparse memory addresses,
corresponding to populations of neighbor cells.

2. collide performs all the mathematical steps associated to the computation
of the collisional function, and computes the population values at each lattice
site at the new time step. Input data for this phase are the populations
gathered by the previous propagate phase.

We stress again that the D2Q37 LB method correctly and consistently describes
the thermo-hydrodynamical equations of motion as well as the equation of state
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Fig. 6: Performance of the D2Q37 kernels over the number of threads used. The
efficiency of collide is given in GF/s and propagate measured in GB/s.

of a perfect gas; the price to pay is that, from a computational point of view, its
implementation is more complex than simpler LB models. This translates into
severe requirements in terms of memory bandwidth and floating-point throughput.
Indeed, propagate implies accessing 37 neighbor cells to gather all populations;
this step is mainly memory-bound and takes approximately 10% of the total
run-time. The collide requires approximately 7600 double-precision floating
point operations per lattice point, some of which can be optimized away by the
compiler, see later sub-section. collide exhibits a significant arithmetic intensity
and is the dominating part of the overall computation, taking roughly 90% of the
total run-time. All tests have been performed on a lattice of 3200 x 2000 sites,
corresponding to 1.76GiB of data per lattice. Input/output, diagnostics and
computation of boundary conditions are not accounted for in this benchmark.

The D2Q37 model is highly adaptable and has been implemented on a wide
range of parallel machines like BG/Q [12] as well as on a cluster of nodes based on
commodity CPUs [13], GPGPUs [14] and Xeon-Phi [15]. It has been extensively
used for large scale simulations of convective turbulence (see e.g., [16,17]). These
implementations have been extensively tuned for the hardware in question, which
is beyond scope of this study.



The collide-operation consists of three phases, first computing the moments
of the distribution function, then resolving the collision effects in terms of these
moments and those of the equilibrium distribution and finally transforming
the result back. All transformations are linear. The GCC compiler generates
optimized code with 4550 instructions. The main optimization is unrolling of
each of the three loops over 37 into one single iteration and 18 iterations with
vectorized load and FP instructions. All results for the hardware counter analysis
are given per lattice site, corresponding to 37 elements of 64b floating point data.
For a break-down of the instruction mix and pipeline filling refer to table 3.
We find that the required 6200 floating point operations are performed in 2100
instructions, which are mostly vectorized fused-multiply-add instructions. Address
calculation and loop variables contribute roughly 860 fixed-point instructions.
There are just above 1500 load instructions plus close to 100 store instructions, in
addition to the input data of 37-8 B we have to read some constants, but the bulk
of this overhead stems from spilling the working set to L1. The actual amount
of data read from memory is 459 B, roughly 50% more than the 37 populations.
The additional traffic may be explained by the coefficients for the polynomial
expansions and the data that is prefetched but cast-out of L3 before it is used
and re-read later. This is supported by the fact that almost all incoming memory
traffic is due to pre-fetches (457B). The function stores 37 - 8B = 296 B, which is
the updated site data, into memory. The full operation take 3000 cycles per site.

A thread scaling analysis of collide in Fig. 6 shows that the peak performance
of 194 GF /s is reached with 80 threads on 20 cores, i.e. 9.7 GF /s per core in SMT4
mode, closely followed by 9.65 GF /s in SMT2 mode. It is interesting to see that
further oversubscription of the core (160 threads, SMT8) reduces the performance
by 11 % compared to the maximum. The performance of a single thread per core
is reported as 7GF/s. The POWERS core architecture is optimized for both
single threaded execution (ST) as well as SMT threading; it adapts the way
instruction dispatch works accordingly. This explains the subtle differences in the
interplay of functional units that can be observed in the two modes. The peak
performance is about 74 % higher than running on a single thread per core (ST
mode). This gain stems from better filling of the instruction pipelines.

Propagate performs a swap on 37 memory locations per lattice site and is, there-
fore, limited by the effective random access memory bandwidth. Benchmarking
with thread numbers between 1 and 160 shows that the shortest runtime of
propagate is reached at 20 threads, i.e. one thread per core (ST mode).

The structure of memory access leads to a factor 3 to 4 lower bandwidth
compared to values for the sustained bandwidth obtained with the STREAM
benchmark 4.2. Here, we can see that the throughput of instructions is highest
in ST mode and, similar to the performance of the collide-kernel, degrades the
more threads we use per core. The lower part of the scaling analysis — 1 to 20
threads — shows the effect of shared resources. The original version of the code
exhibited less than optimal performance due to misuse of the cache hierarchy. The
loop over the lattice was optimized by using cache blocking, giving a gain of 20%
in bandwidth. Again, table 3 shows a detailed breakdown of the instruction mix



Throughput Metric collide propagate

Function Unit Fraction ST SMT2 SMT4 SMT8  fwe 3007 214
Nz 4933 87

collide LSU 0.35 0.28 042 0.43 0.38 Nrpx 8’57 19
VsU 0.50 0.41 0.57 0.57 0.51 Npp 2122 _

FXU 0.14 0.11 0.13 0.12 0.11 Npr 80 2
propagate LSU 0.45 0.04 0.04 0.05 0.04 Nig 1641 74
VSU 0.41 0.04 0.06 0.12 0.05 Noern 755 2141
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Table 3: Left: Characteristics of LBM seen by the instruction pipelines; measured
on a single thread. Given are the relative fractions dispatched to the pipelines
and the throughput relative to the maximum for different numbers of threads
per core.

Right: Instruction counts and general metrics for the LBM application.

and pipeline filling. No floating point operations are performed, although the VSU
pipelines report significant filling, since store instructions are executed in both
LSU and VSU. We find exactly 37 load and store instructions, one per population.
These result in 2968 of write traffic and 1837B are read from memory. This
is roughly six times more than we would naively expect. Again, almost every
incoming byte is due to pre-fetching (1537B), indicating that streams may be
established, but never fully utilized. Further, due to the nature of the stencil the
read accesses are not continuous, potentially resulting partially consumed cache
lines. Addressing and loop computations result in 12 fixed point computations
per site. Processing a single site requires 214 cycles.

In summary, LBM is split into two parts, both of which have completely
different performance requirements. The computationally expensive collide
operation, which is largely vectorized by the compiler, reaches about 29% of
the peak floating point performance. It further benefits from the higher pipeline
filling by using up to four threads per core. On the other hand propagate which
is purely memory bound can capitalize roughly 20% of the aggregated read/write
bandwidth. However, the maximum achievable bandwidth is 256GB/s as the
requirements of propagate are symmetric in read and write. Of this figure, we can
exploit close to 30%, the remaining gap is mainly a result of the non-continuous
access pattern.

The overall performance is summarized in fig. 6, the maximum achieved for 40
threads or two per core, which is due to the unequal shares of both phases on the
total runtime. We find close to ideal scaling up to twenty threads and significant
gains from using two threads per core, beyond that, performance stagnates
(SMT4) and finally degrades (SMTS). This is expected as the application utilizes
the available pipelines efficiently at SMT2. Gains from filling potential voids in
the pipelines are offset by threading overheads as described in section 4.3. We
are investigating the reduced bandwidth at more than one thread per core.



5.2 MAFIA Performance Results

MAFTA is a subspace clustering application [18] which implements the algorithm
of the same name [19]. For the purpose of this report, we concentrate on the CPU
version implemented using OpenMP. MAFTA algorithm builds dense units (DUs)
starting from lower dimensionalities and progressing to higher ones, until no new
DUs can be built. For each dimensionality, it generates candidate DUs (CDUs)
from DUs of lower dimensionality. The CDU is accepted as a DU if the number
of contained points lies above a certain threshold. The cardinality computation,
pcount, is the most computationally intensive kernel of the algorithm. The
generated DUs are then merged into clusters, which are the final output.

In MAFTA, each CDU is represented as a cartesian product of windows, one
window per dimension of the CDU. Each window, in turn, is represented by a
set of contained points, implemented as a bit array. Thus, the number of points
inside a CDU can be computed as the number of bits set in intersection (bitwise
AND) of all windows. The loop over words of the bit array was strip-mined, so
that auto-vectorization by the compiler is possible.

[18] presents performance estimates as well as an empirical analysis of MAFIA.
Assume that the algorithm runs on n points in d dimensions, and the dataset
contains a single hidden cluster of dimensionality k. Then the total number of
logical bit AND operations in pcount kernel for the entire program run is given
by the equation

Nyitops =1 - k- 2871, (1)

As the number of windows is several orders of magnitude smaller than the number
of points (O(10) versus O(10°)), it can be assumed that the array of window
indices is cached, and only bit arrays need to be transferred from memory. Thus,
equation 1 also gives the number of bits transferred from memory by the pcount
kernel.

We started by analyzing the scaling behavior of MAFIA with different
OpenMP thread placements, by altering the stride s with which the threads are
spread out across cores. The pcount kernel was parallelized across CDUs, with
only a single thread executing the point count loop for each CDU. Scalability
results for the pcount kernel for a dataset with n = 107 points of dimensionality
d = 20 and a cluster of dimensionality k& = 14 are presented in Fig. 7. The
scalability is quite good, with a speedup of up to 25 achieved with 80 threads
and threads allocated round-robin to every second core, see section 3.

We then proceeded to analyzing counter values. The MAFIA application
was run with 20, 40, 80 and 160 threads with the same point and cluster
dimensionalities as above (k = 14, d = 20). The number of points, n, varied on a
logarithmic scale between 1 - 10° to 64 - 106. Counter values are given as averages
across three runs.

Next, we analyze vector instruction throughput. As MAFIA pcount contains
only integer vector instructions, counters for floating-point vector instructions
are of no interest here. For each of the three counters, we assume that its value
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can be modeled by the equation

n

c(n) = (co2F + c k281 To8 (2)

where the coefficients ¢y and ¢; are both in terms of operations performed on
a single vector. The term with ¢; is derived from equation 1, and corresponds
to the loop over windows, where the number of iterations varies with CDU
dimensionality. The term with ¢y corresponds to the rest of the iteration of the
loop over words, where the number of instructions executed does not depend on
CDU dimensionality.

For prediction purposes, we derived values for ¢y and ¢y from the assembly
code generated by the compiler. Their values for different counters are listed
in table 4. The innermost loop was unrolled by the compiler, therefore some
coefficients have a fractional part. Fig. 9 compares predictions with the actual
measured values. The predictions are almost perfect, with less than 0.001%
difference. Numbers for other thread counts are very similar and are omitted for
brevity.



It is also worth comparing coeflicients extracted from assembly to the minimum
values expected by looking at the original code; both are listed in Table 4.

— One store instruction is executed per vector instead of none expected. This
indicates that the storage for words resulting from logical AND operation is
in L1 rather than registers.

— Similarly, there are 2.125 load instructions instead of one expected. One of
those is needed to load the array holding result of logical AND to registers
(from cache), and 0.125 is due to imperfect alignment of bit arrays in main
memory.

— Three vector instructions are generated instead of one expected. One is
due to vector store counted as a vector instruction, and the second is a
permutation instruction, again to compensate for mis-alignment of the bit
arrays in memory.

The values obtained from the assembly differ from minimum values expected
from the original code, which indicates optimization potential. Compiler opti-
mization is one of the way to address that, and we are planning to look into
that.

We then proceeded with analyzing the memory traffic. Fig. 8 plots a semi-
empirical memory bandwidth, i.e. the estimate of memory traffic divided by
measured running time. For a given number of points, more bandwidth actually
indicates lower running times, as the theoretical memory traffic does not depend
on the number of threads. Fig. 10 plots the ratio of traffic between main memory
and various levels of caches to the theoretical value, derived from equation 1.

With 20 threads, L1/L2 caches and L3 cache partition of a single core are
used by a single thread only, which gives the most predictable plot. Indeed, the
amount of data flowing into L1 cache is very close to the theoretical prediction.
L1 is mostly filled from L3, and data flow from L2 is almost non-existent. Up to
and including 4 - 10% points, the aggregated size of the bit arrays fits into L3; only
after that is data fetched from main memory. Even then, it is mostly prefetched
into L3, from where it goes further up. Because of that, there is almost no need
to fetch the data from main memory directly into L1.

The plots for 40 and 80 threads show the same qualitative behavior, although
effects of cache sharing play a role. On the positive side, the same cache lines
can be used by multiple threads; as a result, the amount of data loaded into L1
is actually less than the theoretical prediction, down to 50% for 80 threads. On
the negative side, as the amount of cache of all levels per thread is lower, there
is less space to store data on-chip. As a result, for 80 threads, data should be
fetched from memory for all dataset sizes. However, this does not seem to affect
performance, as the 80-thread version is actually the fastest for the cases when
the data size fits into L3 cache. It may be that though the L3 prefetcher kicks in,
it does not provide the data further referenced by the algorithm. For 20 to 80
threads, there is also a small but not insignificant amount of data retrieved from
cache partitions of other cores.

The plot for 160 threads differs qualitatively from the others. First of all, there
is significant over-prefetching of data from the main memory. We assume that
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due to too many threads contending for prefetcher resources, prefetch streams get
tried but do not reach steady state. Also, a much larger fraction of data is sourced
from L2. Again, we assume that due to over-subscription of over-prefetching into
L1, many of the prefetched L1 cache lines get cast out into L2 even before they
get accessed. This agrees with other counters, which indicate that lines from
L2 and L3 come due to explicit accesses and not due to prefeches. Nevertheless,
overall use of hardware with 160 threads is relatively good, as for more than
8 - 106 points this is where the maximum performance is achieved.

To summarize, MAFIA’s pcount loop is rather regular, and we can get a good
understanding of it. Vector instruction counters are perfectly understood in terms
of algorithmic properties and instructions in the assembler code. Memory behavior
is also understandable, particularly for lower number of threads nts < 40, where
effects of L3 cache size are clearly visible. With larger number of threads, however,
our understanding is limited, and it is here where the highest performance is
achieved. We thus assume that the application is latency-limited, as neither
instruction throughput nor memory bandwidth limit its performance.

5.3 NEST Performance Results

NEST (NEural Simulation Tool) is an application from the field of computational
neurobiology [20]. It models brain tissue as a graph of neurons interconnected by
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synapses. Neurons exchange spikes along the synapse connections. On an abstract
level, NEST can be understood as a discrete event simulator on a distributed
sparse graph. It is built as an interpreter of a domain specific modeling language
on top of a C++ simulation core. Most simulations include stochastic connections
and sources of spikes, which makes static analysis and load balancing unfeasible.

The performance profile of NEST leans towards fixed point operations due to
the necessary graph operations and dynamic dispatch of events. Memory capacity
is a major bottleneck for large-scale simulations with NEST, so optimizations
tend to favor size over speed. Despite the obvious need for good fixed point
performance, a small but non-negligible fraction of floating point operations is
needed to update the neuron models.

For our experiments, we used dry run mode of NEST. This enables simulating
performance characteristics of a NEST run on many thousands of nodes by
running on a single system. The parameters of a run are the simulated number
of MPI processes, M, and the number of threads running on a single node, T
Typically, NEST run parameters also include n, the number of neurons owned
by a single process, which is fixed at n = 9375, and therefore omitted, in our
experiments. The total number of neurons is proportional to M. Each active
thread is called a virtual process (VP) and the total number of VPs is given by
M - T. For our experiments, we simulate random balanced networks with nM
neurons and both static and adaptive synapses [21].

We started with analyzing performance of NEST simulation loop with different
OpenMP settings. We performed experiments with 10, 20, 40, 80 and 160 threads
strided by 1, 2, 4 and 8 over the cores under 3 values of M. Results for M = 512
and M = 16384 processes are depicted in Fig. 11; results for M = 4096 (not
shown) exhibit the same behavior.

NEST exhibits non-trivial scaling behavior. Some parts, such as neuron update
or synapse processing, scale well, while others, such as spike buffer processing, do
not scale, as all threads should go through the entire spike buffer. Moreover, with
larger number of processes, and as a consequence, of neurons, the relative weight
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of spike buffer processing increases. Therefore, while with M = 512 having more
threads per core improves performance to some extent, with M = 16384, more
threads always means worse performance. For each T, the optimal stride is given
by min(160/T,8), which we use for further experiments.

We then proceeded to analyzing hardware performance counters for NEST.
Understanding how resource contention affects running times of various parts
of NEST is still a work in progress. We therefore restrict ourselves to counters
which can be characterized as amount of work performed, such as the number
of instructions or loads executed. We analyzed only the spike delivery phase,
as for a large number of processors, it takes more than 90% of simulation
time. We performed experiments with 7" = 1,5, 10, 20, 40, 80,160 and M =
512,2048, 4096, 16384. The work done in spike delivery phase can be broken into
contrbutions from processing the following items:

— synapses, which is constant for fixed n;

— spikes in the buffer, proportional to M - T, as the number of spikes is
proportional to M, and this work has to be done by each thread;

— markers in the buffer, proportional to M -T2, as the number of markers is
equal to the number of virtual processes and the work is done in each thread;

Note that the code for all components is intermixed, so it is impossible to
accurately measure each of them without introducing significant measurement
bias. The total amount of work done can be written as the sum of all components

C=co+ci-MT+cy- MT?. (3)

The coefficients of the equation 3 has been derived by fitting it into experimen-
tal data using least squares method. Fig. 12 plots values for both total instructions
(N.) and loads executed. The points represent the measured values, and the lines
represent the fitted values. The fits are very close, with the deviation being less
than 5.5% (mostly less than 3.3%) for instructions and less than 7.5% (most
less than 3.7%) for loads. Note that equation 3 also holds for other work-related



counters, which include: floating point loads and stores, vector instructions, both
the total and actual arithmetic operations.

To summarize, though our understanding of NEST performance characteristics
is far from complete, some points are clear. Specifically, spike delivery takes most
of the time for simulations with large number of MPI processes M. We also
understand the number of instructions executed by spike delivery, and it is clear
that it contains parts that do not scale with either the number of processes M
or threads T'. And while scalability with T" could be improved by parallelizing
the loop processing spikes in the buffer, improving scalability with M requires
more fundamental changes in NEST architecture, specifically the way spikes are
exchanged between processes.

6 Summary and Conclusions

We presented the characterization of three different scientific codes on a new
server-class processor, the POWERS. Further, results of micro-benchmarks were
collected as a first impression of the performance characteristics.

The LBM and MAFIA applications benefit from the available instruction-
level parallelism and vectorization capabilities. Although parts of LBM depend
strongly on the memory bandwidth, the available capacity can only be exploited
to a fraction, due to the access pattern. NEST is an irregular application limited
by memory accesses, and could, in theory, benefit from SMT. However, in order
to achieve this, its scalability should be improved first.

On the basis of the performance we were able to achieve in our tests, POWERS
is a candidate for the host CPU in GPU-accelerated systems. The focus on integer
performance, out-of-order execution and memory bandwidth complement the
floating-point optimized profile of the accelerator. Exploring this direction is
planned for the near future.

With up to 160 threads in total or eight per core, overheads from thread
management, especially by the OpenMP runtime, become an important factor.
This is even more critical, as the SMT facilities are means to optimize pipeline
filling and therefore require lightweight threading. However, the gains from these
large numbers of threads per core are expected to be significant only if the
pipelines are not sufficiently saturated to begin with. The applications we tested
did not suffer from this problem, so speed-ups were not expected. We were not
able to obtain results with an OpenMP runtime optimized for POWERS in the
time frame of the preview. This too, is planned for the near future.
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