
Decomposition of relational schemes

Desirable properties of decompositions
Dependency preserving decompositions

Lossless join decompositions

Desirable properties of decompositions 1

Lossless decompositions

A decomposition of the relation scheme R into

subschemes R1, R2, ..., Rn is lossless if, given tuples

r1, r2, ..., rn in R1, R2, ..., Rn respectively, such that ri

and rj agree on all common attributes for all pairs of

indices (i,j), the − uniquely defined - tuple derived by
joining r1, r2, ..., rn is in R.

Terminology: "lossless join" decomposition

Desirable properties of decompositions 3

Dependency preserving decompositions
A decomposition of the relation scheme R into
subschemes R1, R2, ..., Rn is dependency
preserving if all the FDs within R can be derived
from those within the relations R1, R2, ..., Rn.
If F is the set of dependencies defined on R, then the
requirement is that the set G of dependencies that
can be obtained as projections of dependencies in F+

onto R1, R2, ..., Rn together generate F+.
Note carefully that it is not enough to check whether
projections of dependencies in F onto R1, R2, ..., Rn
together generate F+.

Desirable properties of decompositions 4

An illustrative example SCAIP1

Replace SADDRESS by CITY and AGENT fields in
SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

Semantics: Each supplier is based in a city, and the
enterprise responsible for setting up the database has
an agent for each city.

Derive in this way a new relation SCAIP(S, C, A, I, P)
where S is SNAME, C is CITY, A is AGENT etc.

Desirable properties of decompositions 5

An illustrative example SCAIP2

Derive in this way a relation SCAIP(S, C, A, I, P)

where S is SNAME, C is CITY, A is AGENT etc.

The set F of functional dependencies is generated by:

S → C, C → A, S I → P

... each supplier sited in one city

... each city has one agent serving it

... each supplier sells each given item at fixed price

Desirable properties of decompositions 6

An illustrative example SCAIP3

F ≡ { S → C, C → A, S I → P }

Consider decomposition { SCA, SIP }:
This is lossless: Suppose that the tuples tSCA and tSIP

are in the relations SCA and SIP respectively.

If tSCA and tSIP agree on S, then their join is a tuple
tSCAIP ≡ (s,c,a,i,p), where c and a are determined by the
attribute s and the i and p attributes are such that p is
determined by s and i. Any tuple that satisfies these two
FDs is in the relation SCAIP.

Desirable properties of decompositions 7

An illustrative example SCAIP4

F ≡ { S → C, C → A, S I → P }

Consider decomposition { SCA, SIP }:

Also dependency preserving: the sets of dependencies
{ S → C, C → A } and { S I → P }

are included in the projections of F+ onto SCA and SIP.

This means that the FDs in F, from which all
dependencies are generated, are explicit in the
sub-schemes SCA and SIP in this case.

Desirable properties of decompositions 8

An illustrative example SCAIP5

F ≡ { S → C, C → A, S I → P }

In decomposition {SIP, SCA}, have problems with SCA.

E.g. update anomaly if want to store an agent for a city
in which no supplier is currently located

Get around this by decomposing SCA further:
• decompose as {SC, CA}
• decompose as {SC, SA}
• decompose as {CA, SA}

Desirable properties of decompositions 9

An illustrative example SCAIP6

F ≡ { S → C, C → A, S I → P }
• decompose as { SC, CA }

this is both lossless join and dependency preserving

• decompose as { SC, SA }

In this case the images of the FDs in F+ on SC and
SA are {S → C} and {S → A} respectively, but the
dependency C → A can't be inferred. So this
decomposition is not dependency preserving.

Desirable properties of decompositions 10

An illustrative example SCAIP7

F ≡ { S → C, C → A, S I → P }

• decompose as {CA, SA}

In this case, have possibility that Fred is agent for
Hull and York, and PVC based in Hull. Then:

(Hull, Fred) * (PVC, Fred) = (PVC, Hull, Fred)
(York, Fred) * (PVC, Fred) = (PVC, York, Fred)

The second join is not in the relation SCA.
So this decomposition is not lossless join.

Dependency Preserving Decompositions 1

Let R be a relation scheme, ρ a decomposition of R and
F a set of functional dependencies of R.

If Z is a set of attributes in R, then
ΠZ(F) = { X → Y ∈ F | XY ⊆ Z }

The decomposition ρ is dependency preserving if F is
logically implied by the union of the sets of functional
dependencies ΠT(F+), where T ranges over all
sub-schemes of ρ.

Dependency Preserving Decompositions 2

Illustrative Example

R = ABCD and ρ = {AB, BC, CD}
F = { A → B, B → C, C → D, D → A }
Question: is ρ dependency preserving?

Certainly { A → B, B → C, C → D } are captured.
How about D → A? Is also, because

F+ ⊇ { B → A, C → B, D → C }
and these FDs are recorded in the sub-schemes

AB, BC, CD.
Hence the dependency D → A is also captured.

Dependency Preserving Decompositions 3

Algorithm to check dependency preserving

OK := true
for each dependency X → Y in F do
begin

Z := X
while changes occur in Z do

for each sub-scheme T of ρ do
Z := Z ∪ { A | Z ∩ T → A is in Π T(F+) }

if not Z ⊇ Y then OK := false
end

Dependency Preserving Decompositions 4

Algorithm to check dependency preserving
… while changes occur in Z do

for each sub-scheme T of ρ do
Z := Z ∪ { A | Z ∩ T → A is in Π T(F+) }

...

To compute { A | Z ∩ T → A is in Π T(F+) } calculate
((Z ∩ T)+ ∩ T)

where the closure (Z ∩ T)+ is computed with respect to
F over the entire relation scheme R.

This avoids need to compute F+.

Dependency Preserving Decompositions 5

Illustrating the algorithm in action

Consider the relation scheme R = ABCD,
the dependencies F = { A → B, B → C, C → D, D → A },
and the decomposition ρ = { AB, BC, CD }

Clear that A → B, B → C and C → D are preserved
…can prove that the dependency D → A is preserved

by applying the algorithm

Computation of {D}+ over R using F yields {A,B,C,D}

Dependency Preserving Decompositions 6

Illustrating the algorithm in action (cont.)
Computation of {D}+ over R using F yields {A,B,C,D}

Z={D} initially. At each iteration of the while-loop, the

algorithm introduces a new attribute into Z. For

instance, on the first pass, introduce C when T = CD, on

second pass, then introduce B when T = BC etc. Hence:

Z0 = {D}, Z1 = {C,D}, Z2 = {B,C,D}, Z3 = {A,B,C,D}

where Zi is the value of Z after the ith iteration.

This proves that dependency D → A is preserved.

Lossless Join Decompositions 1

Lossless join decomposition

Let R be a relation scheme, ρ a decomposition of R and
F a set of functional dependencies of R. Suppose
that the sub-schemes in ρ are {R1, R2, ... , Rk}.

ρ has lossless join if every extensional part r for R that

satisfies F is such that r = Π1(r) |×| Π2(r) |×| ... |×| Πk(r),
where Πi(r) denotes the projection of r onto Ri.

Informally: r is the natural join of its projections onto the
sub-schemes R1, R2, ... , Rk.

Lossless Join Decompositions 2

Examples (revisited as a reminder)

SCAIP = SIP |×| SCA = SIP |×| SC |×| CA lossless

SCA ⊆ SA |×| CA and SCA ≠ SA |×| CA lossy

… have possibility that Fred is agent for Hull and York,
and that PVC is a supplier based in Hull. Then:

(Hull, Fred) * (PVC, Fred) = (PVC, Hull, Fred)
(York, Fred) * (PVC, Fred) = (PVC, York, Fred)

The second join is not in the relation SCA.
So this decomposition is not lossless join.

Lossless Join Decompositions 3

Principles of lossless join decomposition

Let ρ = { R1, R2, ... , Rk } be a decomposition of R.
Define the mapping mρ() on possible extensions for the

relation scheme R [whether or not they satisfy the
functional dependencies in R, if there are any], via:

mρ(r) = Π1(r) |×| Π2(r) |×| ... |×| Πk(r), where Πi(r)
denotes the projection of r on sub-scheme Ri.

Notation: use ri to denote Πi(r), for 1 Ω i Ω k.

Lossless Join Decompositions 4

Principles of lossless join decomposition (cont.)

Lemma: With R, ρ and ri as above
a) r ⊆ mρ(r)
b) if s = mρ(r), then Πi(s) = ri

c) mρ(mρ(r)) = mρ(r)

The condition on mρ() specified in part c) identifies it as
a closure operation.

Cf. closure of an interval of real numbers e.g. 1 < α ≤ 2

Lossless Join Decompositions 5

Proof of lemma
a) let t ∈ r. Then Πi(t) ∈ ri showing that

t ∈ Π1(r) |×| Π2(r) |×| ... |×| Πk(r) = mρ(r)
b) by part a) r ⊆ mρ(r)=s, so that Πi(s) ⊇ ri.

But if t ∈ s, then projection of t onto sub-scheme Ri is
in ri by definition of natural join, so that Πi(s) ⊆ ri also.

c) mρ(mρ(r)) = mρ(s) by definition of s

= Π1(s) |×| Π2(s) |×| ... |×| Πk(s)

= Π1(r) |×| Π2(r) |×| ... |×| Πk(r)
= mρ(r) using definition of mρ and part b).

Lossless Join Decompositions 6

Testing for lossless join decomposition
assuming all data dependencies in R to be functional

Input: A relation scheme R=A1A2 ... An, a set of
functional dependencies F, and a decomposition

ρ = { R1, R2, ... , Rk }

Output: ρ is or is not a lossless join decomposition

Construct table of α’s and β’s, and repeatedly transform
the rows by taking account of the FDs until either one
row is all α’s or no further transformation is possible ...

Lossless Join Decompositions 7

Testing for lossless join decomposition (cont.)
Construct table of α’s and β’s, and repeatedly transform the

rows by taking account of the FDs until either one row is all α’s

or no further transformation is possible ...

Principle of algorithm: devise a symbolic representation
for tuples s1, s2, ... , sk from R1, R2, ... , Rk respectively
that are joinable, and for tuples t1, t2, ... , tk in R so that
si is projection of ti onto Ri for each i. Impose all those
conditions on t1, t2, ... , tk that follow from the FDs in F.
If none of the ti’s is the join of s1, s2, ... , sk, then they
define an extension for R that exhibits a lossy join.

Lossless Join Decompositions 8

Testing for lossless join decomposition (cont.)
Construct table of α’s and β’s, and repeatedly transform the

rows by taking account of the FDs until either one row is all α’s

or no further transformation is possible ...

Principle of algorithm: devise a symbolic representation
for tuples s1, s2, ... , sk from R1, R2, ... , Rk respectively
that are joinable, and for tuples t1, t2, ... , tk in R so that
si is projection of ti onto Ri for each i. Impose all those
conditions on t1, t2, ... , tk that follow from the FDs in F.
If none of the ti’s is the join of s1, s2, ... , sk, then they
define an extension for R that exhibits a lossy join.

Lossless Join Decompositions 9

Method of testing for lossless join decomposition

1. Construct a table
with n columns (corresponding to attributes)
with k rows (corresponding to sub-schemes)

Initialise the table at row i column j
by entering αj if attribute Aj appears in Ri

and by entering βij otherwise

NB α’s represent joinable tuples, padded out to R by β’s

Lossless Join Decompositions 10

Method of testing for lossless join decomposition (cont.)

2. Repeatedly modify the table to take account of all
dependencies until no further updates occur
i.e. if X → Y and two rows agree on all the attributes
in X then modify them so that they also agree on all
attributes in Y. Explicitly, change attributes in Y thus:
• if one symbol is an αi make the other an αi

• if both symbols are of form β*j make both βij or βi'j
arbitrarily.

On termination declare lossless join if and only if one
of the rows is α1α2 ... αn.

Illustrative example

Verify the decomposition SCAIP = SIP |×| SC |×| CA
is a lossless join

Initial table

Functional dependencies are S → C, C → A, S I → P

Lossless Join Decompositions 11

 S C A I P
SIP α1 β12 β13 α4 α5
SC α1 α2 β23 β24 β25
CA β31 α2 α3 β34 β35

Illustrative example

Functional dependencies are S → C, C → A, S I → P
and from these arrive via stage 2 of algorithm at table:

at which point no further dependencies apply.

Row 1 shows that the result is lossless

Lossless Join Decompositions 12

 S C A I P
SIP α1 α2 α3 α4 α5
SC α1 α2 α3 β24 β25
CA β31 α2 α3 β34 β35

Principle of the lossless join algorithm illustrated ...

Consider the example: in the initial table

… the rows can be seen as representing generic tuples
from SIP, SC and CA that are joinable (i.e. agree on
all common attributes). The join of these three tuples
will necessarily be α1α2α3α4α5.

Lossless Join Decompositions 13

 S C A I P
SIP α1 β12 β13 α4 α5
SC α1 α2 β23 β24 β25
CA β31 α2 α3 β34 β35

Principle of the lossless join algorithm illustrated ...

Key question: are the functional dependencies enough
to ensure that α1α2α3α4α5 is itself a tuple in the
relation SCAIP?

After modification to take account of all FDs, suitable
tuples matching the template for equality of values in
the 3 rows in the table define a valid extensional part for
SCAIP: can substitute them to get a concrete relation r.

Either one of the 3 tuples is α1α2α3α4α5 lossless
or α1α2α3α4α5 ∈ mρ(r) \ r lossy

Lossless Join Decompositions 14

Algorithm shows that SCA is a lossy join of SA and CA:
FDs are S→C, C→A S C A
initial and SA α1 β12 α3

final form of table CA β21 α2 α3

Fred is agent for Hull [β12] and York, PVC is based in
Hull, there is another supplier [β21] say GPT at York.

Take as extension of SCA the pair of valid tuples:
(PVC, Hull, Fred) [row 1] and (GPT, York, Fred) [row 2]
Project onto SA and CA, get

(PVC, Fred), (Hull, Fred), (GPT, Fred), (York, Fred)
Take natural join to get rogue tuples:
(PVC, York, Fred) [α1 α2 α3], (GPT, Hull, Fred) [β21 β12 α3]

Lossless Join Decompositions 15

Theorem
If ρ = {S, T} is a decomposition of R, and F is the set
of FDs for R, then ρ is a lossless join decomposition
with respect to F if and only if

either T\S ⊆ (S ∩ T)+ or S\T ⊆ (S ∩ T)+.

Proof: Applying the method of the algorithm to test for
lossless join, get initial table of the form:

S ∩ T S\T T\S
T α...α β...β α...α
S α...α α...α β...β

Lossless Join Decompositions 16

Theorem
If ρ = {S, T} is a decomposition of R, and F is the set of FDs for
R, then ρ is a lossless join decomposition with respect to F if
and only if either S\T ⊆ (S ∩ T)+ or S\T ⊆ (S ∩ T)+.

Proof (cont.) ... get initial table of the form:
S ∩ T S\T T\S

T α...α β...β α...α
S α...α α...α β...β

The final table is this table modified so that every
column labelled by an attribute in (S ∩ T)+ is changed
to an α, from which the theorem follows.

Lossless Join Decompositions 17

Application of Thm: SCA is a lossy join of SA and CA,
as neither of the dependencies A → S, A → C is valid.

Corollary to the theorem: If R is a relation scheme, and
X → A is a functional dependency in R, where A is a
an attribute, X is a set of attributes not containing A,
and XA is a proper subset of R, then R1=XA, R2=R\A
is a lossless join decomposition of R.

Proof: R1∩R2 ⊇ X, hence R1\R2 =A ∈ (R1∩R2)+ .

Lossless Join Decompositions 18

Exercise for lossless join algorithm from Ullman 1982:

Take R = ABCDE
R1 = AD, R2 = AB, R3 = BE, R4 = CDE, R5 = AE

with the functional dependencies
A → C, B → C, C → D, DE → C, CE → A

In this example, the identification of β*j's is crucial.

Can trace the algorithm through three stages …

Lossless Join Decompositions 19

Split R = ABCDE into R1=AD, R2=AB, R3=BE, R4=CDE, R5=AE
with the FDs A → C, B → C, C → D, DE → C, CE → A

Lossless Join Decompositions 20

 A B C D E

AD α1 β12 β13 α4 β15

AB α1 α2 β23 β24 β25

BE β31 α2 β33 β34 α5

CDE β41 β42 α3 α4 α5

AE α1 β52 β53 β54 α5

Split R = ABCDE into R1=AD, R2=AB, R3=BE, R4=CDE, R5=AE
with the FDs A → C, B → C, C → D, DE → C, CE → A

Lossless Join Decompositions 21

 A B C D E

AD α1 β12 β13 α4 β15

AB α1 α2 β13 β24 β25

BE β31 α2 β13 β34 α5

CDE β41 β42 α3 α4 α5

AE α1 β52 β13 β54 α5

Split R = ABCDE into R1=AD, R2=AB, R3=BE, R4=CDE, R5=AE
with the FDs A → C, B → C, C → D, DE → C, CE → A

Lossless Join Decompositions 22

 A B C D E

AD α1 β12 α3 α4 β15

AB α1 α2 α3 α4 β25

BE α1 α2 α3 α4 α5

CDE α1 β42 α3 α4 α5

AE α1 β52 α3 α4 α5

