
Modeling Stencil Computations

on Modern HPC Architectures

Raúl de la Cruz1 and Mauricio Araya-Polo2

1 CASE Department, Barcelona Supercomputing Center, Barcelona, Spain
delacruz@bsc.es

2 Shell International Exploration & Production Inc., Houston, Texas, USA
mauricio.araya@shell.com

Abstract. Stencil computations are widely used for solving Partial Dif-
ferential Equations (PDEs) explicitly by Finite Difference schemes. The
stencil solver alone -depending on the governing equation- can represent
up to 90% of the overall elapsed time, of which moving data back and
forth from memory to CPU is a major concern. Therefore, the devel-
opment and analysis of source code modifications that can effectively
use the memory hierarchy of modern architectures is crucial. Perfor-
mance models help expose bottlenecks and predict suitable tuning pa-
rameters in order to boost stencil performance on any given platform.
To achieve that, the following two considerations need to be accurately
modeled: first, modern architectures, such as Intel Xeon Phi, sport multi-
or many-core processors with shared multi-level caches featuring one or
several prefetching engines. Second, algorithmic optimizations, such as
spatial blocking or Semi-stencil, have complex behaviors that follow the
intricacy of the above described modern architectures. In this work, a
previously published performance model is extended to effectively cap-
ture these architectural and algorithmic characteristics. The extended
model results show an accuracy error ranging from 5-15%.

Keywords: stencil computation, FD, modeling, HPC, prefetching, spa-
tial blocking, semi-stencil, multi-core, Intel Xeon Phi

1 Introduction

Stencil computations are the core of many Scientific Computing applications.
Geophysics [1], astrophysics [2], nuclear physics [20] or oceanography [8, 13] are
scientific fields where large computer simulations are frequently carried out.
Their governing PDEs are usually solved by the Finite-Difference (FD) method,
using stencil computations to explicitly calculate the differential operators which
represent a large fraction of the total execution time.

In a stencil computation, each point of the computational domain accumu-
lates the weighted contribution of certain neighboring points through every axis,
thus solving the spatial differential operator. The more neighboring points are
used for this operation, the higher accuracy is obtained. Two inherent prob-
lems can be identified from the structure of the stencil computation [6]. First

2

is the noncontiguous memory access pattern while accessing neighbors in the
least-stride dimensions. Second is the low Operational Intensity (OI) of stencil
computations, which leads to a poor data reuse of the values fetched to the CPU
through the memory hierarchy. Therefore, optimizing stencil computations is
crucial in order to reduce the application execution time.

The manual trial-and-error approach turns the process of optimizing codes
lengthy and tedious. The large number of stencil optimization combinations,
which might consume days of computing time, makes the process lengthy. Fur-
thermore, the process is tedious due to the slightly different versions of code that
must be implemented and assessed. To alleviate the cumbersome optimization
process from user supervision, several auto-tuning frameworks [10, 3] have been
developed to automatize the search by using heuristics to guide the parameter
subspace. As an alternative, models that predict performance can be built with-
out the requirement of any actual stencil computation execution. These models
can be used in auto-tuning frameworks for compile- and run-time optimizations;
making guided decisions about the best algorithmic parameters, thread execu-
tion configuration or even suggesting code modifications.

We propose a model that is highly time-cost effective compared to other
approaches based on regression analysis. In regression-based analysis, users are
required to conduct extensive and costly experiments in order to obtain the input
data for regression. A wide range of hardware performance counters are gathered
and machine learning algorithms used to determine correlations between archi-
tectural events and compiler optimizations. The more complex the model is, the
more data is required to estimate the correlation coefficients. Furthermore, re-
gression models lack of cache miss predictors and neither provide hints about
algorithmic parameter candidates (e.g. spatial blocking). Albeit, regression anal-
ysis can be partially useful whether it is intended to give indications of possible
performance bottlenecks and is combined with knowledge-based systems.

The performance characterization of a kernel code is not trivial and relies
heavily on the ability to capture the algorithm’s behavior in an accurate fashion,
independently of the platform and the execution environment. In order to do so,
the estimation of memory latencies is critical in memory-bound kernels. This is
why predicting 3C (compulsory, conflict and capacity) misses accurately play an
important role to effectively characterize the kernel performance.

In this paper, we extend our multi-level cache model for 3D stencil computa-
tions [5] by consolidating HPC support. Previous works have already proposed
cache misses and execution time models for specific stencil optimizations. How-
ever, most of them have been designed for simplified architectures or low order
stencil sizes (7-point), leaving aside many considerations of modern HPC archi-
tectures. Nowadays, multi- and many-core architectures with multi-level cache
hierarchies, prefetching engines and SMT capabilities are common on HPC plat-
forms but also disregarded or barely covered by previous works. The challenge is
to cover all these features to effectively model stencil computation performance.

We have used a leading hardware architecture in our experiments, the popular
Intel Xeon Phi 5100 series (SE10X model), also known as MIC. This architecture

3

shows outstanding appeal for this work due to its support for all of the new
features that our extended model intend to cover.

The remaining paper is organized as follows. Section 2 overviews briefly the
related work. In section 3, we elaborate on the basic fundamentals of our perfor-
mance model, including some phenomena such as cache interference. Section 4
details the considerations to extrapolate the model to multi- and many-core ar-
chitectures. Section 5 explains how the prefetching effect can be modeled. In
section 6, two stencil optimizations are discussed and added to the model. Sec-
tion 7 presents the experimental results and evaluates their accuracy. Finally,
section 8 summarizes the findings of this work and concludes the paper.

2 Related Work

The modeling topic on stencil computations has been fairly studied in the re-
cent years. A straightforward model was initially published by Kamil et al. [12],
where they proposed cost models to capture the performance of 7-point stencils
by taking into account three types of memory accesses (first, intermediate and
stream) in a flat memory hierarchy. Then, a simple approach was devised by set-
ting a lower bound (2Cstencil) with only compulsory misses and an upper bound
(4Cstencil) with no cache reuse at all. Spatial blocking support was also added
by modifing the number of cache-lines fetched using the three types of memory
accesses due to the disruption of the prefetching effect. Regression analysis has
also shown some appeal for modeling stencil computations [19]. They developed
a set of formulas via regression analysis to model the overall performance on
7 and 27-point Jacobi and Gauss-Seidel computations. Their intent was not to
predict absolute execution time but to extract meaningful insights that might
help developers to effectively improve their codes. The time-skewing technique
has been also modelized by Strzodka et al. [22]. They proposed a performance
model for their cache accurate time skewing (CATS) algorithm, where the sys-
tem and the cache bandwidths were estimated using regression analysis. The
CATS performance model considered only two levels of memory hierarchy, and
therefore it could be inaccurate on HPC architectures. Their aim was to find
out which hardware improvements were required in single-core architectures to
match the performance of future multi-core systems.

Likewise, performance modeling has been successfully deployed on numerical
areas such as sparse matrix vector multiplications [18] and generic performance
models for bandwidth-limited loop kernels [9, 24].

3 Stencil Model

In this work, we use the model initially published at [5] as starting point. This
performance model considers stencil computations as memory-bound, where the
cost of computing the floating-point operations is assumed negligible due to the
overlap with considerable memory transfers. This assumption is especially true
for large domain problems where, apart from compulsory misses, capacity and

4

conflict misses arise commonly leading to a low OI [6]. Some concepts of the
initial model are improved and extended to fulfill the coverage of the current
work. For a better understanding of the remaining sections, the main concepts
and assumptions of the base model are briefly reviewed in the next section.

Algorithm 1 The classical stencil algorithm pseudo-code. II, JJ , KK are the
dimensions of the data set including ghost points. ℓ denotes the neighbors used
for the central point contribution. CZ1...Zℓ, CX1...Xℓ, CY 1...Y ℓ are the spatial
discretization coefficients for each direction and C0 for the self-contribution.
Notice that the coefficients are considered symmetric and constant for each axis.

1: for t = 0 to timesteps do ⊲ Iterate in time
2: for k = ℓ to KK − ℓ do ⊲ Y axis
3: for j = ℓ to JJ − ℓ do ⊲ X axis
4: for i = ℓ to II − ℓ do ⊲ Z axis
5: X t

i,j,k = C0 ∗ X
t−1
i,j,k

+ CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+ CX1 ∗ (X
t−1
i,j−1,k + X t−1

i,j+1,k) + . . .+ CXℓ ∗ (X
t−1
i,j−ℓ,k + X t−1

i,j+ℓ,k)

+ CY 1 ∗ (X
t−1
i,j,k−1 + X t−1

i,j,k+1) + . . .+ CY ℓ ∗ (X
t−1
i,j,k−ℓ + X t−1

i,j,k+ℓ)

3.1 Base Model

Considering a problem size of I × J ×K points of order ℓ, where I is the unit-
stride (Z axis) and J and K the least-stride dimensions (X and Y axes), an
amount of Pread (2 × ℓ + 1) and Pwrite (1) Z-X planes of X t−1 is required to
compute a single X t plane (see Algorithm 1). Thus, the total data to be held is
Stotal = Pread×Sread+Pwrite×Swrite, being Sread = II×JJ and Swrite = I×J
their size in words. Note that II and JJ include ghost points.

Likewise, the whole execution time (Ttotal) on an architecture with n lev-
els of cache is estimated based on the aggregated cost of transferring data on
three memory hierarchy groups: first (TL1), intermediate (TL2 to TLn) and last

(TMemory). Each transferring cost depends on their hits and misses and is com-
puted differently. In general, the transferring cost (TLi = HitsdataLi × T data

Li)
is based on the latency of bringing as much data (word or cacheline) as re-
quired (HitsdataLi = MissesdataLi−1 −MissesdataLi) from the cache level to the CPU

(T data
Li = data/Bwread

Li) in order to compute the stencil. Finally, the amount of
misses issued at each cache level is estimated as

MissesLi = ⌈II/W ⌉ × JJ ×KK × nplanesLi , (1)

where W = cacheline/word is the number of words per cacheline and nplanesLi

is the number of II × JJ planes read from the next cache level (Li+1) for each
k iteration due to possible compulsory, conflict or capacity misses. The cache
miss calculations are described in the following section.

5

3.2 Cache Miss Cases and Rules

The correct estimation of nplanesLi is crucial for the model accuracy. To do
so, four miss cases (C1, C2, C3 and C4, ordered from lower to higher penalty)
and four rules (R1, R2, R3 and R4) are devised. Each of these rules triggers the
transition from one miss case scenario to the next one. In this model, the rules
are linked and therefore triggered in sequential order, thus exposing different
levels of miss penalty.

Rule 1 (R1): The best possible scenario (lower bound) is likely to happen when
all the required Z-X planes (Stotal) to compute one k iteration fit loosely (Rcol

factor) into the cache level (sizeLi). This yields to only compulsory misses and
to the following rule, R1 : ((sizeLi/w)×Rcol ≥ Stotal).

Rule 2 (R2): Conversely to R1, when all the required planes do not fit loosely
in cache except the k-central plane with a higher temporal reuse (less chance to
be evicted from cache), conflict misses are produced among planes. This scenario
is likely to happen when the following rule is true, R2 : ((sizeLi/w) > Stotal).

Rule 3 (R3): On a third possible scenario, it is assumed that despite the whole
data set does not fit in cache (Stotal), the k-central plane does not overwhelm a
significant part of the cache (Rcol factor). Therefore, the possibility of temporal
reuse is reduced compared to R2 but not canceled completely. This scenario can
occur when, R3 : ((sizeLi/w)×Rcol > Sread).

Rule 4 (R4): The worst scenario (upper bound) appears when neither the
planes nor the columns of the k-central plane fit loosely in the cache level. Then,
capacity and conflict misses arise frequently, resulting as well in fetching the
k-central plane at each j iteration of the loop. This scenario gives the following
rule, R4 : ((sizeLi/w)×Rcol < Pread × II).

w is the word size (in single or double precision), and Rcol is a factor pro-
portional to the required data by the k-central plane with respect to the whole
dataset (Pread/2Pread−1). Putting all the ingredients together, the computation
of nplanesLi is yielded by the following conditional equations:

nplanesLi(II, JJ) =

C1 : 1, if R1

C1 ⊔ C2 : (1, Pread − 1], if ¬R1 ∧R2

C2 ⊔ C3 : (Pread − 1, Pread], if ¬R2 ∧R3

C3 ⊔ C4 : (Pread, 2Pread − 1], if ¬R3 ∧ ¬R4

C4 : 2Pread − 1, if R4 ,

(2)

which only depends on II and JJ parameters for a given architecture and a
stencil order (ℓ). Figure 1 shows an example of how nplanesLi evolves with
respect to II × JJ parameter.

Large discontinuities can appear in Equation 2 when transitioning from one
case to the next case (C1⊔C2, C2⊔C3 and C3⊔C4). This effect can be partially

6

Lower bound

Upper bound

(size of plane)

Fig. 1: The different rules (R1, R2, R3 and R4) bound the size of the problem (abscissa:
II × JJ) with the miss case penalties (ordinate: 1, Pread − 1, Pread and 2Pread − 1).

smoothed by using interpolation methods. Apart from the discrete transitioning,
three types of interpolations have been added in our model: linear, exponential
and logarithmic. An interpolation function (f(x, x0, x1, y0, y1)) requires five in-
put parameters, the X-axis bounds (x0 and x1), the Y -axis bounds (y0 and y1)
and the point in the X-axis (x) to be mapped into the Y -axis (y). In our problem
domain, the X-axis represents the II×JJ parameters whereas the Y -axis is the
unknown nplanesLi. For instance, for C1 ⊔ C2 transition, isolating II from R1

and R2 rules, IImin (x0) and IImax (x1) are respectively obtained, bounding the
interpolation. By using their respective rules and isolating the required variable
for X-axis, the same procedure is also applied to the remaining transitions of
Equation 2. In this way, an easy methodology is presented to avoid unrealistic
discontinuities for the model.

3.3 Cache Interference Phenomena: II × JJ effect

As stated before, three types of cache misses (3C) can be distinguished: com-
pulsory (cold-start), capacity and conflict (interference) misses. Compulsory and
capacity misses are relatively easily predicted and estimated [23]. Contrarily,
conflict misses are hard to evaluate because it must be known where data are
mapped in cache and when it will be referenced. In addition, conflict misses
disrupt data reuse, spatial or temporal. For instance, a high frequency of cache
interferences can lead to the rare ping-pong phenomena, where two or more
memory references fall into the same cache location, therefore competing for
cache-lines. Cache associativity can alleviate this issue to a certain extent by
increasing the cache locations for the same address.

The cache miss model presented in Subsection 3.2 sets the upper bound for
each of the four cases in terms of number of planes read for each plane writ-

7

ten (nplanesLi), thus establishing a discrete model. Nevertheless, this discrete
scenario is unlikely to happen for cases C2, C3 and mainly C4, due to their de-
pendency on capacity and especially on conflict misses. There are two factors
that clearly affect conflict misses: the reuse distance for a given datum [23] and
the intersection of two data sets [9], giving consequently a continuum scenario.
The former depends on temporal locality; the more data is loaded, the higher
the probability that a given datum may be flushed from cache before its reuse.
On the other hand, the latter depends on two parameters: the array base address
and its leading dimensions.

In stencil computations the Z-X plane (II × JJ size) and the order of the
stencil (Pread = 2 × ℓ + 1) are the critical parameters that exacerbate conflict
misses. The conflict misses to estimate are related with the probability of inter-
ference, P (i), and the column reuse of the central k-plane. P (i) is proportional
to the size in words of the columns to be reused (II × (Pread − 1)) after reading
the first central column with respect to the whole size of the central k-plane to
be held in cache (II × JJ),

P (i) =
II × JJ − II × (Pread − 1)

II × JJ
= 1−

Pread − 1

JJ
∈ [0, 1] , (3)

which yields to a logarithmic function depending on Pread, II and JJ parame-
ters. A zero value means no conflict misses at all, whereas a probability of one
means disruption of temporal reuse (high ratio of interferences) for columns of
the central k-plane. Therefore, the P (i) probability can be added as

nplanesLi′ = nplanesLi × P (i) , (4)

tailoring the read misses case boundary to their right value depending on the
conflict misses issued. Thus, the larger the data to be used to compute one output
plane (I × J), the higher the probability of having capacity and conflict misses.
Figure 2 shows the accuracy difference between the model with and without
cache interference effect.

3.4 Additional Time Overheads

During the execution of HPC stencil codes, some additional overheads may arise.
In this subsection, we explain how these overheads are weighed when modeling
the stencil computation performance. The overheads are categorized into three
groups: parallelism, memory interferences and computational bottlenecks.

– Intra-node parallelism (OpenMP and Posix threads): small overheads may
appear due to the thread initialization and synchronization tasks whether
data is disjoint among threads. This overhead usually has a clear impact only
on small dataset problems. In order to characterize its effect on the stencil
model, a small (order of milliseconds) and constant ǫ (TOMP) is included.

– Memory contention: TLB misses, ECC memories (error checking & cor-
ruption) and cache coherence policies between cores (e.g. MESI protocol)
affect noticeably the memory performance. Nevertheless, all these effects

8

 1

 2

 3

 4

 5

1
6
x
8

1
6
x
1
6

1
6
x
2
4

1
6
x
3
2

1
6
x
4
0

1
6
x
4
8

1
6
x
5
6

1
6
x
6
4

1
6
x
1
2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2
x
1
6

3
2
x
2
4

3
2
x
3
2

3
2
x
4
0

3
2
x
4
8

3
2
x
5
6

3
2
x
6
4

3
2
x
1
2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4
x
1
6

6
4
x
2
4

6
4
x
3
2

6
4
x
4
0

6
4
x
4
8

6
4
x
5
6

6
4
x
6
4

6
4
x
1
2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2
8
x
1
6

1
2
8
x
2
4

1
2
8
x
3
2

1
2
8
x
4
0

1
2
8
x
4
8

1
2
8
x
5
6

1
2
8
x
6
4

1
2
8
x
1
2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5
6
x
1
6

2
5
6
x
2
4

2
5
6
x
3
2

2
5
6
x
4
0

2
5
6
x
4
8

2
5
6
x
5
6

2
5
6
x
6
4

2
5
6
x
1
2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1
2
x
1
6

5
1
2
x
2
4

5
1
2
x
3
2

5
1
2
x
4
0

5
1
2
x
4
8

5
1
2
x
5
6

5
1
2
x
6
4

5
1
2
x
1
2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0
2
4
x
1
6

1
0
2
4
x
2
4

1
0
2
4
x
3
2

1
0
2
4
x
4
0

1
0
2
4
x
4
8

1
0
2
4
x
5
6

1
0
2
4
x
6
4

1
0
2
4
x
1
2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0
4
8
x
1
6

2
0
4
8
x
2
4

2
0
4
8
x
3
2

2
0
4
8
x
4
0

2
0
4
8
x
4
8

2
0
4
8
x
5
6

2
0
4
8
x
6
4

2
0
4
8
x
1
2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4

R
at

io
 p

er
 Z

-X
 p

la
ne

 (
np

la
ne

s L
i)

Plane size (I x J)

1 (LB)

Pread-1

Pread

2Pread-1 (UB)

Actual L1 Misses

Actual L2 Prefetches

Pred. L1 Misses w/o CI

Pred. L2 Prefetches w/o CI

Pred. L1 Misses w/ CI

Pred. L2 Prefetches w/ CI

Fig. 2: Cache interference effect as a function of problem size. Whilst equation 4 is
not applied, a discrete model is obtained (straight lines with squares and diamonds).
Conversely, its use leads to a continuum model (inverted and non-inverted triangles).

are already taken into account in the memory characterization through our
STREAM2 tool (see Section 4 for further details).

– Computational bottlenecks: stencil computations are mainly considered mem-
ory bound instead of compute bound (the OI is low) [25, 6]. Therefore, for
the sake of simplicity, the tampering effect of floating-point operations is
expected to be negligible, and thus not considered.

4 From Single-core to Multi-core and Many-core

Current HPC platforms are suboptimal for scientific codes unless they take fully
advantage of simultaneous threads running on multi- and many-cores chips. Some
clear examples of such architectures are Intel Xeon family, IBM POWER7 or
GPGPUs. All of them with tens of cores and their ability to run in SMT mode.
So, the parallel nature of the current stencil computation deployments leads us
to extend our model accordingly. To that end, the parallel memory management
is a main concern, and this section is fully devoted to sort it out.

In order to characterize the memory management of multi-core architectures,
the bandwidth measurement is critical. The bandwidth metrics are captured for
different configurations using a bandwidth profiler such as STREAM2 bench-
mark [15]. Our STREAM2 version [5] has been significantly extended by adding
new features such as vectorization (SSE, AVX and Xeon Phi ISAs), aligned
and unaligned memory access, non-temporal writes (through Intel pragmas),
prefetching and non-prefetching bandwidths, thread-level execution (OpenMP)
and hardware counters instrumentation (PAPI) in order to validate results.

9

1

5

20

40

60
80

 10

 1000 10000 100000 1e+06

G
B

/s

Size in words

Read Stream
Write Stream

Read Non-stream
Write Non-stream

Fig. 3: STREAM2 results for Intel Xeon Phi architecture (4 threads, 2 per core). Each
plateaux represents the sustainable bandwidth of a cache level.

The process to obtain bandwidth measurements is straightforward. First,
the thread number is set through the OMP NUM THREADS environment vari-
able. Then, each thread is pinned to a specific core of the platform (e.g. using
numactl or KMP AFFINITY variable in Xeon Phi architecture). Finally, the
results obtained for DOT (16 bytes/read) and FILL (8 bytes/write) kernels are
respectively used as read and write bandwidths for the different cache hierar-
chies of the model. Figure 3 shows an example of the bandwidths used for a
particular case in the Intel Xeon Phi platform. The importance of mimicking
the environment conditions is crucial, in particular the execution time accuracy
of the model is very sensitive to the real execution conditions. This means that
the characterization of the memory bandwidth must be similarly performed in
terms of: number of threads, threads per core, memory access alignment, tem-
poral or non-temporal writes and SISD or SIMD instruction set.

Additionally, there are some memory resources that might be shared among
different threads running in the same core or die. In order to model the behaviour
in such cases, the memory resources are equally split among all threads. This is,
if we have a cache size (sizeLi in rules R1,2,3,4) of N KBytes, then each thread
would turn out to have a cache size of sizeLi = N/nthreadscore.

5 Modeling Prefetching

5.1 Hardware Prefetching

Modern computer architectures incorporate prefetching engines in their cache
hierarchy. Its aim is to reduce the memory latency by eagerly fetching data that
is expected to be required in the near future.

10

The prefetching mechanism modeled in our previous work [5] lacked accuracy
when several threads were triggering the prefetching engine concurrently. As
stated in [5], the modeling of the prefetching mechanism is not straightforward.
In that work, a simple approach was devised. The miss model was divided into
two groups, prefetched and non-prefetched misses, depending on the concurrent
streams that the prefetching engine supported. Next, two different bandwidths
were used for each cache miss group in order to compute their time penalty.

Recent works [14, 16] have characterized the impact of prefetching mecha-
nism on scientific application performance. They establish a new metric called
prefetching effectiveness, which computes the fraction of data accesses to the
next memory level that are initiated by the hardware prefetcher. Therefore, for
a given data cache level (DC), its prefetching effectiveness is computed as

DCeffectiveness = DC Req PF/DC Req All ∈ [0, 1] , (5)

where DC Req PF refers to the number of cache-lines requests initiated by the
prefetching engine, and DC Req All represents the total number of cache-lines
requests initiated at the DC level (including demanding and non-demanding
loads). This approach has been adopted in our model as the way to accurately
capture the prefetching behaviour.

In order to be able to characterize the prefetching effectiveness in our testbed
platform, a new micro-benchmark was developed from scratch. This bench-
mark traverses a chunk of memory simultaneously by different threads and
changes the number of stream accesses in a round-robin fashion. Then, to com-
pute their effectiveness, a set of hardware performance counters were gathered
through PAPI. For instance, on Intel Xeon Phi architecture, two native events
were instrumented to compute the prefetching effectiveness: HWP L2MISS and
L2 DATA READ MISS MEM FILL. Figure 4 shows the results obtained for this
platform over the L2 hardware prefetcher.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
er

ce
nt

ag
e

w
.r

.t.
 m

em
or

y
ac

ce
ss

es

Number of simultaneous streams per thread

1 thread x Core

2 threads x Core

4 threads x Core

Fig. 4: L2 prefetching efficiency for Intel Xeon Phi architecture. The efficiency has been
computed using one core and varying the SMT configuration from 1 to 4 threads.

11

The prefetching effectiveness (DCeffectiveness) is then used to compute the
total number of cache-line misses that are fetched using streaming bandwidths
(nplanesSLi) and those that are fetched using a regular bandwidth (nplanesNS

Li):

nplanesSLi = nplanesLi ×DCeffectiveness,

nplanesNS
Li = nplanesLi × (1−DCeffectiveness) .

(6)

Similarly to the memory resources, prefetching engines might be shared
among threads running on the same core. In such scenarios, the prefetching ef-

fectiveness is computed with our prefetching tool varying the number of threads
per core (for instance, 2 and 4 threads results can be observed in Figure 4). In
fact, these results are insightful and help to understand when the core perfor-
mance might be degraded due to excessive simultaneous streams, thus adversely
affecting the parallel scaling of stencil computations.

5.2 Software Prefetching

Software prefetching is a technique where compilers, and also programmers, ex-
plicitly insert prefetching operations similar to load instructions into the code.
Predicting the performance of software prefetching is challenging. Compilers use
proprietary heuristics in order to decide where (code location), which (data ar-
ray) and how much in advance (look-ahead in bytes) start prefetching data.
Furthermore, programmers can even harden this task by adding special hints
in the code to help the compiler make some of these decisions [17]. As software
prefeching produces regular loads on the cache hierarchy, it also prevents hard-
ware prefetcher to be triggered when it performs properly [7]. Thus, the failure
or success of software prefetching affects collaterally the hardware prefeching
behaviour.

Due to all above commented issues, software prefetching has not been taken
into account in the present work. The software prefetching can be disabled in
Intel compilers by using the -opt-prefetch=0 flag during the compilation.

6 Stencil Optimizations

The state-of-the-art in stencil computation is constantly being extended with
the publication of several optimization techniques in recent years. Under specific
circumstances, some of those techniques improve the execution performance.
For instance, space blocking is a tiling strategy widely used in multi-level cache
hierarchy architectures. It promotes data reuse by traversing the entire domain
into small blocks of size TI×TJ which must fit into the cache [21, 12]. Therefore,
space blocking is especially useful when the dataset structure does not fit into
the memory hierarchy. This traversal order reduces capacity and conflict misses
in least-stride dimensions increasing data locality and overall performance. Note
that a search of the best block size parameter (TI ×TJ) must be performed for
each problem size and architecture.

12

A second example of stencil optimization is the Semi-stencil algorithm [6].
This algorithm changes the way in which the spatial operator is calculated and
how data is accessed in the most inner loop. Actually, the inner loop involves
two phases called forward and backward where several grid points are updated
simultaneously. By doing so, the dataset requirements of the internal loop is
reduced, while keeping the same number of floating-point operations. Thereby,
increasing data reuse and thus the OI. Conversely to read operations, the number
of writes are slightly increased because the additional point updates. Due to this
issue, this algorithm only improves performance on medium-large stencil orders
(ℓ > 2).

These two stencil optimizations have been included into our model. The mo-
tivation of modeling them is two-fold. First, to reveal insights of where and why
an algorithm may perform inadequately for a given architecture and environ-
ment. Second, to analytically guide the search for good algorithmic parameter
candidates without the necessity of obtaining them empirically (brute force).

6.1 Spatial Blocking

Space blocking is implemented in our model by including similar general ideas
as [4], but adapting them in order to suit the advantages of our cost model.
Basically, the problem domain is traversed in TI × TJ × TK blocks. Then, first
the blocks on each direction are computed as NBI = I/TI, NBJ = J/TJ ,
and NBK = K/TK. Therefore, the total number of tiling iterations to perform
are NB = NBI ×NBJ ×NBK. Blocking may be performed in the unit-stride
dimension as well. Given that data is brought to cache in multiples of the cache-
line, additional transfer overhead may arise when TI size is not multiple of
cache-line. This is considered into the model by reassigning I, J , K and their
extended dimensions as follows:

I = ⌈TI/W ⌉ ×W, J = TJ, K = TK,

II = ⌈(TI + 2× ℓ)/W ⌉ ×W, JJ = TJ + 2× ℓ, KK = TK + 2× ℓ .
(7)

The new II and JJ parameters are then used for rules R1,2,3,4 to estimate
nplanesLi based on the blocking size. Finally, Equation 1 shall be rewritten as

Misses
[S,NS]
Li = ⌈II/W ⌉ × JJ ×KK × nplanes

[S,NS]
Li ×NB , (8)

where NB factor is considered to adjust streamed (SLi) and non-streamed (NS
Li)

misses depending on the total number of blocking iterations.

Architectures with prefetching features may present performance degradation
when TI 6= I [11]. Blocking on the unit-stride dimension may tamper streaming
performance due to the interference caused to the memory access pattern detec-
tion of the prefetching engine. The triggering of the prefetching engine involves
a warm-up phase, where a number of cache-lines must be previously read (TP).
Additionally, prefetching engines keep a look-ahead distance (LAP) of how many

13

cache-lines in advance to prefetch. Disrupting a regular memory access will pro-
duce LAP additional fetches to the next cache level if the prefetching engine was
triggered. Considering all these penalties, the cache misses are updated with:

MissesNS
Li

+
= TP × JJ ×KK × nplanesNS

Li ×NB, if II/W ≥ TP,

MissesSLi
+
= LAP × JJ ×KK × nplanesSLi ×NB, if II/W ≥ TP .

(9)

TP and LAP parameters can be obtained from processor manufacturer’s
manuals or empirically through our prefetching benchmark. To deduce such pa-
rameters, the prefetching benchmark was modifed to traverse arrays in a blocked
fashion whilst TI parameter was slowly increased along different executions.
Then, the prefetching hardware counter was monitored in order to flag at what
precise point (TP = ⌈TI/W ⌉) the prefetching metric soared significantly. Like-
wise, LAP parameter was estimated by counting the extra prefetching loads
(apart from the TP) that were issued.

6.2 Semi-stencil Algorithm

Adapt the model for the Semi-stencil algorithm is equally straightforward. In-
deed, this can be achieved by setting Pread and Pwrite parameters correctly. By
default, in a partial Semi-stencil implementation (forward and backward phases
on X and Y axes), ℓ + 1 Z-X planes from X t and one X t+1 plane (k-central
plane update) are read for each k iteration. As output, two planes are written
back as partial (X t+1

i,j,k+ℓ) and final (X t+1

i,j,k) results. However, these values can
slightly increase when no room is left for the k-central columns; thus yielding

Pread = ℓ+ 2, Pwrite = 2, if ¬R4

Pread = ℓ+ 3, Pwrite = 3, if R4

(10)

as the new data requirements to compute one output plane. This adaptability
reveals the model resilience, where an absolutely different stencil algorithm can
be modeled by simply tuning a couple of parameters.

7 Experimental Results

This section estimates through experimental results how accurate the model is
when exposed to: prefetching, thread parallelism and code optimizations tech-
niques. All experimental results in this section were validated using the Stencil-
Probe [12], a synthetic benchmark that we have extended. The new StencilProbe
features [6] include: different stencil orders (ℓ), thread support (OpenMP), SIMD
code, instrumentation and new optimization techniques (e.g. spatial blocking
and Semi-stencil). This benchmark implements the stencil scheme shown in Al-
gorithm 1, where star-like stencils with symetric and constant coefficients are
computed using 1st order in time and different orders in space (see Table 1).

A large number of different problem sizes were explored in order to validate
the model accuracy for a wide parametrical space. Recall that the two first

14

dimensions (on Z and X axes) are the critical parameters that increase the cache
miss ratio (nplanesLi) for a given stencil order (ℓ) and architecture. Therefore,
the last dimension K was set to a fixed number, and the I and J dimensions
were widely varied covering a large spectrum of grid sizes. All the experiments
were conducted using double-precision, and the domain decomposition across
threads was conducted by cutting in the least-stride dimension (Y axis) with
static scheduling. Table 1 summarizes the different parameters used.

Parameters Range of values

Naive sizes (I × J ×K) 8× 8× 128 . . . 2048× 1024× 128
Rivera sizes (I × J ×K) 512× 2048× 128
Stencil sizes (ℓ) 1, 2, 4 and 7 (7, 13, 25 and 43-point respectively)

Algorithms {Naive, Rivera} × {Classical, Semi-stencil}

Block sizes (TI and TJ) {8, 16, 24, 32, 64, 128, 256, 512, 1024, 1536, 2048}

Table 1: List of parameters used for the model and the StencilProbe benchmark.

The testbed platform for all experiments is based on Intel Xeon Phi. The 22
nm Xeon Phi processor include 61 cores with 4-way SMT capabilities running
at 1.1GHz. Each core is in-order and contains a 512-bit vector unit (VPU).
Additionally, each core has a 32KB L1D cache, a 32KB L1I cache and a private
512KB L2 cache. This cache includes a hardware prefetcher able to prefetch
16 forward or backward sequential streams into 4KB page-size boundaries. All
cores are connected together via a bi-directional ring with the standard MESI
coherency protocol for maintaining the shared state among cores.

Hardware counters were gathered for all experiments in order to validate
the model results against actual executions. Table 2 shows the hardware per-
formance counters instrumented. The stencil code generated by StencilProbe is
vectorized, and therefore only vector reads were fetched (VPU DATA READ)
during executions. Additionally, the L2 prefetcher in Xeon Phi can also prefetch
reads for a miss in a write-back operation (L2 WRITE HIT) when it has the
opportunity. Then, in order to fairly compare the prefetched read misses of
the model with actual metrics, the L2 prefetches (HWP L2MISS) were nor-
malized. This normalization was performed by subtracting reads due to a miss
in a write operation scaled by the prefetching efficiency. Likewise, some writes
were considered prefetched (L2 WRITE HIT ×DCeffectiveness) and others not
(L2 WRITE HIT ×(1−DCeffectiveness)) due to contention of the L2 prefetch-
ing engine. Finally, the remaining miss counters (VPU DATA READ MISS and
L2 DATA READ MISS MEM FILL) only consider demanding reads, initiated
by explicit reads, and therefore were directly used as non-prefetched read misses.
It is important to mention that, in our previous model [5], several complex for-
mulas were derived to estimate the number of reads issued to the first level
cache (Hitsword

L1). This estimation was not straightforward and lacked accuracy.

15

However, we realized that this parameter kept constant per loop iteration and
could be precisely estimated by performing static analysis of the inner stencil
loop only once (counting the numbers of reads in the object file).

Description Intel Xeon Phi Events Time Cost Formulas

Cycles CPU CLK UNHALTED TL1 = (L1 Hits - L1 Misses) ×Bwcline
L1

L1 Hits VPU DATA READ TL2 = Bwcline
L2 × (L1 Misses - L2 Misses -

L1 Misses VPU DATA READ MISS (L2 Prefetches - L2 Writes × Pref Eff))
L2 Misses L2 DATA READ MISS TMem = L2 Misses ×BwNS

Mem +BwS
Mem×

MEM FILL (L2 Prefetches - L2 Writes × Pref Eff)
L2 Prefetches HWP L2MISS TWrites = L2 Writes × Pref Eff ×BwS

Write

L2 Writes L2 WRITE HIT + L2 Writes × (1 - Pref Eff) ×BwNS
Write

Table 2: Hardware counters and the formulas used to compute the projected time.

An aim of this research is to prove that stencil computations can be accurately
modeled on SMT architectures. Therefore, all possible SMT combinations for a
single core were sampled. Our tests were conducted using 4 threads varying their
pinning to cores. KMP AFFINITY environment variable was accordingly set to
bind threads to the desired cores. The SMT configurations tried for each test
were: 1 core in full usage (4 threads per core), 2 cores in half usage (2 threads
per core) and 4 cores in fourth usage (1 thread per core).

Due to the sheer number of combinations sampled, only the most repre-
sentative and interesting results are shown. Results have been categorized as a
function of core occupancy (1, 2 and 4 threads per core) in order to explicitly
visualize the effect of resource contention on the actual metrics and test the
predicted results.

Figure 5 shows the actual and the predicted misses with our model (prefetched
and non-prefetched for L2) on all three SMT configurations using a Naive sten-
cil order of ℓ = 4. In this case 680 different problem sizes (X axis in figures)
were tested per configuration. Recall that software prefetching was disabled and
therefore L1 or L2 cache levels do not exhibit collateral effects due to compiler-
assisted prefetch. This figure is very insightful because the empirical results
clearly corroborate our thoughts regarding the different bounds applied in the
stencil model. Indeed, in a ℓ = 4 stencil the read miss bounds for the model
are: 1, 8 (Pread − 1), 9 (Pread) and 17 (2Pread − 1) per each I × J plane com-
puted. Actual L1 and L2 misses tend to these bounds when a specific problem
size is reached, never reaching beyond the upper bound (2Pread − 1) which is
showed as a solid coarse horizontal line in all plots. Cache levels with prefetched
and non-prefetched misses are a special case due to their direct relation with
DCeffectiveness ratio, and therefore they might be under the lower bound (1).
Additionally, as the threads per core are increased, the inflection points (tran-
sitions) between bounds (C1 ⊔C2, C2 ⊔C3 and C3 ⊔C4) are triggered earlier in
terms of plane size (I × J). The larger the number of threads running concur-

16

 0

 2

 4

 6

 8

 10

 12

 14

 16

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4

np
la

ne
s L

i (
4

th
re

ad
s

x
C

or
e)

Plane size (I x J)

 0

 2

 4

 6

 8

 10

 12

 14

 16

np
la

ne
s L

i (
2

th
re

ad
s

x
C

or
e)

 0

 2

 4

 6

 8

 10

 12

 14

 16
np

la
ne

s L
i (

1
th

re
ad

 x
 C

or
e)

1 (LB)

Pread-1

Pread

2Pread-1 (UB)

Actual L1 Misses

Actual L2 Misses

Actual L2 Prefetches

Predicted L1 Misses

Predicted L2 Misses

Predicted L2 Prefetches

Fig. 5: Actual and predicted prefetched (inverted triangles) and non-prefetched (squares
and diamonds) cache-lines for the three SMT configurations. These results are for the
Naive implementation of a medium-high order (ℓ = 4) stencil.

17

rently on the same core, the more contention and struggle for shared resources
occurs. Likewise, some spikes appear on account of ping-pong effect, where dif-
ferent planes and columns addresses fall in the same cache set. This effect is also
exacerbated as more threads are pinned to the same core. However, this effect is
not captured by our model because it would require a multi-level set-associative
cache model, which is not covered yet in our model.

Comparing the empirical (hardware counters) versus the analytical results
(model), it can be observed that the model accurately predicts the number
of misses on both levels of cache hierarchies, including those reads that are
prefetched. However, some slight mispredictions appear on specific sizes when
the transition between miss cases is triggered. Deciding a discrete point (I × J)
for transitions is difficult, and it might depend on other parameters apart from
those considered in this work. Nevertheless, we think that our rules (R1,2,3,4)
have approximated these transitions fairly well. It is also important to mention
the prediction of the L2 prefetching engine, especially in the late executions for 2
threads and in the early ones for 4 threads per core configurations. As hardware
metrics show, on these cases the prefetching effect starts disrupting the results
due to contention. Nonetheless, the predicted results follow the trend of both
type of misses properly as a result of the DCeffectiveness parameter.

The model accuracy is verified in Figure 6, which shows a summary of three
types of execution times: actual, projected and predicted. The actual times were
obtained using the CPU clock cycles metric (CPU CLK UNHALTED). On the
other hand, the projected times were computed with the aggregated time of
TL1, TL2, TMem and TWrite by using actual hardware counters of reads, writes
and misses with their respective bandwidth parameters (STREAM2 character-
ization). Finally, the predicted times follow the same idea than the projected
but using the estimations of our model instead of the instrumented ones. The
purpose of the projected time is that it verifies the aggregated equation and
calibrates the bandwidth parameters at each cache level. Therefore, it plays an
important role ensuring that predicted times are a faithful representation of an
actual execution.

Comparing the execution times shown in Figure 6, we observe that the pre-
dicted relative error (right axis) is very low on most of the cases. However, as the
results reveal, some predictions have a high error (2 threads per core). Reviewing
the cache miss predictions (not shown here), this is due to a late deactivation
of the L2 prefetching engine, misleading the aggregated predicted time. Once
the prefetching efficiency is again correctly predicted, the relative error drops
considerably under 10%. Equally, some actual executions also present peaks due
to the ping-pong effect. Projected times clearly follow this instabilities because
their mirroring on cache misses. On the contrary, our model can not mimic such
situations, and therefore the relative error increases considerably on those cases.

Results considering stencil optimizations such as Semi-stencil and spatial
blocking are shown in Figure 7. In this test, 88 different tiling sizes were com-
pared. The TP and LAP parameters used for the model were set to 3 and
5 cache-lines respectively. These values were obtained empirically using the

18

0.001

0.01

0.1

1

10

1e+02

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4 0

 20

 40

 60

 80

 100

T
im

e
in

 s
ec

 (
4

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Plane size (I x J)

0.001

0.01

0.1

1

10

1e+02

 0

 20

 40

 60

 80

 100

T
im

e
in

 s
ec

 (
2

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

0.0001

0.001

0.01

0.1

1

10

1e+02

 0

 20

 40

 60

 80

 100

T
im

e
in

 s
ec

 (
1

th
re

ad
 x

 C
or

e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Projected Relative Error

Predicted Relative Error

Measured Time

Projected Time

Predicted Time

Fig. 6: Left axis: actual (solid line), projected (circles) and predicted (squares) execution
times for the three SMT configurations. Right axis: relative errors compared with actual
times. These results are for a high order (ℓ = 7) Naive stencil.

19

prefetching benchmark as explained in Section 6. As shown in Figure 7, the
model clearly estimates the different valleys (local minima) that appear when
searching for the best tiling parameters due to the disruption of prefetched data
and the increase of cache-line misses. The model is even able to suggest some
good parameter candidates. For instance, taking a look to the Naive+Blocking

results, the model successfully predicts the best tiling parameter for 1 and 2
threads per core configurations (512× 16 and 512× 8 respectively). This is not
the case when running 4 threads per core. However, in this latter case, the ac-
tual best parameter is given as third candidate (512 × 8). On the other hand,
reviewing the Semi+Blocking results, despite of some mispredictions especially
for 4 threads per core, most of the local minima areas are well predicted.

Additionally, the model can reveal other insightful hints regarding the effi-
ciency in SMT executions. It can help to decide the best SMT configuration to
be conducted in terms of core efficiency. Let τSMTi be the execution time for a
SMTi configuration of n different combinations, we define the core efficiency as

CoreSMTi

efficiency =
min(τSMT1 , . . . , τSMTn)

τSMTi

∈ [0, 1] ,
(11)

where a core efficiency of 1 represents the best performance-wise SMT configura-
tion for a set of specific stencil parameters (ℓ, I × J plane size, spatial blocking,
Semi-stencil, etc.) and a given architecture. Therefore, the desirable decision
would be to run the stencil code using the SMTi configuration that maximizes
the core efficiency. Normalizing our experiments for all three SMT combinations
on a Naive stencil (ℓ = 4) the Figure 8 is obtained. Note that depending on the
problem size, the best SMT configuration ranges from 4 threads for small sizes
to 2 threads for medium sizes and just only 1 thread per core for very large prob-
lems. The factor leading to this behavior is the contention of shared resources,
especially the prefetching engine.

8 Conclusions and Analysis

This paper presents a thorough methodology to evaluate and predict stencil
codes performance on complex HPC architectures. We have included several
new features in our model such as: multi- many-core support, better hardware
prefetching modeling, cache interference due to conflict and capacity misses and
other optimization techniques such as spatial blocking and Semi-stencil. The
aim of this work was to develop a performance model with minimal architectural
parameter dependency (flexible) and at the same time reporting accurate results
(reliable). In this regard, we have obtained fairly good prediction results, where
the average error for most relevant cases floats between 5-15%. All these results
factored in cache’s associativities, TLB page size or complex prefetching engine
specifications, but are not explicitly modeled.

Our proposed methodology also helps to unveil insights about how stencil
codes might be built or executed in order to leverage prefetching efficiency. The

20

5

20

1

10

8
x
8

1
6
x
8

2
4
x
8

3
2
x
8

6
4
x
8

1
2
8
x
8

2
5
6
x
8

5
1
2
x
8

8
x
1
6

1
6
x
1
6

2
4
x
1
6

3
2
x
1
6

6
4
x
1
6

1
2
8
x
1
6

2
5
6
x
1
6

5
1
2
x
1
6

8
x
2
4

1
6
x
2
4

2
4
x
2
4

3
2
x
2
4

6
4
x
2
4

1
2
8
x
2
4

2
5
6
x
2
4

5
1
2
x
2
4

8
x
3
2

1
6
x
3
2

2
4
x
3
2

3
2
x
3
2

6
4
x
3
2

1
2
8
x
3
2

2
5
6
x
3
2

5
1
2
x
3
2

8
x
6
4

1
6
x
6
4

2
4
x
6
4

3
2
x
6
4

6
4
x
6
4

1
2
8
x
6
4

2
5
6
x
6
4

5
1
2
x
6
4

8
x
1
2
8

1
6
x
1
2
8

2
4
x
1
2
8

3
2
x
1
2
8

6
4
x
1
2
8

1
2
8
x
1
2
8

2
5
6
x
1
2
8

5
1
2
x
1
2
8

8
x
2
5
6

1
6
x
2
5
6

2
4
x
2
5
6

3
2
x
2
5
6

6
4
x
2
5
6

1
2
8
x
2
5
6

2
5
6
x
2
5
6

5
1
2
x
2
5
6

8
x
5
1
2

1
6
x
5
1
2

2
4
x
5
1
2

3
2
x
5
1
2

6
4
x
5
1
2

1
2
8
x
5
1
2

2
5
6
x
5
1
2

5
1
2
x
5
1
2

8
x
1
0
2
4

1
6
x
1
0
2
4

2
4
x
1
0
2
4

3
2
x
1
0
2
4

6
4
x
1
0
2
4

1
2
8
x
1
0
2
4

2
5
6
x
1
0
2
4

5
1
2
x
1
0
2
4

8
x
1
5
3
6

1
6
x
1
5
3
6

2
4
x
1
5
3
6

3
2
x
1
5
3
6

6
4
x
1
5
3
6

1
2
8
x
1
5
3
6

2
5
6
x
1
5
3
6

5
1
2
x
1
5
3
6

8
x
2
0
4
8

1
6
x
2
0
4
8

2
4
x
2
0
4
8

3
2
x
2
0
4
8

6
4
x
2
0
4
8

1
2
8
x
2
0
4
8

2
5
6
x
2
0
4
8

5
1
2
x
2
0
4
8 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
4

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Plane size (I x J)

5

20

1

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
2

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

5

20

1

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
1

th
re

ad
 x

 C
or

e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Predicted Relative Error

Projected Time

Predicted Time

Predicted Relative Error Semi

Projected Time Semi

Predicted Time Semi

Fig. 7: Left axis: projected (solid line) and predicted (squares and circles) execution
times for spatial blocking results. Right axis: relative errors compared with projected
times. Results shown are for Naive (ℓ = 1) and for Semi-stencil (ℓ = 4).

prefetching modeling is not straightforward, especially when too many arrays
are accessed concurrently, which overwhelm the hardware prefetching system
and hamper the bandwidth performance. Furthermore, an aggressive prefetch-
ing intervention may also cause eviction of data that could have been reused later
(temporal reuse), polluting the cache and affecting adversely the bandwidth per-
formance. Loop fission and data layout transformations can occasionally improve
the performance in these cases. Nevertheless, they must be applied carefully be-
cause some side effects may appear. In order to effectively capture the stream
engine behavior in all above mentioned cases, the prefetching effectiveness ap-
proach has been adopted. As shown in the experiments, this approach can be

21

0.0001

0.001

0.01

0.1

1

10

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 T
im

e
pe

r
C

or
e

C
or

e
E

ffi
ci

en
cy

 (
in

 %
)

Plane size (I x J)

Norm. Time 1 thread

Norm. Time 2 threads

Norm. Time 4 threads

Core efficiency 1 thread

Core efficiency 2 threads

Core efficiency 4 threads

Fig. 8: Core efficiency for all three SMT combinations using a Naive stencil (ℓ = 4).

successfully used in SMT context, where the prefetching efficiency is substan-
tially reduced due to contention of the shared resources.

The proposed model could be included as static analysis in auto-tuning
frameworks to guide making decisions about algorithmic parameters for sten-
cil codes. Likewise, our model might be useful in expert systems, not only for
compilers or auto-tuning tools, but also in run-time optimizations for dynamic
analysis. For instance, the model might decide the SMT configuration and the
number of threads to spawn per processor that outperforms the remaining com-
binations based on the prefetching engines, the problem size (I × J) and the
stencil order (ℓ).

To our knowledge, this is the first stencil model that takes into account two
important phenomena: the cache interference (due to II×JJ and Pread param-
eters) and the prefetching effectiveness when concurrent threads are running in
the same core. Despite the current work has been only conducted for 1st order
in time and constant coefficient stencils, the model could be adapted to higher
orders in time and variable coefficients (anisotropic medium) by adjusting the
cost of cache miss cases (C1,2,3,4) and their rules (R1,2,3,4) through Pread,write

and Sread,write variables.
Future work will include temporal blocking as optimization method, and

different thread domain decomposition strategies apart from the static schedul-
ing. Nonetheless, addition of software prefetching behavior into the model is
unattainable since it depends on the internal compiler heuristics and the prag-
mas inserted by the user.

References

1. M. Araya-Polo, F. Rubio, M. Hanzich, R. de la Cruz, J. M. Cela, and D. P.
Scarpazza. 3D seismic imaging through reverse-time migration on homogeneous
and heterogeneous multi-core processors. Scientific Programming: Special Issue on
the Cell Processor, 17:185–198, January 2008.

22

2. Axel Brandenburg. Computational aspects of astrophysical MHD and turbulence,
volume 9. London: Taylor & Francis, 2003.

3. Matthias Christen, Olaf Schenk, and Helmar Burkhart. PATUS: A code generation
and autotuning framework for parallel iterative stencil computations on modern
microarchitectures. In Proceedings of the 2011 IEEE International Parallel & Dis-
tributed Processing Symposium, IPDPS ’11, pages 676–687, Washington, DC, USA,
2011. IEEE Computer Society.

4. Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and
Katherine Yelick. Optimization and performance modeling of stencil computations
on modern microprocessors. SIAM Rev., 51(1):129–159, 2009.

5. Raúl de la Cruz and Mauricio Araya-Polo. Towards a multi-level cache performance
model for 3D stencil computation. In Proceedings of the International Conference
on Computational Science, ICCS 2011, Singapore, volume 4 of Procedia Computer
Science, pages 2146–2155. Elsevier, 2011.

6. Raúl de la Cruz and Mauricio Araya-Polo. Algorithm 942: Semi-stencil. ACM
Transactions on Mathematical Software, 40(3):23:1–23:39, April 2014.

7. Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang, Yonggang Che,
and Chuanfu Xu. An empirical study of intel xeon phi. CoRR, abs/1310.5842,
2013.

8. C. De Groot-Hedlin. A finite difference solution to the Helmholtz equation in
a radially symmetric waveguide: Application to near-source scattering in ocean
acoustics. Journal of Computational Acoustics, 16:447–464, 2008.

9. John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Efficient analyti-
cal modelling of multi-level set-associative caches. In Proceedings of the 7th In-
ternational Conference on High-Performance Computing and Networking, HPCN
Europe ’99, pages 473–482, London, UK, UK, 1999. Springer-Verlag.

10. Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. An
auto-tuning framework for parallel multicore stencil computations. In Proceedings
of the International Parallel & Distributed Processing Symposium (IPDPS), pages
1–12, April 2010.

11. Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and
Katherine Yelick. Implicit and explicit optimizations for stencil computations. In
MSPC ’06: Proceedings of the 2006 workshop on Memory System Performance and
Correctness, pages 51–60, New York, NY, USA, 2006. ACM.

12. Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick.
Impact of modern memory subsystems on cache optimizations for stencil com-
putations. In MSP ’05: Proceedings of the 2005 workshop on Memory System
Performance, pages 36–43, New York, NY, USA, 2005. ACM Press.

13. Jean Kormann, Pedro Cobo, and Andres Prieto. Perfectly matched layers for
modelling seismic oceanography experiments. Journal of Sound and Vibration,
317(1-2):354 – 365, 2008.

14. Gabriel Marin, Collin McCurdy, and Jeffrey S. Vetter. Diagnosis and optimization
of application prefetching performance. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS ’13, pages
303–312, New York, NY, USA, 2013. ACM.

15. John D. McCalpin. Stream: Sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991-
2007. A continually updated technical report. http://www.cs.virginia.edu/stream/.

16. Collin McCurdy, Gabriel Marin, and Jeffrey S Vetter. Characterizing the impact
of prefetching on scientific application performance. In International Workshop on

23

Performance Modeling, Benchmarking and Simulation of HPC Systems (PMBS13),
Denver, CO, 2013.

17. Sanyam Mehta, Zhenman Fang, Antonia Zhai, and Pen-Chung Yew. Multi-stage
coordinated prefetching for present-day processors. In Proceedings of the 28th ACM
International Conference on Supercomputing, ICS ’14, pages 73–82, New York, NY,
USA, 2014. ACM.

18. Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick.
Performance modeling and analysis of cache blocking in sparse matrix vector mul-
tiply. Technical Report UCB/CSD-04-1335, EECS Department, University of Cal-
ifornia, Berkeley, 2004.

19. Shah M. Faizur Rahman, Qing Yi, and Apan Qasem. Understanding stencil code
performance on multicore architectures. In Proceedings of the 8th ACM Interna-
tional Conference on Computing Frontiers, CF ’11, pages 30:1–30:10, New York,
NY, USA, 2011. ACM.

20. Aditi Ray, G. Kondayya, and S. V. G. Menon. Developing a finite difference time
domain parallel code for nuclear electromagnetic field simulation. IEEE Transac-
tion on Antennas and Propagation, 54:1192–1199, April 2006.

21. Gabriel Rivera and Chau Wen Tseng. Tiling optimizations for 3D scientific com-
putations. In Proc. ACM/IEEE Supercomputing Conference (SC 2000), page 32,
Washington, DC, USA, November 2000. IEEE Computer Society.

22. Robert Strzodka, Mohammed Shaheen, and Dawid Pajak. Impact of system and
cache bandwidth on stencil computation across multiple processor generations. In
Proc. Workshop on Applications for Multi- and Many-Core Processors (A4MMC)
at ISCA 2011, June 2011.

23. O. Temam, C. Fricker, andW. Jalby. Cache interference phenomena. In Proceedings
of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’94, pages 261–271, New York, NY, USA, 1994.
ACM.

24. Jan Treibig and Georg Hager. Introducing a performance model for bandwidth-
limited loop kernels. In Proceedings of the 8th International Conference on Parallel
Processing and Applied Mathematics, volume 6067 of PPAM’09, pages 615–624.
Springer-Verlag, 2009.

25. Samuel Webb Williams, Andrew Waterman, and David A. Patterson. Roofline:
An insightful visual performance model for floating-point programs and multicore
architectures. Technical Report UCB/EECS-2008-134, EECS Department, Uni-
versity of California, Berkeley, Oct 2008.

