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The Big Data Deluge

Balaji Subramaniam (balaji@cs.vt.edu)

• What is Big Data?

– High volume, velocity and variety of information assets that demand 
cost-effective, innovative forms of information storage and 
processing for enhanced insight and decision making.

• Characteristics of Big Data

– Volume

– Velocity

– Variety
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• NASA Center for Climate Simulation 

– Stores 32 petabytes of climate and weather data - volume

• CERN – Large Hadron Collider

– 150 million sensors delivering data 40 million times a second 
(approximately 700 MB/s) - velocity

• Next Generation Sequencing

– Sequencing instruments have considerable heterogeneity in terms of 
cost, speed, throughput, read lengths and error rates - variety
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• NASA and CERN use Apache Cassandra (a NoSQL data store) to 
handle the volume, velocity and the variety of big data
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• Why NoSQL?

• Growth in unstructured data

Source: http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext
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• But storing, retrieving and managing such volumes of data requires 
massive computing infrastructure

– Apple’s Cassandra deployment uses over 75000 nodes to store 10PB 
of data
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Power: First-Order Design Constraint in Data Centers

“Data centers will be the fastest growing part of the global IT sector energy footprint 
as our online world rapidly expands; their energy demand will increase 81% by 2020.”

Source: Clicking Clean: How Companies are Creating the Green Internet, GreenPeace, April, 2014

Balaji Subramaniam (balaji@cs.vt.edu)
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Severe Underutilization in Data Centers

Source: L. A. Barroso et al.,  The Datacenter as a Computer, 2013
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Servers are heavily 
underutilized
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Severe Underutilization in Data Centers

Source: L. A. Barroso et al.,  The Datacenter as a Computer, 2013

Average CPU utilization 
of 20000 servers over a 

three-month period 

CPU Utilization

Region of data center 
operation 

Servers typically 
operate between 

10%-50% utilization 

Balaji Subramaniam (balaji@cs.vt.edu)
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Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007
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• Consume power proportional to utilization

• Advocate improvements in non-peak power efficiency

• Enhance data center energy efficiency via non-peak 
power efficiency improvements

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

Balaji Subramaniam (balaji@cs.vt.edu)
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Power Efficiency at Different Levels of Utilization
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• Apache Cassandra full system power consumption at different load-
levels
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Power Efficiency at Different Levels of Utilization  

• Near energy-proportional power consumption at high load-levels

• Significant gap between ideal and energy-proportional power 
consumption in the region of typical data center operation

Region of data center 
operation 

Opportunity for significant 
improvement in power efficiency

Balaji Subramaniam (balaji@cs.vt.edu)
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• Techniques to improve energy proportionality

– Two schools of thought exists

• Improve energy proportionality by provisioning power

• Improve energy proportionality by provisioning resource

Resource Provisioning

Node 1 Node 2

Hibernate or Sleep

Improving Energy Proportionality
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Our Vision

Can we improve energy 
proportionality?

System Power Trend

Ideal System Power Trend

Power and/or
Resource Provisioning
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Evaluation Setup

• Data-Server: Apache Cassandra

– Distributed key-value store

• Evaluation setup

– Yahoo Cloud Serving Benchmark (YCSB)

– Workload: Read-only and update-only

– 10 million records

– Replication factor of 3

• Evaluation platform

– Four Intel Xeon E5-2620 nodes

– 16 GB of memory per node

– 256 GB hard disk per node

Balaji Subramaniam (balaji@cs.vt.edu)
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Power Management Interface:
Intel’s Running Average Power Limit (RAPL)

• Introduced in Intel Sandy Bridge processors

• Capabilities exposed

– Energy metering

– Power limiting

• Subsystems over which we have control via RAPL
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• Capabilities exposed

– Energy metering

– Power limiting

• Subsystems over which we have control via RAPL

– Package (processor package) subsystem

– PP0 (processor core) subsystem
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• Introduced in Intel Sandy Bridge processors

• Capabilities exposed

– Energy metering

– Power limiting

• Subsystems over which we have control via RAPL

– Package (processor package) subsystem

– PP0 (processor core) subsystem

– DRAM (memory) subsystem

DRAM

Power Management Interface:
Intel’s Running Average Power Limit (RAPL)

Balaji Subramaniam (balaji@cs.vt.edu)
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• Large differences in average, 95% and 99% latency curves
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• Typical knee in latency curve
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Improving Energy Proportionality

• Constraints on 99% latency = 1000ms

• Constraints on 99% latency = 600ms

• Three provisioning techniques evaluated

– Power provisioning

– Resource provisioning

– Hybrid provisioning

Balaji Subramaniam (balaji@cs.vt.edu)



synergy.cs.vt.edu
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Contributions

• Baseline energy proportionality and latency

– Power inefficiencies exists at different load-levels

– Large differences between average, 95%-ile and 99%-ile
latencies at different load-levels

• Power vs. latency trade-offs

– Latency can be traded for power consumption

– Proper resource provisioning provides large power savings

– Hybrid provisioning provides the best power savings

Balaji Subramaniam (balaji@cs.vt.edu)
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• Why NoSQL?

• Growth in unstructured data

Source: http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext
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Baseline Power Consumption
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