Decomposition of relational schemes

Desirable properties of decompositions Dependency preserving decompositions Lossless join decompositions

Desirable properties of decompositions 1

Lossless decompositions

A decomposition of the relation scheme R into subschemes $R_1, R_2, ..., R_n$ is **lossless** if, given tuples $r_1, r_2, ..., r_n$ in $R_1, R_2, ..., R_n$ respectively, such that r_i and r_j agree on all common attributes for all pairs of indices (i,j), the – uniquely defined - tuple derived by joining $r_1, r_2, ..., r_n$ is in R.

Terminology: "lossless join" decomposition

Desirable properties of decompositions 3

Dependency preserving decompositions

A decomposition of the relation scheme R into subschemes $R_1, R_2, ..., R_n$ is **dependency preserving** if all the FDs within R can be derived from those within the relations $R_1, R_2, ..., R_n$.

If F is the set of dependencies defined on R, then the requirement is that the set G of dependencies that can be obtained as projections of dependencies in F⁺ onto $R_1, R_2, ..., R_n$ together generate F⁺.

Note carefully that it is not enough to check whether projections of dependencies in **F** onto $R_1, R_2, ..., R_n$ together generate F⁺.

Desirable properties of decompositions 4

An illustrative example

SCAIP1

Replace SADDRESS by CITY and AGENT fields in SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

Semantics: Each supplier is based in a city, and the enterprise responsible for setting up the database has an agent for each city.

Derive in this way a new relation SCAIP(S, C, A, I, P) where S is SNAME, C is CITY, A is AGENT etc.

Desirable properties of decompositions 5

An illustrative example

Derive in this way a relation SCAIP(S, C, A, I, P) where S is SNAME, C is CITY, A is AGENT etc.

SCAIP2

The set F of functional dependencies is generated by:

 $S \to C,\, C \to A,\, S \mid \, \to P$

... each supplier sited in one city

- ... each city has one agent serving it
- ... each supplier sells each given item at fixed price

Desirable properties of decompositions 7

An illustrative example $F \equiv \{ S \rightarrow C, C \rightarrow A, S I \rightarrow P \}$

Consider decomposition { SCA, SIP }:

Also dependency preserving: the sets of dependencies { S \rightarrow C, C \rightarrow A } and { S I \rightarrow P } are included in the projections of F⁺ onto SCA and SIP.

This means that the FDs in F, from which all dependencies are generated, are explicit in the sub-schemes SCA and SIP in this case.

Desirable properties of decompositions 6

An illustrative example

SCAIP3

 $\mathsf{F} \equiv \{ \: S \to C, \: C \to \mathsf{A}, \: S \: \mathsf{I} \to \mathsf{P} \: \}$

Consider decomposition { SCA, SIP }: This is lossless: Suppose that the tuples t_{SCA} and t_{SIP} are in the relations SCA and SIP respectively.

If t_{SCA} and t_{SIP} agree on S, then their join is a tuple $t_{SCAIP} \equiv (s,c,a,i,p)$, where c and a are determined by the attribute s and the i and p attributes are such that p is determined by s and i. Any tuple that satisfies these two FDs is in the relation SCAIP.

Desirable properties of decompositions 8

An illustrative example

SCAIP5

 $\mathsf{F} \equiv \{ \; S \rightarrow C, \, C \rightarrow \mathsf{A}, \, S \; \mathsf{I} \rightarrow \mathsf{P} \; \}$

In decomposition {SIP, SCA}, have problems with SCA.

E.g. update anomaly if want to store an agent for a city in which no supplier is currently located

Get around this by decomposing SCA further:

- decompose as {SC, CA}
- decompose as {SC, SA}
- decompose as {CA, SA}

Desirable properties of decompositions 9

An illustrative example $F \equiv \{ S \rightarrow C, C \rightarrow A, S I \rightarrow P \}$

decompose as { SC, CA }

this is both lossless join and dependency preserving

• decompose as { SC, SA }

In this case the images of the FDs in F⁺ on SC and SA are $\{S \rightarrow C\}$ and $\{S \rightarrow A\}$ respectively, but the dependency C \rightarrow A can't be inferred. So this decomposition is not dependency preserving.

Dependency Preserving Decompositions 1

Let R be a relation scheme, ρ a decomposition of R and F a set of functional dependencies of R.

If Z is a set of attributes in R, then

 $\Pi_{Z}(F) = \{ X \to Y \in F \mid XY \subseteq Z \}$ The decomposition ρ is dependency preserving if F is logically implied by the union of the sets of functional dependencies $\Pi_{T}(F^{+})$, where T ranges over all sub-schemes of ρ .

Desirable properties of decompositions 10

An illustrative example

 $\mathsf{F} \equiv \{ \mathsf{S} \to \mathsf{C}, \mathsf{C} \to \mathsf{A}, \mathsf{S} \mathsf{I} \to \mathsf{P} \}$

SCAIP7

• decompose as {CA, SA}

In this case, have possibility that Fred is agent for Hull and York, and PVC based in Hull. Then:

(Hull, Fred) * (PVC, Fred) = (PVC, Hull, Fred) (York, Fred) * (PVC, Fred) = (PVC, York, Fred)

The second join is not in the relation SCA. So this decomposition is not lossless join.

Dependency Preserving Decompositions 2

Illustrative Example

$$\begin{split} \mathsf{R} &= \mathsf{ABCD} \text{ and } \rho = \{\mathsf{AB}, \mathsf{BC}, \mathsf{CD}\} \\ \mathsf{F} &= \{ \mathsf{A} \to \mathsf{B}, \mathsf{B} \to \mathsf{C}, \mathsf{C} \to \mathsf{D}, \mathsf{D} \to \mathsf{A} \} \\ \text{Question: is } \rho \text{ dependency preserving?} \\ \text{Certainly } \{ \mathsf{A} \to \mathsf{B}, \mathsf{B} \to \mathsf{C}, \mathsf{C} \to \mathsf{D} \} \text{ are captured.} \\ \text{How about } \mathsf{D} \to \mathsf{A} \text{? Is also, because} \\ &\quad \mathsf{F}^+ \supseteq \{ \mathsf{B} \to \mathsf{A}, \mathsf{C} \to \mathsf{B}, \mathsf{D} \to \mathsf{C} \} \\ \text{and these FDs are recorded in the sub-schemes} \end{split}$$

AB, BC, CD. Hence the dependency $D \rightarrow A$ is also captured.

```
Dependency Preserving Decompositions 3

Algorithm to check dependency preserving

OK := true

for each dependency X \rightarrow Y in F do

begin

Z := X

while changes occur in Z do

for each sub-scheme T of \rho do

Z := Z \cup \{A \mid Z \cap T \rightarrow A \text{ is in } \Pi_T(F^+) \}

if not Z \supseteq Y then OK := false

end
```

Dependency Preserving Decompositions 5

Illustrating the algorithm in action

Consider the relation scheme R = ABCD, the dependencies F = { A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A }, and the decomposition ρ = { AB, BC, CD }

Clear that A \rightarrow B, B \rightarrow C and C \rightarrow D are preserved ... can prove that the dependency D \rightarrow A is preserved by applying the algorithm

Computation of {D}⁺ over R using F yields {A,B,C,D}

Dependency Preserving Decompositions 4

Algorithm to check dependency preserving ... while changes occur in Z do for each sub-scheme T of ρ do $Z := Z \cup \{A \mid Z \cap T \rightarrow A \text{ is in } \Pi_T(F^+)\}$... To compute $\{A \mid Z \cap T \rightarrow A \text{ is in } \Pi_T(F^+)\}$ calculate $((Z \cap T)^+ \cap T)$ where the closure $(Z \cap T)^+$ is computed with respect to F over the entire relation scheme R.

This avoids need to compute F⁺.

Dependency Preserving Decompositions 6

Illustrating the algorithm in action (cont.) Computation of {D}⁺ over R using F yields {A,B,C,D} Z={D} initially. At each iteration of the while-loop, the algorithm introduces a new attribute into Z. For instance, on the first pass, introduce C when T = CD, on second pass, then introduce B when T = BC etc. Hence: $Z_0 = \{D\}, Z_1 = \{C,D\}, Z_2 = \{B,C,D\}, Z_3 = \{A,B,C,D\}$ where Z_i is the value of Z after the ith iteration. This proves that dependency D \rightarrow A is preserved.

Lossless join decomposition

Let R be a relation scheme, ρ a decomposition of R and F a set of functional dependencies of R. Suppose that the sub-schemes in ρ are {R₁, R₂, ..., R_k}.

ρ has lossless join if every extensional part r for R that satisfies F is such that $r = Π_1(r) |×| Π_2(r) |×| ... |×| Π_k(r)$, where $Π_i(r)$ denotes the projection of r onto R_i. Informally: r is the natural join of its projections onto the sub-schemes R₁, R₂, ..., R_k.

Lossless Join Decompositions 3

Principles of lossless join decomposition

Let $\rho = \{ R_1, R_2, ..., R_k \}$ be a decomposition of R. Define the mapping $m_{\rho}()$ on possible extensions for the relation scheme R [whether or not they satisfy the functional dependencies in R, if there are any], via:

$$\begin{split} m_\rho(r) &= \Pi_1(r) \mid \times \mid \Pi_2(r) \mid \times \mid ... \mid \times \mid \Pi_k(r), \text{ where } \Pi_i(r) \\ \text{denotes the projection of } r \text{ on sub-scheme } R_i. \end{split}$$

Notation: use r_i to denote $\Pi_i(r)$, for 1 Ω i Ω k.

Lossless Join Decompositions 2

Examples (revisited as a reminder)

 $\mathsf{SCAIP} = \mathsf{SIP} \mid \times \mid \mathsf{SCA} = \mathsf{SIP} \mid \times \mid \mathsf{SC} \mid \times \mid \mathsf{CA} \quad \textit{lossless}$

 $\mathsf{SCA} \subseteq \mathsf{SA} \mid \times \mid \mathsf{CA} \text{ and } \mathsf{SCA} \neq \mathsf{SA} \mid \times \mid \mathsf{CA} \qquad \textit{lossy}$

... have possibility that Fred is agent for Hull and York, and that PVC is a supplier based in Hull. Then:

(Hull, Fred) * (PVC, Fred) = (PVC, Hull, Fred) (York, Fred) * (PVC, Fred) = (PVC, York, Fred)

The second join is not in the relation SCA. So this decomposition is not lossless join.

Lossless Join Decompositions 4

Principles of lossless join decomposition (cont.)

Lemma: With R, ρ and r_i as above

a) $r \subseteq m_{\rho}(r)$ b) if $s = m_{\rho}(r)$, then $\Pi_i(s) = r_i$ c) $m_{\rho}(m_{\rho}(r)) = m_{\rho}(r)$

The condition on $m_{\rho}()$ specified in part c) identifies it as a **closure** operation.

Cf. *closure* of an interval of real numbers e.g. $1 < \alpha \le 2$

Proof of lemma

a) let $t \in r$. Then $\Pi_i(t) \in r_i$ showing that

 $\mathbf{t} \in \Pi_1(\mathbf{r}) \mid \times \mid \Pi_2(\mathbf{r}) \mid \times \mid \dots \mid \times \mid \Pi_k(\mathbf{r}) = \mathbf{m}_o(\mathbf{r})$

b) by part a) $r \subseteq m_{\rho}(r)=s$, so that $\Pi_i(s) \supseteq r_i$.

But if $t \in s$, then projection of t onto sub-scheme R_i is in r_i by definition of natural join, so that $\Pi_i(s) \subseteq r_i$ also. c) $m_o(m_o(r)) = m_o(s)$ by definition of s

 $= \Pi_1(\mathbf{s}) |\times| \Pi_2(\mathbf{s}) |\times| \dots |\times| \Pi_k(\mathbf{s})$

 $= \Pi_1(\mathbf{r}) |\times| \Pi_2(\mathbf{r}) |\times| \dots |\times| \Pi_k(\mathbf{r})$

= $m_{\rho}(r)$ using definition of m_{ρ} and part b).

Lossless Join Decompositions 7

Testing for lossless join decomposition (cont.) Construct table of α 's and β 's, and repeatedly transform the

rows by taking account of the FDs until either one row is all α 's or no further transformation is possible ...

Principle of algorithm: devise a symbolic representation for tuples $s_1, s_2, ..., s_k$ from $R_1, R_2, ..., R_k$ respectively that are joinable, and for tuples $t_1, t_2, ..., t_k$ in R so that s_i is projection of t_i onto R_i for each i. Impose all those conditions on $t_1, t_2, ..., t_k$ that follow from the FDs in F. If none of the t_i 's is the join of $s_1, s_2, ..., s_k$, then they define an extension for R that exhibits a lossy join.

Lossless Join Decompositions 6

Testing for lossless join decomposition assuming all data dependencies in *R* to be **functional**

Input: A relation scheme $R=A_1A_2 \dots A_n$, a set of functional dependencies F, and a decomposition $\rho = \{ R_1, R_2, \dots, R_k \}$

Output: p is or is not a lossless join decomposition

Construct table of α 's and β 's, and repeatedly transform the rows by taking account of the FDs until either one row is all α 's or no further transformation is possible ...

Lossless Join Decompositions 8

Testing for lossless join decomposition (cont.)

Construct table of α 's and β 's, and repeatedly transform the rows by taking account of the FDs until either one row is all α 's or no further transformation is possible ...

Principle of algorithm: devise a symbolic representation for tuples $s_1, s_2, ..., s_k$ from $R_1, R_2, ..., R_k$ respectively that are joinable, and for tuples $t_1, t_2, ..., t_k$ in R so that s_i is projection of t_i onto R_i for each i. Impose all those conditions on $t_1, t_2, ..., t_k$ that follow from the FDs in F. If none of the t_i 's is the join of $s_1, s_2, ..., s_k$, then they define an extension for R that exhibits a lossy join.

Method of testing for lossless join decomposition

1. Construct a table

with n columns (corresponding to attributes) with k rows (corresponding to sub-schemes)

Initialise the table at row i column j by entering α_j if attribute A_j appears in R_i and by entering β_{ij} otherwise

NB α 's represent joinable tuples, padded out to R by β 's

Lossless Join Decompositions 10

Method of testing for lossless join decomposition (cont.)

2. Repeatedly modify the table to take account of all dependencies until no further updates occur

i.e. if $X \rightarrow Y$ and two rows agree on all the attributes in X then modify them so that they also agree on all attributes in Y. Explicitly, change attributes in Y thus:

- if one symbol is an α_i make the other an α_i
- if both symbols are of form $\beta_{\star j}$ make both β_{ij} or $\beta_{i'j}$ arbitrarily.

On termination declare lossless join if and only if one of the rows is $\alpha_1\alpha_2$... $\alpha_n.$

Lossless Join Decompositions 11

Illustrative example

Verify the decomposition SCAIP = SIP $|\times|$ SC $|\times|$ CA is a lossless join

Initial table

S C A I P

Functional dependencies are S \rightarrow C, C \rightarrow A, S I \rightarrow P

Lossless Join Decompositions 12

Illustrative example

Functional dependencies are $S \rightarrow C, C \rightarrow A, S I \rightarrow P$
and from these arrive via stage 2 of algorithm at table:

at which point no further dependencies apply.

Row 1 shows that the result is lossless

Principle of the lossless join algorithm illustrated ...

Consider the example: in the initial table

Lossless Join Decompositions 15

Algorithm shows that S	CA is a lo	ossy jo	in of S/	A and C	A:
FDs are S \rightarrow C, C \rightarrow A		S	С	А	
initial and	SA	α_1	β_{12}	α_3	
final form of table	CA	β_{21}	α_2	α_3	
Fred is agent for Hull [β Hull, there is another	12] and Yo supplier	ork, Ρ\ [β ₂₁] sa	/C is ba ay GPT	ased in at York	ζ.
Take as extension of So	CA the pa	air of <i>v</i>	<i>alid</i> tup	les:	
(PVC, Hull, Fred) [row	1] and (G	BPT, Y	ork, Fre	ed) [row	2]
Project onto SA and CA	, get				
(PVC, Fred), (Hull, Fr	red), (GP	T, Fre	d), (Yoi	rk, Fred)
Take natural join to get	<i>rogue</i> tu	ples:			
(PVC, York, Fred) [α ₁ o	$(\alpha_2 \alpha_3], (G)$	PT, Hu	II, Fred) [β ₂₁ β ₁₂	α_3]

Lossless Join Decompositions 14

Principle of the lossless join algorithm illustrated ... Key question: are the functional dependencies enough to ensure that $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$ is itself a tuple in the relation SCAIP? After modification to take account of all FDs, suitable tuples matching the template for equality of values in the 3 rows in the table define a valid extensional part for SCAIP: can substitute them to get a concrete relation r. Either one of the 3 tuples *is* $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$ *lossless* or $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \in m_p(r) \setminus r$ *lossy*

Lossless Join Decompositions 16

Theorem

If $\rho = \{S, T\}$ is a decomposition of R, and F is the set of FDs for R, then ρ is a lossless join decomposition with respect to F if and only if

either T\S \subseteq (S \cap T)⁺ or S\T \subseteq (S \cap T)⁺.

Proof: Applying the method of the algorithm to test for lossless join, get initial table of the form:

	$S \cap T$	S\T	T∖S
Т	αα	ββ	αα
S	αα	αα	ββ

Theorem

If $\rho = \{S, T\}$ is a decomposition of R, and F is the set of FDs for R, then ρ is a lossless join decomposition with respect to F if and only if either S\T $\subseteq (S \cap T)^+$ or S\T $\subseteq (S \cap T)^+$.

Proof (cont.) ... get initial table of the form:

	$S \cap T$	S\T	T∖S
Т	αα	ββ	αα
S	αα	αα	ββ
o final ta	blo is this to	blo modified	so that ava

The final table is this table modified so that every column labelled by an attribute in $(S \cap T)^+$ is changed to an α , from which the theorem follows.

Lossless Join Decompositions 19

Exercise for lossless join algorithm from Ullman 1982:

Take R = ABCDE

 $R_1 = AD, R_2 = AB, R_3 = BE, R_4 = CDE, R_5 = AE$ with the functional dependencies

 $A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A$ In this example, the identification of β_{*_i} 's is crucial.

Can trace the algorithm through three stages ...

Lossless Join Decompositions 18

Application of Thm: SCA is a lossy join of SA and CA, as neither of the dependencies $A \rightarrow S$, $A \rightarrow C$ is valid.

Corollary to the theorem: If R is a relation scheme, and $X \rightarrow A$ is a functional dependency in R, where A is a an attribute, X is a set of attributes not containing A, and XA is a proper subset of R, then R₁=XA, R₂=R\A is a lossless join decomposition of R.

Proof: $R_1 \cap R_2 \supseteq X$, hence $R_1 \setminus R_2 = A \in (R_1 \cap R_2)^+$.

Lossless Join Decompositions 20

Split R = ABCDE into R₁=AD, R₂=AB, R₃=BE, R₄=CDE, R₅=AE with the FDs A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A

	А	В	С	D	E
AD	α_1	β_{12}	β_{13}	α_4	β_{15}
AB	α_1	α2	β ₂₃	β ₂₄	β ₂₅
BE	β ₃₁	α2	β ₃₃	β ₃₄	α_5
CDE	β ₄₁	β ₄₂	α3	α_4	α_5
AE	α_1	β ₅₂	β ₅₃	β ₅₄	α_5

= ABCD e FDs A	E into $F \rightarrow C, B$	$R_1 = AD, R_2$ $\rightarrow C, C =$	₂ =AB, R ₃ = → D, DE -	=BE, R ₄ = → C, CE	CDE, $R_5 = A$ $\rightarrow A$
	А	В	С	D	E
AD	α_1	β_{12}	β ₁₃	α_4	β_{15}
AB	α_1	α2	β ₁₃	β_{24}	β_{25}
BE	β_{31}	α2	β ₁₃	β_{34}	α_5
CDE	β ₄₁	β42	α3	α4	α_5
AE	α_1	β_{52}	β ₁₃	β_{54}	α_5

Lossless Join Decompositions 22

Split R = ABCDE into R₁=AD, R₂=AB, R₃=BE, R₄=CDE, R₅=AE with the FDs A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A

	А	В	С	D	E
AD	α_1	β_{12}	α_3	α4	β15
AB	α_1	α2	α_3	α4	β ₂₅
BE	α1	α2	α3	α4	α_5
CDE	α1	β_{42}	α_3	α_4	α_5
AE	α_1	β ₅₂	α_3	α4	α_5