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Background and motivation

▪ Fault detection and group membership are a critical to fault tolerance in large-
scale storage systems:

– Server joins group → migrate data to new server to improve load balance

– Server leaves group → re-replicate data to maintain redundancy

▪ Why is it so important to get this right?

– Inefficient (i.e., slow) fault detection may result in data loss

• Slow recovery increases the window of vulnerability to coincident failures

– Inaccurate fault detection interferes with performance and availability

• False positives can trigger (unnecessary) costly rebuilds of the storage system and 
job failures

▪ Approach: use discrete event simulation to evaluate candidate algorithms at scale

– What algorithms are viable?

– Identify parameters needed for HPC storage systems

– Explore long-running behavior not captured by analytical models

 
2  Carns et al. @ PMBS 2014, New Orleans, LA



Background: conventional group membership

 

▪ Storage servers exchange heartbeat messages 
to detect faults

▪ A subset of daemons use a distributed 
consensus algorithm (like PAXOS) to maintain a 
consistent view of membership state

▪ Clients need not actively participate
– Retrieve state from servers or monitors 

when needed
– Limit the scaling requirements

3  Carns et al. @ PMBS 2014, New Orleans, LA



Alternative: group membership with SWIM

 

▪ Similarities:
– Clients need not actively participate
– Servers exchange heartbeat messages to 

detect faults
▪ Differences:

– No dedicated service for distributed 
consensus

– Each storage server maintains its own view 
of the system

– Disseminate updates using epidemic 
principles

SWIM does not provide strongly consistent 
ordering of group updates, but it does guarantee 
convergence and time-bounded completeness.  

These semantic differences may require some 
accommodations from the storage service.

4  Carns et al. @ PMBS 2014, New Orleans, LA



SWIM protocol background

Scalable Weakly-consistent Infection-style Process Group Membership Protocol [1]

▪ Scalability

– Probe-based (ping/ack) failure detection

• The failure of a probe triggers indirect ping requests from other peers

• A node is suspected to be failed if both direct and indirect pings fail

– Infection-style (a.k.a. epidemic-style or gossip-style) dissemination
• Membership updates are piggybacked on ping/ack messages
• A suspected node is confirmed as failed after a suspicion timeout with no live messages

▪ Other properties:

– Expected network load & time to detect a failed node is independent of group size

– Epidemic dissemination and random pinging is robust against message loss

– Parameters can be tuned to adjust sensitivity, network utilization, dissemination capacity, etc.

[1] Das, A., Gupta, I., Motivala, A.: Swim: Scalable weakly-consistent infection-style process group membership protocol. In: Proceedings of 
the 2002 International Conference on Dependable Systems and Networks. pp. 303–312. DSN ’02, IEEE Com-

puter Society Press, Washington, DC, USA (2002)
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Simulation methodology

▪ We developed a high-resolution model of the SWIM protocol using the 
CODES framework [2]

– Leverages ROSS, a high-throughput, optimistic PDES

– Individual network message costs are calculated using the LogGP network 
model

– Full-duplex network message queueing at each node

▪ Simulation strategy:
– Use existing analytical models from the literature to choose initial parameters

– Cross-validate analytical and simulation predictions

– Use simulation to evaluate behavior that can’t be predicted using analytical 
models

– Assess if the SWIM protocol is viable for further comparative studies

[2] Cope, J., Liu, N., Lang, S., Carns, P., Carothers, C., Ross, R.: Codes: Enabling co-design of multilayer exascale storage 
architectures. In: Proceedings of the Workshop on Emerging Supercomputing Technologies (2011)
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Target: adapting SWIM for HPC

▪ O(thousands) of file servers

– Protocol does not execute on compute nodes

▪ Low latency network and RTT

– Enables short protocol periods (if desired)

▪ Tolerate transient errors < 15 seconds 

– Long enough to absorb NIC firmware restarts, busy servers, etc.

▪ Take action (confirm failure) within 30 seconds 

– Based on expectations from HA deployments in the field

▪ Keep network load “low”

– What is an acceptable threshold here?

Different targets could be chosen for different use cases.
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Initial parameters

Starting points chosen based on existing analytical models.

▪ Protocol period length: 200 ms 

– Time between randomized probes

▪ Suspicion timeout: 15 seconds (75 protocol periods)

– Time before a suspected node is confirmed

▪ Packet size: 256 bytes 

– Allows up to 12 updates to be piggybacked per probe message

▪ Subgroup size (k) is critical as well; more on that later

▪ Expect 10s of messages per server per second
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Validation with analytical model: detection

▪ t_detect: elapsed time between a failure and the first suspicion by a 
single peer

○ Expected to be constant with scale
▪ Simulation results:

○ 15 samples per box plot
○ randomized failure time and failed node

▪ Variability
○ Initial detection time as slow as ~2 seconds in the worst case
○ Due to random ordering of probes, not congestion
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Validation with analytical model: dissemination

▪ t_dissem: time needed to propagate a state update to all servers
○ Expected to be logarithmic

▪ Simulation results
○ 15 samples per box plot
○ randomized failure time and failed node

▪ Simulation consistently faster than analytical prediction
○ round robin probing insures maximum dispersal
○ de-synchronized probe intervals reduces per-round latency

▪ (detection + dissemination) < 4s, but additional 15s suspicion 
timeout is used to avoid false positives

 
10  Carns et al. @ PMBS 2014, New Orleans, LA



Tolerating packet loss

▪ Subgroup size (k): the number of 
peers to use for indirect pings

▪ Figure shows 30 minutes of 
simulated time for 2048 servers 
with no true failures, just lost 
packets

▪ Vary k from 1 to 6
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▪ Increasing k:
○ reduces number of false suspicions by requiring more confirmation 

from indirect pings
○ reduces number of false positives (i.e. false confirmations) by 

increasing epidemic capacity and opportunities to revoke suspicion
▪ What is the downside?



Tolerating packet loss

▪ Figure shows utilization metrics 
from the same 30-minute 
simulations

▪ msg/node/s: average number of 
messages transmitted by each 
server per second

▪ updates/msg: average number of 
piggyback slots used per message
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▪ Per server load increases linearly with k in lossy network environment
○ Total load is still modest

▪ Piggyback slot usage indicates if the epidemic dissemination protocol is 
saturated or not

▪ K=6 imposes minimal overhead to insure robust message loss tolerance



Conclusions

▪ The SWIM protocol is a promising approach to group membership in 
large-scale HPC storage systems

– Robust against transient failures
– Rapid detection and dissemination
– Low network overhead

▪ We successfully modeled the SWIM protocol using parallel discrete event 
simulation in the CODES framework

– Especially useful in exploring long-running behavior
– Offers the potential to scale to much larger sizes 

(not ready in time for this presentation)
– Can be integrated with other CODES models

▪ Future work
– Comparison with other group membership protocols
– More complex failure scenarios
– Impact of semantic differences in group membership protocols
– Consider the use of SWIM for detection of client failures
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