
Roofline Model Toolkit: A Practical Tool for
Architectural and Program Analysis

Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki,
Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker

University of Utah,
Lawerence Berkeley National Laboratory

{yujunglo,mhall}@cs.utah.edu

{swwilliams,bvstraalen,tjligocki,mjcordery,njwright,loliker}@lbl.gov

Abstract. We present preliminary results of the Roofline Toolkit for
multicore, manycore, and accelerated architectures. This paper focuses
on the processor architecture characterization engine, a collection of
portable instrumented micro benchmarks implemented with Message
Passing Interface (MPI), and OpenMP used to express thread-level paral-
lelism. These benchmarks are specialized to quantify the behavior of dif-
ferent architectural features. Compared to previous work on performance
characterization, these microbenchmarks focus on capturing the perfor-
mance of each level of the memory hierarchy, along with thread-level
parallelism, instruction-level parallelism and explicit SIMD parallelism,
measured in the context of the compilers and run-time environments.
We also measure sustained PCIe throughput with four GPU memory
managed mechanisms. By combining results from the architecture char-
acterization with the Roofline model based solely on architectural spec-
ifications, this work offers insights for performance prediction of current
and future architectures and their software systems. To that end, we in-
strument three applications and plot their resultant performance on the
corresponding Roofline model when run on a Blue Gene/Q architecture.

Keywords: Roofline, Memory Bandwidth, CUDA Unified Memory

1 Introduction

The growing complexity of high-performance computing architectures makes it
difficult for users to achieve sustained application performance across different
architectures. Worse, quantifying the theoretical performance and the resultant
gap between theoretical and observed performance is becoming increasingly dif-
ficult. As such, performance models and tools that facilitate this process are cru-
cial. Such performance models need not be complicated, but should be practical
and intuitive. A model should provide upper and lower bounds on performance
for a given computation on a particular target architecture and be suggestive of
where optimization would be profitable. Additionally, the model should provide
an indication of the fundamental bottlenecks and inherent challenges associated
with improving a specific kernel’s performance on the target architecture.

2 A Practical Tool for Architectural and Program Analysis

An exemplar of such modeling capability is Roofline Model [20, 19, 2]. The
Roofline model combines arithmetic intensity, memory performance, and floating-
point performance together into a two-dimensional graph using bound and bot-
tleneck analysis. In the conventional use, the x-axis is arithmetic intensity (flops
per byte) and y-axis is performance in GFlop/s. The model thus defines an en-
velope in which one may attain performance. To date, this “textbook” Roofline
model requires a human to manually analyze an architecture and any application
kernels in order to populate the roofline. We wish to automate that process.

This paper will present our initial approach that constructs the Roofline
model using an automated characterization engine. Moreover, we extend the
Roofline formalism to address the emerging challenges associated with accel-
erated architectures. To that end, we constructed three benchmarks designed
to drive empirical Roofline-based analysis. The first two represent the conven-
tional memory hierarchy bandwidth and floating-point computation aspects of
the Roofline. The third benchmark is a novel and visually intuitive approach to
analyzing the importance of locality on accelerated architectures like GPUs. It
quantifies the performance relationship between explicitly and implicitly man-
aged spatial and temporal locality on a GPU. We evaluate these benchmarks on
four platforms — Edison (Intel Xeon CPU), Mira (IBM Blue Gene/Q), Babbage
(coprocessor only, Intel MIC Knights Corner), and Titan (GPU only, Nvidia
Tesla K20x), and use the resultant empirical Rooflines to analyze three HPC
benchmarks — HPGMG-FV, GTC, and miniDFT.

2 Related Work

Today, data movement often dominates computation. Typically, this data move-
ment is between DRAM and the cache hierarchy and is often structured stream-
ing (array) accesses. As such, the STREAM benchmark has become the de-facto
solution for benchmarking the ultimate DRAM bandwidth of a multicore pro-
cessor [18]. STREAM is OpenMP threaded and will perform a series of bench-
marks designed to quantify the memory subsystem’s performance as a function
of common array operations. Unfortunately, all these operations write to the
destination array without reading it. As such, the hidden data movement neces-
sitated by a write-allocate operation effectively impedes the bandwidth. Today’s
instruction set architectures (ISA) often provide a means of bypassing this write
allocate operation. Unfortunately, it is rare for a compiler to generate this oper-
ation appropriately on real applications. As such, we are motivated to augment
stream with read-only (sum or dot product) or read-modify-write (increment)
benchmarks in order to cleanly quantify this hidden data movement.

Modern microprocessors use hardware stream prefetchers to hide memory
latency by speculatively loading cache lines. Unfortunately, the performance of
these prefetchers is highly dependent on architecture and it has been observed
that bandwidth is highly correlated with the number of elements accessed con-
tiguously [15]. Short “stanzas” of memory access see substantially degraded per-
formance. Stanza Triad was created to quantify this effect [9]. Unfortunately,

Roofline Model Toolkit 3

it is not threaded and as such cannot identify when one has transitioned from
a concurrency-limited regime to a throughput-limited regime when running on
multicore processors.

When DRAM bandwidth is not the bottleneck to on-node application perfor-
mance, then cache bandwidth often is. CacheBench (part of LLCbench) can be
used to understand the capacities and bandwidths of the cache hierarchy. [16].
Unfortunately, CacheBench is not threaded with OpenMP or parallelized with
MPI. As such, it cannot measure contention at any level of the cache hierarchy
(including DRAM like STREAM). Rather than taking this purely empirical ap-
proach, one can, with sufficient documentation, create an analytical model of
the cache hierarchy using the Execution Cache Memory model [13].

Perhaps the most similar work to ours is encapsulated in the benchmarks
used to drive the Energy Roofline Model [3]. In that work a series of experi-
ments were constructed that varies arithmetic intensity in order to understand
the architectural response in terms of both performance and power. When com-
bined with a cache benchmark, one can infer the energy requirements for various
computational and data movement operations. Whereas their goal was focused
heavily on power and energy, we are focused on performance.

3 Experimental Setup

The diversity of existing and emerging hardware and programming models makes
construction of generalized benchmarks particularly difficult. To demonstrate the
utility of our automation strategy, we evaluate performance on four fundamen-
tally different architectures — a conventional superscalar out-of-order Intel Xeon
multicore processor (Edison), a low-power dual-issue in-order IBM Blue Gene/Q
multicore processor (Mira), a high-performance in-order Intel Xeon Phi many-
core processor (Babbage), and a high-performance NVIDIA Kepler K20x GPU
accelerated system (Titan). These systems represent a basis of system architec-
tures within the HPC community today. The next three sections provide some
background on their processor architectures, programming model and compila-
tion options, and execution on our selected platforms.

3.1 Architectural Platforms

Table 1 summarizes the key architectural characteristics of these platforms.
Please note that the peak GFlop/s and bandwidths shown are theoretical.

Edison: is a MPP at NERSC [11]. Each node includes two 12-core Xeon E5
2695-V2 processors nominally clocked at 2.4GHz (TurboBoost can increase this
substantially). Each core is a superscalar, out-of-order, 2-way HyperThreaded
core capable of performing two 4-way AVX SIMD instructions (add and multiply)
per cycle in addition to loads and stores. Each core has a private 32KB L1 data
cache and a private 256KB L2 cache. The 12 cores on a chip share a 30MB L3
cache and a memory controller connected to four DDR3-1600 DIMMs. Extensive
stream prefetchers are designed to saturate bandwidth at each level of the cache

4 A Practical Tool for Architectural and Program Analysis

hierarchy. Theoretically, the superscalar and out-of-order nature of this processor
should reduce the need for optimized software and compiler optimization.

Mira: is an IBM Blue Gene/Q system installed at the Argonne National
Lab [5]. Each node includes one 16-core BGQ SOC. Each of the 16 A2 cores is a
4-way SMT dual-issue in-order core capable of performing one ALU/Load/Store
instruction and one four-way FMA per cycle. However, in order to attain this
throughput rate, one must run at least two threads per core. Each core has a
private 16KB data cache and the 16 cores share a 32MB L2 cache connected
by a crossbar. Ideally, the SMT nature of this architecture should hide much
of the effects of large instruction and cache latencies. However, the dual-issue
nature of the processor can impede performance when integer instructions are a
significant fraction of the dynamic instruction mix.

Babbage: is a Knights Corner (KNC) Manycore Integrated Core (MIC)
testbed at NERSC [1, 6]. The KNC processor includes 60 dual-issue in-order 4-
way HyperThreaded cores. Each core includes a 32KB L1 data cache, a 512KB
L2 cache, and a 8-way vector unit. Although the L2 cache’s are coherent, the ring
NoC topology coupled with the coherency mechanism may impede performance.
Unlike the aforementioned multicore processors, this manycore processor uses
very high-speed GDDR memory which provides a theoretical pin bandwidth
of over 350GB/s. In order to proxy the future Knights Landing (KNL) MIC
processor that will form the heart of the NERSC8 Supercomputer Cori [4], we
conduct all experiments in “native” mode. As such, the host processor, the host
memory, and the PCIe connection are not exercised.

Titan: is a Cray accelerated MPP system at the Oak Ridge National Lab.
Each node includes a 16-core AMD Interlagos CPU processor and one NVIDIA
K20x GPU [7]. Each GPU includes 14 streaming multiprocessors (SMX) each of
which can schedule 256 32-thread warps and issue them four at a time to their
192 CUDA cores. Each SMX a 256KB register file, a 64KB SRAM that can
be partitioned into L1 cache, and shared memory (scratchpad) segments. Each
chip includes a 1.5MB L2 cache shared among the SMX and is connected to
high-speed GDDR5 memory with a pin bandwidth of 232GB/s. Unfortunately,
software on the production system Titan tends to lag behind NVIDIA releases.
As such, we used a similar K20xm within the Dirac testbed at NERSC [10]
in order to evaluate the CUDA unified virtual address and Unified (managed)
Memory. For our purposes, the K20x and K20xm GPUs are identical.

3.2 Programming Model and Compilation

In this section, we provide the compiler flags that were on different platforms
(Table 2). Nominally, all our codes are (MPI+)OpenMP or (MPI+)CUDA. Al-
though for the most part compilation is straightforward, there are some varia-
tions across the three compilers.

First, Edison and Babbage both use the Intel C compiler. However, as MIC is
run in native mode, it requires the “-mmic” option while Edison is compiled with
“-xAVX”. The Intel and IBM compilers enable OpenMP differently. On the Intel
platforms, one uses “-openmp” while on XL/C, one uses “-qsmp=omp:noauto”.

Roofline Model Toolkit 5

Platform Edison Mira Babbage Titan

MPU Intel Xeon IBM Xeon Phi Nvidia

E5-2695v2 BGQ KNC K20x

Clock rate (GHz) 2.4 1.6 1.053 0.732

Processors per Node 2 1 1 11

Cores per Processor 12 16 60 26882

Total Threads 48 64 240 28672

Peak GFlops 460.83 204.8 1011 1310

L1 Bandwidth (GB/s) 1843 819.2 4043 1310

DRAM Pin Bandwidth (GB/s) 102.6 42.66 352 232.46

Table 1. Architectural characteristics of four evaluation platforms. 1One GPU per
node. 2CUDA cores. 3 without TurboBoost.

To instruct the compilers there is no aliasing, we use the “-fno-fnalias” and “-
qalias=ansi:allptrs” flags on the Intel and IBM compilers respectively. Finally,
it should be noted that depending on the benchmark and platform, we either
use CUDA 5 (Titan) or CUDA 6 (Dirac). The NVIDIA compiler requires one
specify the “-arch=sm 35 ” flag to build the benchmark for the K20x series.

Table 2. Compilation flags for each platform

Platform Compiler Flags

Edison Intel C -O3 -xAVX -openmp -fno-alias -fno-fnalias

Mira IBM XL/C -O5 -qsimd=auto -qalias=ansi:allptrs -qsmp=omp:noauto

Babbage Intel C -O3 -mmic -fno-alias -fno-fnalias -liomp5

Titan Nvidia CC -O3 -arch=sm 35 -lcudart

3.3 Benchmark Execution

Unlike simple desktop systems, the MPP supercomputers at NERSC, ALCF, and
OLCF might launch jobs from one node and run them on another set of nodes.
As such, the benchmark application launch routines vary somewhat from one
platform to the next. Table 3 shows the relevant options used in our experiments.

On Edison, the Cray system at NERSC, one uses the aprun command to
run programs on the compute nodes. To that end, we run the benchmark using
two MPI tasks and bind each to one NUMA node with strict memory contain-
ment via the “-S 1 -ss -cc numa node” options. On Mira, we evaluate both a
fully threaded and a hybrid mode of 4 processes of 16 threads. We recommend
“BG THREADLAYOUT=1” to balance these threads within cores if the total
MPI process * OpenMP threads is smaller than 64. On Babbage, which uses
the Intel MPI implementation, one uses the “-ppn” option to control the num-
ber of MPI tasks per card and the “-n” option to control the total number

6 A Practical Tool for Architectural and Program Analysis

Table 3. Execution mode for each platform

Platform Application Execution command

Edison aprun -n 2 -d 12 -N 2 -S 1 -ss -cc numa node [benchmark]

Mira
qsub -n 1 –proccount 1 –mode c1 –env BG SMP FAST WAKEUP=YES:

BG THREADLAYOUT=1: OMP PROC BIND=TRUE:
OMP NUM THREADS=64: OMP WAIT POLICY=active [benchmark]

Babbage mpirun.mic -n 1 -ppn 1 [benchmark]

Titan aprun -n 1 [benchmark]

of MPI tasks. Unlike Edison where aprun controls affinity, one must use the
“KMP AFFINITY” environment variable on Babbage. We set it to “scatter”
to distribute threads across the chip. On Titan, we once again use the aprun
options. However, as we don’t use the CPU cores, there was no need to control
CPU thread affinity or NUMA bindings.

4 Memory and Cache Bandwidth

Today, bandwidth and data movement are perhaps the paramount aspect of
performance on scientific applications. Unfortunately, as discussed in the related
work, most existing benchmarks fail to proxy the contention, locality, or exe-
cution environment associated with real applications. To rectify this, we have
created a Roofline bandwidth benchmark that uses a hybrid MPI+OpenMP
model. Thus, programmers wishing to proxy a flat MPI code and run the Roofline
benchmark in a flat MPI model. Those wishing to understand the performance
on NUMA architectures can run in the hybrid mode.

4.1 Bandwidth Code

Like CacheBench, our Roofline bandwidth benchmark is designed to quantify
the available bandwidth at each level of the memory hierarchy using a simple
unit-stride streaming memory access pattern. However, unlike CacheBench, it
includes the effects of contention arising form thread parallelism and finite NoC
bandwidth. In that regime, it is similar to STREAM code [18] which uses the
OpenMP work-share constructs to split loop iterations across multiple threads
(Fig. 1). Rather than using the work-share construct, our Roofline bandwidth
code creates a single parallel region and statically assigns threads to ranges of
array indices. All initialization, synchronization, and computation takes place
within this parallel region. The computation is expressed as the sum of a finite
geometric series as it was hoped that no compiler could automatically eliminate
this nested loop. Essentially each term in the geometric series is a trial in the
STREAM benchmark.

The benchmark may thus be used to quantify the capacity of each level of
the memory hierarchy as well as the bandwidths between levels. Moreover, by

Roofline Model Toolkit 7

void STREAM(TYPE scalar){
ssize_t j;
#pragma omp parallel for
for (j = 0; j <SIZE; j++)

B[j] = scalar * A[j];
}

int main(){
scalar = 3.0;
for (k = 0; k < TIMES; k++)
{

// start timer here
STREAM(scalar);
// stop timer here

}
}

void KERNEL(uint64_t size, uint64_t trials,
double * __restrict__ A){

double alpha = 0.5;
uint64_t i, j;
for (j = 0; j < trials; ++j) {

for (i = 0; i < size; ++i) {
A[i] = A[i] + alpha;

}
alpha = alpha * 0.5;

}}

int main(){
...
#pragma omp parallel private(id)
{
uint64_t n, t;
for (n = 16; n < SIZE; n *= 1.1) {

for (t = 1; t < TRIALS; t *= 2) {
// start timer here
KERNEL(n, t, &A[nid]);
// stop timer here
#pragma omp barrier
#pragma omp master
{

MPI_Barrier(MPI_COMM_WORLD);
}

}}}}

Fig. 1. (left) STREAM facsimile. (right) Roofline Bandwidth Benchmark.

adjusting the parameters, one can estimate the overhead for an MPI or OpenMP
barrier. As the benchmark is MPI+OpenMP, one can explore these bandwidths
and overheads across all scales.

4.2 Bandwidth Result

Figure 2 presents the results of our Roofline bandwidth benchmark running on
our four platforms. On Edison, we run two processes per node, while all other
machines run with a single process. Note, the x-axis represents the total working
set summed across all threads. The blue line marks the theoretical bandwidth
and capacities for each level of the memory hierarchy. On the CPU architectures,
the red line presents resultant Roofline bandwidth.

We observe that on Edison, the hardware comes very close to the theoretical
performance and transitions at the expected cache capacities. The smooth tran-
sitions in bandwidth at the cache capacities suggest the cache replacement policy
may not be a true LRU or FIFO but a pseudo-variant. The notable exception is
that Edison fails to come close to the DRAM pin bandwidth. This is not neces-
sarily surprising as few machines have such high bandwidth and few machines
ever attain the pin bandwidth. Moreover, the simple read-modify-write memory
access pattern may be suboptimal for this architecture. Future work will explore
alternate kernels that change the balance between reads and writes.

8 A Practical Tool for Architectural and Program Analysis

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Edison

empirial bandwidth
theoretical bandwidth

(a) Edison

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Mira

empirial bandwidth
theoretical bandwidth

(b) Mira

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Babbage

empirial bandwidth
theoretical bandwidth

(c) Babbage (MIC only)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Titan

theoretical bandwidth
global_tInside(64, 224)
global_tInside(32, 224)

global_tOutside(64, 224)
global_tOutside(32, 224)

sharemem(64, 224)
sharemem(32, 224)

(d) Titan (GPU only)

Fig. 2. Roofline Bandwidth benchmark results on our four platforms. Please note the
log-log scale. On the GPU, the syntax is Kernel(# threads per thread block, # of
thread blocks per kernel).

On Mira, performance was consistently below the theoretical bandwidth lim-
its and the transitions seemed to indicate reduced effective cache capacities. The
low L1 bandwidth was particularly surprising and may indicate the presence of a
write-through or store-through L1 architecture. Further investigation is required.

On the highly-multithreaded MIC (Babbage), we found it was necessary to
operate on working sets exceeding 1MB (well over 4KB per thread) in order
to obtain good performance. As the architecture can load 64 bytes per cycle,
it is not unreasonable to think 64 loads were necessary to amortize any loop
overheads within the benchmark. For smaller working sets, performance was
degraded indicating an underutilization of resources. Generally speaking, the

Roofline Model Toolkit 9

benchmark correctly identified the L1 and L2 cache capacities, but the attained
bandwidths were far less than the theoretical number. Low L2 bandwidth can
be attributed to the lack of an L2 stream prefetcher like on Edison and Mira. If
the compiler fails to insert software prefetches perfectly, memory latency will be
exposed. Conversely, low DRAM bandwidth is a known issue on this machine
and requires hardware solutions to rectify.

On Titan, using the GPU, we found it illustrative to run three slightly differ-
ent kernels designed to quantify the effects of explicit and implicit reuse within
the GPU’s memory hierarchy. Both Kernel A (“global tInside” legend on the
Fig. 2 (d)) and Kernel B (“global tOnside”) use global memory, but with the
trials loop inside and outside, respectively. Kernel C (“sharemem’) copies global
memory data to shared memory, does trials loop inside the kernel, and copies
back to global memory.

“Kernel B” is perhaps the most similar to the CPU implementations. The
entire working set is parallelized across thread blocks and the summation (reuse)
occurs at the CUDA kernel level. That is, there is one kernel call per iteration of
the geometric sum. We explore performance as a function of the thread block size
(32 or 64) with a constant 224 thread blocks. As on Babbage, we see substantial
underutilization coupled with large CUDA kernel overheads at small working set
sizes but performance eventually saturates at the DRAM limit, although this is
well below the theoretical pin bandwidth. “Kernel A” restructures the summa-
tion loop to increase locality within a thread block and as such, exercises the L1
cache for the per thread-block working set (note, there are 7168 or 14336 threads
in all). We see much better performance at the small scale (fewer CUDA kernel
calls) and performance can hit the L1 and L2 limits before settling at the DRAM
limit. Finally, “Kernel C” restructures the loop once again and exploits shared
memory in a blocked manner. As such, it can reach the theoretical performance
limit of about 1.3TB/s for shared memory.

Overall, the trends in bandwidth performance on manycore and accelerators
are a little disturbing. That is, the only way to get high performance is with
massive parallelism on large working sets. For real applications, this observation
will make it difficult to use accelerators or manycore processors to solve existing
problems faster. Rather, one will be able to run larger problems in comparable
time. Nevertheless, this benchmark can be used to help guide programmers as
to when it will be viable to migrate to a manycore or accelerated architecture.

5 Floating-Point Compute Capability

Although many applications are limited by memory bandwidth, there are some
that are still limited by on-chip computation and ultimately the in-core perfor-
mance. When performance is on the cusp, proper exploitation of instruction-,
data-, and thread-level parallelism can ensure the code is not artificially flop-
limited. Unfortunately, there are relatively few benchmarks that accurately mea-
sure the importance of these facets of parallelism on modern manycore and ac-

10 A Practical Tool for Architectural and Program Analysis

celerated architectures. To address this deficiency, we constructed a Roofline
floating-point benchmark.

5.1 Reference Roofline Floating-point Benchmark

We modified the Roofline bandwidth benchmark to implement a polynomial for
each element. By varying the degree of the polynomial (a preprocessor macro),
one can vary the number of flops per element. Doing so allows one to change the
balance between loads/stores and floating-point operations from L1-limited to
flop-limited. Fig. 3 presents an example of this benchmark.

As one can see, the degree of parallelism per thread in this routine is O(nsize).
An in-order processor would deliver performance limited by the floating-point
latency rather than peak performance. A compiler could unroll this loop (at least
by the floating-point latency) and express instruction-level parallelism and/or
SIMDize the unrolled code to exploit data-level parallelism. Alternately, an out-
of-order processor, with a sufficiently deep reorder buffer, could find the inherent
instruction-level parallelism and attain high performance. Although, an out-of-
order parallelism could reorder the instruction stream, it can never automatically
SIMDize the instruction stream. As such, without compiler support for SIMD,
it can never attain peak performance.

void KERNEL(uint64_t size, uint64_t trials, double * __restrict__ A){
double alpha = 0.5;
uint64_t i, j;
for (j = 0; j < trials; ++j) {

for (i = 0; i < nsize; ++i) {
double beta = 0.8;
#if FLOPPERITER == 2
beta = beta * A[i] + alpha;
#elif FLOPPERITER == 4
...
#endif
A[i] = beta;

}
alpha = alpha * 0.5;

}

Fig. 3. Roofline Floating-Point Benchmark

5.2 Performance as a Function of Implicit and Explicit Parallelism

On today’s processors, thread- and data-level parallelism must be explicit in the
code generated by a compiler. As auto-parallelizing and auto-vectorizing compil-
ers are rarely infallible, these forms of parallelism must often be explicit in the
source code as well. In order to quantify the disparity between the performance

Roofline Model Toolkit 11

that can be obtained by the architecture on compiled code and the true perfor-
mance capability of the architecture, we implemented three explicitly unrolled
and SIMDized (via intrinsics) implementations of the Roofline floating-point
benchmark — AVX, QPX, and AVX-512 versions. Fig. 4 presents the perfor-
mance of these implementations on Edison, Mira, and Babbage as a function
of thread-level parallelism and unrolling (explicit instruction-level parallelism).
Note, each implementation used a different number of flops per element (FPE).

We observe that Edison attains a little less than half the advertised peak
with compiled C code. However, when using an optimized implementation, per-
formance improves significantly and can actually exceed the nominal peak per-
formance of 460 GFlop/s. The faster-than-light effect is due to the fact that
TurboBoost is enabled on this machine. With a maximum frequency of 2.8GHz
with 12 cores, the true peak performance is about 537 GFlop/s — quite close to
the observed performance. To verify this, we use the aprun --p-state option
to peg the frequency at the advertised 2.4GHz and performance is as expected.
Although the machine is sensitive to instruction-level parallelism (unrolling), it
generally does not require HyperThreading to attain good performance.

Running a similar set of experiments on Mira (BGQ), we see a very different
outcome. First, compiled code delivers very good performance. This indicates
that the XL/C compiler was able to effectively SIMDize and unroll the code
sufficiently to hide the floating-point latency. Using explicitly unrolled code we
observe that significant unrolling (2-4 SIMD instructions per thread) is required
to reach peak performance. Unlike Edison, Mira clearly requires two threads to
attain peak performance.

Finally, Babbage presents a mix of characteristics similar to both Edison
and Mira. The compiler clearly fails to make full use of the architecture on even
this simple kernel. With sufficient unrolling (4 SIMD instructions per thread),
performance begins to saturate after two threads. Only with extremely high
intensity (256 flops per element) does performance approach peak.

5.3 Performance as a function of L1 Arithmetic Intensity

Even when one can maintain a working set in the L1, performance will be de-
pendent on the dynamic instruction mix and the issue capability of the core.
In this section, we leverage the Roofline Floating-Point benchmark to quantify
performance as a function of L1 Arithmetic Intensity expressed as Flops per El-
ement (FPE) — essentially the degree of the polynomial. For each architecture,
we run both the reference C code quantifying the ability of the architecture as
well as the best performing SIMDized and unrolled implementation. Figure 5
presents the resultant performance on each architecture. For reference, we in-
clude (in blue) a microarchitecture performance model that takes into account
the issue rate of loads/stores compared to floating-point instructions given the
mix demanded by the kernel.

Figure 5 demonstrates that Edison can quickly reach its peak performance
and that performance tracks well with the theoretical model. Generally, speaking,
at low FPE, performance is diminished due to the fact that the core can perform

12 A Practical Tool for Architectural and Program Analysis

12 24 48 48 (2.4GHz)
0

100

200

300

400

500

600

700

800

900

1000

1100

Turbo Boost Disabled

Turbo Boost Enabled

Explicit SIMD & TLP Study, Edison, 8 Flops per Element

Number of Threads

G
F

lo
ps

c code
unroll by 4 & SIMD
unroll by 8 & SIMD
unroll by 12 & SIMD
unroll by 16 & SIMD

(a) Edison

16 32 48 64
0

100

200

300

400

500

600

700

800

900

1000

1100
Explicit SIMD & TLP Study, Mira, 16 Flops per Element

Number of Threads

G
F

lo
ps

c code
unroll by 4 & SIMD
unroll by 8 & SIMD
unroll by 16 & SIMD

(b) Mira

60 120 180 240
0

100

200

300

400

500

600

700

800

900

1000

1100
Explicit SIMD & TLP Study, Babbage, 16 Flops per Element (FPE)

Number of Threads

G
F

lo
ps

c code
unroll by 8 & SIMD
unroll by 16 & SIMD
unroll by 32 & SIMD
256 FPE, unroll by 16 & SIMD

(c) Babbage

Fig. 4. Performance disparity between compiled code and optimized code in which
thread-, instruction-, and data-level parallelism have been made explicit.

8 flops per cycle, but can only sustain loading and storing 2 elements per cycle.
Interestingly, the performance of the reference C code falls at high FPE. This
is presumably a limit of the reorder buffer and the desire to continually find 5
independent floating-point instructions.

Mira’s performance on both compiled and optimized code is shifted to the
right. Generally, this suggests that additional instructions are consuming the
same issue slots as loads or stores. On the dual issue A2 architecture, this could
very well be integer or branch instructions. This effect was not present on Edison
as it is a superscalar processor and can issue integer or branch instructions from
ports other than those used for floating-point or load/store. With sufficient FPE,
performance is pegged to peak.

Babbage shows a third behavior — asymptotically approaching peak per-
formance. This behavior suggests that additional instructions (e.g. integer or

Roofline Model Toolkit 13

branch) are consuming the same issue slot as floating-point instructions. As
such, performance behaves like FPE/(FPE+k) where k is the number of extra
instructions impeding performance.

Finally, we constructed a similar CUDA C benchmark to run on the GPU.
The theoretical bound is based on the assumption that each load/store unit
can sustain loading 4 bytes per cycle (128 per SMX) from memory. We observe
that the GPU’s performance seems to embody characteristics of both BGQ and
MIC. That is, one lacks the issue bandwidth to fully drive the core and the SMX
cannot sustain loading/storing 128 bytes per cycle from memory.

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Edison

theoretical gflops
c-code gflops

optimized gflops

(a) Edison

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Mira

theoretical gflops
c-code gflops

optimized gflops

(b) Mira

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Babbage

theoretical gflops
c-code gflops

optimized gflops

(c) Babbage (MIC only)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Titan

theoretical gflops
c-code gflops

(d) Titan (GPU only)

Fig. 5. Basic GFlops code and optimized SIMDized unrolling GFlops code compared
to theoretical GFlops on four platforms.

14 A Practical Tool for Architectural and Program Analysis

6 Beyond the Roofline — CUDA’s Unified Memory

To date, accelerated architectures have been typically used as an accelerator with
dedicated memory attached to a conventional system with a PCIe or similar bus.
Not only does this dedicated memory have its own unique address space, but
programmers were forced to explicitly copy data to and from device via a library
interface. Doing so is not only unproductive, but also exposes the performance
disparity between PCIe bandwidth and device bandwidth.

Recently, CUDA introduced two memory concepts — the Unified Virtual
Address (UVA) space, and Unified Memory (i.e. managed memory) [8]. As the
name suggests, UVA unifies the CPU and GPU address spaces and ensures (at
the program level) that programs may transparently load and store memory
without worrying about the locality of data (for correctness). As data remains
pinned to host or device, there are strong NUMA effects. Unified (managed)
memory extends this process by migrating data between the host and the device.
As such, device memory can be viewed as a cache on the CPU memory. Ideally,
this would address many of the productivity and performance challenges. In this
section, we evaluate the performance of these approaches as a function of spatial
and temporal locality.

6.1 CUDA Managed Memory Benchmark

Our initial approach to this benchmark was to create a benchmark that thrashes
data back and forth between host and device. To that end, we reuse the Roofline
bandwidth benchmark by having the GPU perform k − 1 iterations of the sum-
mation and the CPU perform 1. As the net reuse k increases, we expect the cost
of moving the data between host and device to be amortized.

Please note, this benchmark is not an unreasonable scenario in practice as
many applications may package some data for the GPU, copy it to the device,
operate on it a few times, then return it to the host. If written using Unified
Memory, the data would thrash back and forth between host and device.

In this paper, we evaluate performance using four different approaches to
controlling the locality of data on the device. First, we evaluate the conventional
explicit copy (cudaMemCpy) approach using either a paged array or a page-locked
array allocated on the host. Next, we evaluate the performance of zero copy
memory. In this scenario, data is allocated and pinned on the host and it is
the responsibility of the CUDA run time to map load and store requests to
PCIe transfers. Finally, we evaluate the performance of the Unified (managed)
Memory construct in which the CUDA run time may migrate data.

Fig. 6 presents these implementations. As one can see, increased locality is af-
fected via multiple CUDA kernel invocations. The macros ” CUDA ZEROCOPY”
and ” CUDA UM” select the use of page-locked host with zero copy and uni-
fied memory management respectively. Page-locked host memory uses a normal
malloc() function to allocate memory on host, and then uses cudaHostRegister()
to register a device pointer on host memory address space. For unified memory,
one uses cudaMallocManaged to allocate both host and device memory.

Roofline Model Toolkit 15

int main()
{

// start timer here...
for (uint64_t j = 0; j < trials; ++j) {

#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)
cudaDeviceSynchronize();

#else
cudaMemcpy(d_buf, h_buf, SIZE, cudaMemcpyDefault);

#endif
for (uint64_t k = 0; k < reuse; ++k) {

GPUKERNEL <<<blocks, threads>>> (n, d_buf, alpha);
alpha = alpha * (1e-8);

}
#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)

cudaDeviceSynchronize();
#else

cudaMemcpy(h_buf, d_buf, SIZE, cudaMemcpyDefault);
#endif
CPUKERNEL(n, h_buf, alpha);

}
// stop timer here...
double bytes = 2 * sizeof(double) * (double)n *(double)trials * (double)(reuse + 1);

}

Fig. 6. CUDA Unified Memory Benchmark quantifies the ability of the run time to
mange locality on the device

6.2 Results

As Titan does not support CUDA 6 yet, all of our experiments were run on a
similar K20xm in the Dirac cluster1.

Fig. 7 presents the resultant “effective bandwidth” for the four technologies
as a function of working set size and temporal reuse. For small working set sizes,
CUDA kernel launch time dominates and effective bandwidth is abysmal. This
simply reinforces the conventional wisdom not to use the GPU for small oper-
ations. Comparing Fig. 7(a) and (b), we see that it is possible to approach the
device bandwidth limit, but only for large working sets that are reused 50-100
times. Thus, offloading iterative solvers to the GPU is a viable option if one ex-
pects it to take hundreds of iterations to converge. Conversely, for large working
sets with minimal reuse, we see that page-locked memory provides substantially
better PCIe bandwidth.

As Zero Copy memory provides no caching benefit, we see no performance
benefit in Fig. 7(c) from increased locality. Conversely, Fig. 7(d) presents the
performance benefit from using Unified Memory to automate the management
of data locality on the device. Broadly speaking, performance is qualitatively
similar to the performance with explicitly managed locality. Unfortunately, the
raw performance is substantially lower. For applications which could guarantee
1000-way reuse on the device, Unified memory would provide a productive and

1 GPU driver version: 331.89; CUDA toolkit version: 6.0beta.

16 A Practical Tool for Architectural and Program Analysis

high performance solution. One can only hope that advances in hardware and
runtime can bridge the performance gap at lower temporal locality.

Future work will extend this technology to track the development of any
software cache coherency protocol NVIDIA implements. That is, there is no
reason why both the CPU and GPU must both read-modify-write the array.
Either could perform a read-only operation.

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Pageable Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.10 1.13 3.50 5.48 6.16 6.18

0.23 2.84 9.33 12.36 12.54 12.50

0.30 4.60 41.30 86.35 81.49 85.73

0.30 4.99 54.58 124.2 129.6 127.9

0.10 1.13 3.50 5.48 6.16 6.18

0.23 2.84 9.33 12.36 12.54 12.50

0.30 4.60 41.30 86.35 81.49 85.73

0.30 4.99 54.58 124.2 129.6 127.9

(a) Pageable host with explicit copy be-
tween CPU and GPU

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

(b) Page-locked host with explicit copy
between CPU and GPU

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

(c) Page-locked host with zero copy

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Unified Memory Management (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.08 0.82 1.70 1.71 1.63 1.60

0.20 2.44 5.95 6.41 6.24 6.05

0.29 4.35 26.00 36.59 36.13 32.19

0.30 4.80 38.33 64.28 63.24 52.72

(d) Unified (managed) memory

Fig. 7. Effective bandwidth as a function of GPU temporal locality (reuse) and working
set size for four different GPU device memory management mechanisms.

7 Empirical Roofline Models and Their Use

Now that we have benchmarked the bandwidth and compute characteristics on
each of our four platforms, we may construct empirical Roofline Models for each.

Roofline Model Toolkit 17

Figure 8 shows the resultant models using both DRAM and L1 bandwidths
as well as the theoretical or “textbook” Roofline for each platform. An ideal
architecture is one that can fully exploit the technology on which it is built. We
see that in general, Edison’s empirical performance is very close to its theoretical
limits. Conversely, on Mira and Babbage, we see substantial differences between
theory and reality. The extreme multithreading paradigm allows the GPU to
deliver a high fraction of its theoretical bandwidth when running on the device.

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Edison

theoretical L1
theoretical RAM

empirical L1
empirical RAM

(a) Edison

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

theoretical L1
theoretical RAM

empirical L1
empirical RAM

(b) Mira

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Babbage

theoretical L1
theoretical RAM

empirical L1
empirical RAM

(c) Babbage

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Titan

theoretical RAM
empirical RAM

(d) Titan (GPU-only)

Fig. 8. Roofline model for four platforms.

18 A Practical Tool for Architectural and Program Analysis

7.1 Program Analysis

We use the resultant empirical Rooflines to analyze observed performance on
three HPC benchmarks — the finite-volume High-Performance Geometric Multi-
grid (HPGMG-FV) benchmark [14], the Gyrokinetic Toroidal Code (GTC) [12],
and miniDFT [17]. All benchmarks were run on Mira where the performance
counters have been verified.

HPGMG-FV is a highly optimized multigrid benchmark that solves a variable
coefficient Poisson’s equation on a structured grid. Fig. 9(a) shows that it has
low compute intensity, but it delivers performance, whether flat MPI or OpenMP
is DRAM, very close to its bandwidth limit.

GTC is a turbulent transport fusion simulation that uses the particle-in-
cell (PIC) method. Its two dominant kernels are particle-to-grid interpolation
(chargei) and grid-to-particle interpolation (pushi). Theoretically, these kernels
are moderately compute intensive (pushi slightly more) but involve random
access to a structured grid. Clearly, the performance of both routines is well
below the roofline suggesting optimization could significantly improve it.

MiniDFT code uses plane-wave density functional theory (DFT) to compute
the Kohn-Sham equations, part of the general-purpose Quantum Espresso (QE)
code. This is a compute-intensive code, dominated by dense linear algebra and 3D
FFT’s (Fig. 9 (b)). Although miniDFT uses matrix-matrix multiplications, the
application performance is far less than peak DGEMM or ZGEMM performance.
This is likely an artifact of the inherent performance differences between square
multiplications and the block vector multiplications used in miniDFT. While
flat MPI performance generally tracked the Roofline, the performance of the
threaded code was orders of magnitude less than ideal perhaps due to limited
parallelism in any one dimension. Further investigation is warranted.

8 Summary

In this paper, we have described a prototype architecture characterization engine
for the Roofline Toolkit that quantifies the bandwidth and compute character-
istics of multicore, manycore, and accelerated systems. We use the Toolkit to
benchmark four leading HPC systems: Edison, Mira, Babbage, and Titan. The
measurements demonstrate the ability of each architecture to attain peak band-
width or performance and quantify its sensitivity to changes in parallelism or
arithmetic intensity.

In order to quantify the benefits of the emerging software managed cache
technologies in CUDA, we developed a benchmark that measures the perfor-
mance of CUDA’s Unified memory as a function of spatial and temporal local-
ity. Although performance never reaches parity with explicitly managed locality,
performance was far superior to the productive Zero Copy alternative.

Finally, we evaluated three complex HPC compputing benchmarks: HPGMG-
FV, GTC, and miniDFT running on Mira (BGQ). Using the HPM performance
counters, we plotted benchmark performance on an empirical Roofline model in
order to quantitatively note which applications deliver and which underperform.

Roofline Model Toolkit 19

Future work will continue to generalize the Roofline toolkit as well as contin-
ued instrumentation, benchmarking, and analysis of HPC applications in order
to explore performance and parallelism issues on emerging HPC platforms.

1e+00

1e+01

1e+02

1e+03

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira
GTC and HPGMG-FV

theoretical L1
theoretical RAM

empirical L1
empirical RAM

GTC:1x64
GTC-Pushi:1x64

GTC-Chargei:1x64
GTC:64x1

GTC-Pushi:64x1
GTC-chargei:64x1
HPGMG-FV:1x64

HPGMG-FV:8x8
HPGMG-FV:64x1

(a) GTC and HPGMG-FV

1e+00

1e+01

1e+02

1e+03

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira
MiniDFT

theoretical L1
theoretical RAM

empirical L1
empirical RAM
MiniDFT:1x64

DFT-Zgemm:1x64
DFT-FFT_2XY:1x64

MiniDFT:64x1
DFT-Zgemm:64x1

DFT-FFT_2XY:64x1
ZGEMM:1x64
DGEMM:1x64

(b) MiniDFT

Fig. 9. GTC, HPGMG-FV, and MiniDFT results on Mira collected from BGQ per-
formance counters. Legeneds denote “benchmark: number of MPI tasks x number of
OpenMP threads.”

Acknowledgments

Authors from Lawrence Berkeley National Laboratory were supported by the
U.S. Department of Energy’s Advanced Scientific Computing Research Program
under contract DE-AC02-05CH11231. This research used resources of the Na-
tional Energy Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231. This research used resources of the Argonne Leadership Computing
Facility, which is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357. This research used resources of
the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725

References

1. Babbage Testbed. https://www.nersc.gov/users/computational-systems/

testbeds/babbage/.
2. David H. Bailey, Robert F. Lucas, and Samuel W. Williams. Performance Tuning

of Scientific Applications. CRC Press, New York, 2011.
3. Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. A roofline

model of energy. IEEE IPDPS, May 2013.

20 A Practical Tool for Architectural and Program Analysis

4. Cori Cray XC30. https://www.nersc.gov/users/computational-systems/

nersc-8-system-cori//.
5. IBM Corporation. Ibm system blue gene solution: Blue gene/q application devel-

opment. IBM, June 2013.
6. Intel Corporation. Intel xeon phi corprocessor system softeare developers guide.

Intel, June 2012.
7. Nvidia Corporation. Kepler gk 110: The fatest, most efficient hpc architecture ever

built. Nvidia v1.0, 2012.
8. Nvidia Corporation. Cuda c programming guide. Nvidia PG-02819 v6.0, Feb.

2014.
9. Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and

Katherine Yelick. Optimization and performance modeling of stencil computations
on modern microprocessors. SIAM review, 2009.

10. Dirac Testbed. http://www.nersc.gov/users/computational-systems/

testbeds/dirac/.
11. Edison Cray XC30. http://www.nersc.gov/systems/edison-cray-xc30/.
12. Gyrokinetic Toroidal Code Website. http://phoenix.ps.uci.edu/GTC/.
13. Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. Exploring

performance and power properties of modern multicore chips via simple machine
models. CoRR abs/1208.2908, 2012.

14. HPGMG website. http://hpgmg.org.
15. Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick.

Impact of modern memory subsystems on cache optimizations for stencil compu-
tations. ACM MSP, 2005.

16. LLCBench - Low Level Architectural Characterization Benchmark Suite. http:

//icl.cs.utk.edu/projects/llcbench/index.htm.
17. QEforge website: MiniDFT. http://qe-forge.org/gf/project/minidft/.
18. STREAM benchmark. http://www.cs.virginia.edu/stream/ref.html.
19. S. Williams. Auto-tuning Performance on Multicore Computers. PhD thesis, EECS

Department, University of California, Berkeley, December 2008.
20. S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful visual per-

formance model for floating-point programs and multicore architectures. Commu-
nications of the ACM, April 2009.

