

On the Energy Proportionality of Distributed NoSQL Data Stores

Balaji Subramaniam and Wu-chun Feng

Department of Computer Science

Virginia Tech

The Big Data Deluge

- What is Big Data?
 - High volume, velocity and variety of information assets that demand cost-effective, innovative forms of information storage and processing for enhanced insight and decision making.
- Characteristics of Big Data
 - Volume
 - Velocity
 - Variety

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data volume

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data volume
- CERN Large Hadron Collider
 - 150 million sensors delivering data 40 million times a second (approximately 700 MB/s)

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data volume
- CERN Large Hadron Collider
 - 150 million sensors delivering data 40 million times a second (approximately 700 MB/s) - velocity

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data volume
- CERN Large Hadron Collider
 - 150 million sensors delivering data 40 million times a second (approximately 700 MB/s) - velocity
- Next Generation Sequencing
 - Sequencing instruments have considerable heterogeneity in terms of cost, speed, throughput, read lengths and error rates

- NASA Center for Climate Simulation
 - Stores 32 petabytes of climate and weather data volume
- CERN Large Hadron Collider
 - 150 million sensors delivering data 40 million times a second (approximately 700 MB/s) - velocity
- Next Generation Sequencing
 - Sequencing instruments have considerable heterogeneity in terms of cost, speed, throughput, read lengths and error rates - variety

• NASA and CERN use Apache Cassandra (a NoSQL data store) to handle the volume, velocity and the variety of big data

• Why NoSQL?

- Why NoSQL?
 - Scalability

Client Writes/s by node count – Replication Factor = 3

- Why NoSQL?
 - Growth in unstructured data

Source: http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext

- But storing, retrieving and managing such volumes of data requires massive computing infrastructure
 - Apple's Cassandra deployment uses over 75000 nodes to store 10PB of data

Power: First-Order Design Constraint in Data Centers

"Data centers will be the fastest growing part of the global IT sector energy footprint as our online world rapidly expands; their energy demand will increase 81% by 2020."

Source: Clicking Clean: How Companies are Creating the Green Internet, GreenPeace, April, 2014

Severe Underutilization in Data Centers

Balaji Subramaniam (balaji@cs.vt.edu)

Invent the Future

Severe Underutilization in Data Centers

Source: L. A. Barroso et al., The Datacenter as a Computer, 2013

Balaji Subramaniam (balaji@cs.vt.edu)

Invent the Future

Severe Underutilization in Data Centers

Source: L. A. Barroso et al., The Datacenter as a Computer, 2013

WirginiaTech

Consume power proportional to utilization

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

- Consume power proportional to utilization
- Advocate improvements in non-peak power efficiency

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

- Consume power proportional to utilization
- Advocate improvements in non-peak power efficiency
- Enhance data center energy efficiency via non-peak power efficiency improvements

Source: L. A. Barroso et al., The Case for Energy-Proportional Computing, IEEE Computer, 2007

Consume power proportional to load on the system (ideal case)

Consume power proportional to load on the system (ideal case)

Balaji Subramaniam (balaji@cs.vt.edu)

Consume power proportional to load on the system (ideal case)

UrginiaTech

Consume power proportional to load on the system (ideal case)

Consume power proportional to load on the system (ideal case)

Consume power proportional to load on the system (ideal case)

Consume power proportional to load on the system (ideal case)

Power Efficiency at Different Levels of Utilization

 Apache Cassandra full system power consumption at different loadlevels

Power Efficiency at Different Levels of Utilization

• Near energy-proportional power consumption at high load-levels

Power Efficiency at Different Levels of Utilization

- Near energy-proportional power consumption at high load-levels
- Significant gap between ideal and energy-proportional power consumption in the region of typical data center operation

- Techniques to improve energy proportionality
 - Two schools of thought exists

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power
 - Improve energy proportionality by provisioning resource

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power
 - Improve energy proportionality by provisioning resource

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power
 - Improve energy proportionality by provisioning resource

- Techniques to improve energy proportionality
 - Two schools of thought exists
 - Improve energy proportionality by provisioning power
 - Improve energy proportionality by provisioning resource

UrginiaTech

Our Vision

Power and/or Resource Provisioning

SyNeRG? synergy.cs.vt.edu

Our Vision

Can we improve energy

proportionality?

WirginiaTech

Balaji Subramaniam (balaji@cs.vt.edu)

SyNeRG synergy.cs.vt.edu

Evaluation Setup

- Data-Server: Apache Cassandra
 - Distributed key-value store

Evaluation Setup

- Data-Server: Apache Cassandra
 - Distributed key-value store
- Evaluation setup
 - Yahoo Cloud Serving Benchmark (YCSB)
 - Workload: Read-only and update-only
 - 10 million records
 - Replication factor of 3

Evaluation Setup

- Data-Server: Apache Cassandra
 - Distributed key-value store
- Evaluation setup
 - Yahoo Cloud Serving Benchmark (YCSB)
 - Workload: Read-only and update-only
 - 10 million records
 - Replication factor of 3
- Evaluation platform

Invent the Future

- Four Intel Xeon E5-2620 nodes
- 16 GB of memory per node
- 256 GB hard disk per node

- Introduced in Intel Sandy Bridge processors
- Capabilities exposed
 - Energy metering
 - Power limiting
- Subsystems over which we have control via RAPL

- Introduced in Intel Sandy Bridge processors
- Capabilities exposed
 - Energy metering
 - Power limiting
- Subsystems over which we have control via RAPL
 - Package (processor package) subsystem

- Introduced in Intel Sandy Bridge processors
- Capabilities exposed
 - Energy metering
 - Power limiting
- Subsystems over which we have control via RAPL
 - Package (processor package) subsystem
 - PPO (processor core) subsystem

synergy.cs.vt.edu

- Introduced in Intel Sandy Bridge processors
- Capabilities exposed
 - Energy metering
 - Power limiting
- Subsystems over which we have control via RAPL
 - Package (processor package) subsystem
 - PPO (processor core) subsystem

- Introduced in Intel Sandy Bridge processors
- Capabilities exposed
 - Energy metering
 - Power limiting
- Subsystems over which we have control via RAPL
 - Package (processor package) subsystem
 - PP0 (processor core) subsystem
 - DRAM (memory) subsystem

Baseline Energy Proportionality

VirginiaTech

Baseline Energy Proportionality

UrginiaTech

Load-Level vs. Latency

• Large differences in average, 95% and 99% latency curves

iroinia

Invent the Future

Load-Level vs. Latency

• Typical knee in latency curve

'irginia'

Invent the Future

Load-Level vs. Latency

- Constraints on 99% latency = 1000ms
- Constraints on 99% latency = 600ms
- Three provisioning techniques evaluated
 - Power provisioning
 - Resource provisioning
 - Hybrid provisioning

Improving Energy Proportionality Read-Only Workload

Hybrid provisioning performs the best

Invent the Future

Improving Energy Proportionality Read-Only Workload

• Differences due to resource provisioning

VirginiaTech

Improving Energy Proportionality Read-Only Workload

Power Savings

Contributions

- Baseline energy proportionality and latency
 - Power inefficiencies exists at different load-levels
 - Large differences between average, 95%-ile and 99%-ile latencies at different load-levels

Contributions

- Baseline energy proportionality and latency
 - Power inefficiencies exists at different load-levels
 - Large differences between average, 95%-ile and 99%-ile latencies at different load-levels
- Power vs. latency trade-offs
 - Latency can be traded for power consumption
 - Proper resource provisioning provides large power savings
 - Hybrid provisioning provides the best power savings

• Why NoSQL?

- Why NoSQL?
 - Scalability

Client Writes/s by node count – Replication Factor = 3

- Why NoSQL?
 - Growth in unstructured data

Source: http://cacm.acm.org/magazines/2013/12/169933-data-science-and-prediction/fulltext

Baseline Power Consumption

