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Abstract

Dynamic textured sequences are characterized by the dtitara be-
tween many particles or objects in the scene. Based on readidk the im-
ages of the sequence are interpreted as the output of a finearegressive
process driven by white Gaussian noise. We extend earligt lyoincreas-
ing the amount temporal information included when learrihmg motion in
the scene, allowing the models to capture complex moticiepeg which ex-
tend over multiple frames, thereby increasing the per@ptccuracy of the
synthesized results. To overcome problems of dynamic nstdbility, we
apply Burg’s Maximum Entropy Spectral Analysis technigae ffarameter
estimation, which is found to be reliably stable on smal&nples of training
data, even with higher-order dynamics.

1 Introduction

A dynamic texture is an image sequence characterized bytbections between many
particles or objects in the scene. Examples of dynamic tegtimclude, flames flickering,
leaves blowing, and crowds observed from a distance. Fdr soenes, learning the
motion by segmenting and tracking the trajectory of eachpmment is computationally
intensive; a holistic representation of the scene and themiz motivated.

One well-known approach is to infer linear, autoregresaielels of dynamic tex-
tures. The frames of the image sequence are interpreted aatiput of stochastic process
driven by white Gaussian noise. The appearance of the ssefescribed by a subspace
model and the dynamics of the scene are captured within tihispgce by a generative
model that determines the hidden state of the system. Rrework using autoregres-
sive models for dynamic texture synthesis, [6] in particused a first-order dynamical
model. Incorporating only information from the preceedsigte prevents the capture
of oscillations and other motions that rely on higher-otgenporal dependencies in the
image sequence. Also, with first-order models the percéptuglity of the synthesized
scene deteriorates within a short interval.

In this paper, we propose the use of higher-order autorsigeedynamic texture mod-
els. We find that increasing the amount of temporal inforaratvhen learning the in-
terframe dependencies allows the model to capture comlggrps which extend over
multiple frames, increasing the perceptual accuracy o$yimhesized results.

When incorporating a higher-order dynamical model, issafesodel stability arise.
To overcome these issues we apply the Maximum Entropy Spektralysis (MESA)



technique for linear prediction [3]. This approach is conmirocontrol theory but, to our
knowledge, not typically used in the field of computer viseord new to dynamic texture
modeling. This estimation technique is more reliably stalyid perceptually accurate on
smaller samples of training data, even with a higher-orgeachical model, than when
using the Yule-Walker equations.

2 Reated Work

Texture analysis and synthesis was pioneered by Julesafff2}he observation of the
correlation between statistical and perceptual simjlasfttextured images. Since then,
many image-based rendering techniques have emerged ftiresyzing static and dy-
namic textured scenes.

Non-parametric methods synthesize images using probtbiiampling of the ob-
served data, either pixel by pixel [5, 9, 10, 27] or by copypajches [8, 15, 28]. In
non-parametric dynamic texture synthesis, notable rehdtze emerged using patch-
based techniques, where image patches are interpretegiasrss of the image sequence
[14, 22]. The synthesized temporal textures generatedthétbe methods tend to be per-
ceptually realistic, however, the images are limited to glas of the original sequence.
Moreover, because a model of the scene is not explicitlyiiate the synthesized results
cannot be generalized and further processing, viz. cleasdn [4], is limited.

Parametric methods for dynamic textures were introducgéth Modeling dynamic
textures as the output of a spatio-temporal autoregrepsdaess was shown to be suc-
cessful with certain classes of textures and motions [2B)dver, the framework could
not model spatially non-stationary motion, such as rotatio [6], these limitations are
addressed by representing dynamic textures as the outatirsf-order subspace process
with a Gaussian driving distribution,
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In their appearance model (1) each imgges considered an expansion of the state vari-
ablex which is defined in the principal component subspace. I ihiamic model
(2) the current hidden state of the system is derived fromeali combination of the el-
ements in the preceeding state, described by mafrand additive Gaussian noise with
covarianc&@/W' is used to stochastically drive the process.

In [6], the dynamic model parameters are learned within fieearance model sub-
space. If the dynamic and appearance information is noarabfe, this approach deter-
mines only an approximation to the optimal parameter esémao guarantee an optimal
parameter estimate, the appearance and dynamic modelgtararwould be learned si-
multaneously. In [26] the dynamic model is computed in thginal input space and the
appearance model is constructed to retain a maximum amduhé édnformation with
respect to the dynamics of the system. In [23] an iteratiygr@gch is suggested where
the results of [26] are used for initialization. Unfortuelgtthese techniques are compu-
tationally infeasible on common workstations, given h@jmension input such as image
data. Instead, we implement a closed-form solution to apprate the optimal parameter
estimates, as in [6].

In contrast to the prevalent use of first-order dynamical e®éh earlier work, we
advocate the use of higher-order models in the autoregeepsocess. We show that



higher-order models produce improved synthesized seggenith perceptual quality
maintained over a longer time interval. The advantageseftitoregressive framework
are preserved: separating the appearance and dynamicpboents enables classifica-
tion [4], facilitates recognition applications [21] andopides a more manipulable model
to explore video editing [7]. Moreover, incorporating irdhce from states lagged fur-
ther in time captures the temporal dependencies that aebtmapf modeling oscillations.
Using higher-order dynamics, however, introduces issfiesoalel stability. We draw on
a parameter estimation technique used in control theorgnfirave the stability of the
resulting model, the Maximum Entropy Spectral Analysisteque [3].

3 Autoregressive Mode

In this work a dynamic texture is modeled as the output of daragressive process con-
sisting of an appearance model, which determines the dt#te gsystem, and a dynamic
model, which captures how the states change over time:

u
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At time t, each imagey, in column vector form, is defined by the expansion of a
hidden state variable;. In the generative appearance model (3) the m&tgxojects the
subspace representation into the image space, and theneenonormally distributed ad-
ditive noise captures the uncertainty with covariaBc&he dynamic model (4) contains
a deterministic component (i.e. a Markov-model describel b= {F, 1,Fy2,...,Fyu})
and a stochastic component (i.e. a Gaussian driving digiwib with covarianc&VWw').

As in [6], we ignhore the additive appearance naigéi.e., takeu; = 0) and capture all
additive process noise within the driving distributign

We learn the parametetsF, andW for the Li-order autoregressive model of an image
sequence. Initializing the model with a setiptonsecutive image frames, one can gen-
erate novel image sequences which resemble the origireal daé model is successful if
the synthetic sequences are perceptually similar to tlgnalisequence and, ideally, the
model parameters are sufficiently generalizable to suppodgnition tasks [21].

3.1 Appearance Mode

While the optimal estimator findS, F, andwW simultaneously, following [6], we use prin-
cipal component analysis (PCA) to define the appearance InpadameterC and we
learn the dynamical model parametérandW within the PCA subspace. To determine
C, each image of the observed sequence is converted into nolaator form, the mean
image is subtracted, and the resulting vectors are coredaietto forny;’, a matrix of size

p x T wherep is the number of pixels per image times the number of coloanakls, and

T is the number of imageg (< p). LetY] = UsVT be a singular value decomposition
(SVD) whereU is px p,Zis px 7, andV is T x 7. We choose| < p and defineC = U
WhereU is a matrix containing the firgq principal directions found in the columns of
U. LetV be the firstg columns oV ands be a diagonal matrix of the largest singular
values fromz. We define the subspace representatiowofo beX] = SVT. There are
non-linear alternatives which, in future work, could bedigéthin the appearance model;
in particular, [20] is developed specifically for spatiattieres.



3.2 Dynamic Model

The dynamic model comprises a deterministic linear moddlaaGaussian driving dis-
tribution. The true dynamical process which generated thygal sequence may contain
both linear and non-linear components. Nonetheless, werasthat a linear autoregres-
sive model is sufficient to describe the visual process. rinfdion not captured within
the linear component is modeled in the stochastic comparfehe dynamics.

The Yule-Walker equations can be used to solve for the caeftis of the dynamic
modelin the least squares sense, as in [6]. However, thimappassumes the stationarity
of the training data sample statistics, an assumption wirieaks down for short dynamic
texture segments. As the order of the dynamic model incsessdaccuracy of the sample
statistics deteriorate, the dynamic model determinedthighYule-Walker method is often
unstable. In an unstable linear system, the predictedsdizte towards infinity over time,
resulting in perceptually unrealistic synthesized seqaen

The Maximum Entropy Spectral Analysis (MESA) technique \dasgeloped for sin-
gle channel signals [3] and extended to handle multidinoeradidata [16, 24]. Although
common in the control theory literature, to our knowledgis technique has not been
applied to dynamic textures. When modeling dynamic tetuire practice only small
portions of the sequences are available. Inaccurate moekl#t when the higher-order
sample statistics do not adequately reflect the structudatiaa. The main contribution of
MESA is that by using a recursive approach the higher-ord&carrelations are never
calculated directly from the sample data, despite the agsamof stationarity. An addi-
tional advantage of MESA, is that the stability of the reisgitmodel is guaranteed [13].
Moreover, compared to using the Yule-Walker equations, euand that fewer training
frames are necessary to obtain an accurate model [11].

MESA uses a recursive approach that depends on the coetffioEoth forward and
backward models,

u
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wheree,; andby; are the forward and backward residuals. In (5), future state
predicted using the past states of the system, whereaspag6tates are predicted using
future data. The coefficients of arnrorder model are as follows,

T
T
wherel is an identity matrix of size) x g. These model coefficients have the following

recursive relationship [3],
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MatricesF,, ;, andBy, ;, are called theeflection coefficientand O is the zero matrix; all
are of sizeqx ¢. To solve forF, in (9), we solve for the reflection coefficients in a
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least squares sense, minimizing the squared residual @revaged over the sequence.
The expected value of the reflection coefficients given thevdiod residual error is the
same as the solution given the backward residual error [8jvé¥er, averaging the two
solutions is a more robust approach since we are dealingawithited sample of the true
sequence. We solve for reflection coefficients which minanitee weighted sum of the
squared forward and backward residual errors averagediowsequence, i.e.,

T
En = [(ey,t)TQfe“,t—F(b“.t)Tbe“,t7 (11)
t=p+1

where matrice®" andQP weight the impact of the forward and backward components.
The relative accuracy of the lower-order forward and backwaodels provides confi-
dence measures for current iteration. The higher the caveei of the driving distribu-
tion, the more uncertainty in the model and therefore the temfidence we have in the
resulting estimates for the reflection coefficients. We Betweights to the inverse of
the covariance of the driving distribution for the forwamtdabackward models of order
M — 1, called thepower matrice} i.e.,

A =rL L QP=FL (12)
where,

Ply = [RoR: ... Ruia]Fuos, (13)

PPy = [Ri1Rwz ... Ro|By 1 (14)

andR; is the sample autocorrelation of the observed sequence thelassumption of
stationarity,
1 T
R = X (Xe—i) -
T—H t:§+l

(15)

The power matrices are positive definite, and thereforeriiiate, in any physically real-

izable linear dynamic system [23]. Using nonsingular weightrices provides a unique
solution to the minimization of (11) [24]. Moreover, chooegisuch weights simplifies
the equation significantly. By taking the derivative§f with respect to the reflection

coefficientsF,, and using Weightﬁ’Ll andP}j_l, the following is derived in [24],

f
HFy + P 1Fuu(P

1) D = —2G, (16)

which one can use to solve fBf; ,. D andH are the covariance of the offset forward and
backward residuals respectively, aBds the correlation between the offset residuals:

T—u - rfy
D= t; G H= t; But(Buy)T, G= t; Bui(en)T. 17)

Ln the forward model shown in equation ($YW' is the power matrix.



The forward and backward offset residuals are defined asidl|

u—1
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We solve forB, , using the generalized conjugate relationship [3],

f _
Bup = (P_q) YFu) PR (20)

From (9), (10), (13), (14) , and (20), the following recuesiypdates can be derived for
the power matrices [3],

f f

Pu = Pu1—(Fuw) P iFup, (21)
f

Ph = Pii—(Buw) Py 1By (22)

Using this recursive definition, rather than (13) and (14¢,higher-order autocorrelation
estimates are not calculated from the sample sequence.

To initialize the algorithm, in the zero-order model we amsuthe sequence is the
output of the stochastic component of the model. Therdﬂ;}r& PP = Ry, g0t = %+1
andfBot = X.

To summarize MESA: Given the coefficients for a model of order 1, F;,_;, and
the state-space projectiaox;, of the observed image sequence, (13) and (14) are used to
determine the power matriceF:?iLl andPﬁ_l, and (18) and (19) solve for the offset resid-
uals,&,+ andBy¢. The forward reflection coefficients, ;;,, which minimize the squared
sum of weighted residual errors, are determined by (16) hadbackward reflection co-
efficientsB,, ;, are calculated using the generalized conjugate relatiptigf). Using the
reflection coefficient§,, , andBy, ;, and the lower-order model parametgys 1, (9) and
(10) provide the coefficients, for a model of ordey.

4 Results

There are several ways one can evaluate and compare syethé@siage sequences [1].
Here we use the one-step prediction error to quantify théitgwd our results, as in [6],

u
erru(i) = |IYi+C(Y Fuj(Ci-j)) 2, (23)
=1

whereC® = CT(CC") 1 is the pseudo-inverse @f

Higher-order dynamic models are shown to improve the aweoag-step prediction
error for the test sequences in Fig. 1. As more temporal i&ion is used to gener-
ate subsequent image frames, the prediction error of thihegized images decreases.

2The notation for the indices of the offset residuals is sohmveounter-intuitive. Nonetheless, it is used
throughout time-series literature and, for consistertoill be used here as well. Residualg: and ;¢ use
the estimation from models of ordgr— 1, however a different interval of states is used within thlewation.
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Figure 1: The effect of changing the orderof the dynamic model is shown for four
sequences: the fountain sequence [25] (blue), the fire segUg5] (yellow), the house
plant sequence [11] (green), and the walking sequence {&6).( A frame of each se-
guence is shown on the right. The house plant sequence viradraith T = 200 frames
and the others witlt = 80. Appearance model consisted of 25-dimensions. The t@pe-s
prediction error was average over al- 1 sets of initialization frames.

Depending on the type of motion in the scene, the advantageaand and third-order
dynamic models varies. In the house plant sequence théadsni swaying motion of the
leaves is not captured by first-order dynamics but can be kddesing second-order dy-
namics. Third-order dynamics, however, do not provide nfuctmer improvement. This
improvement is illustrated on the left in Fig. 2. The effeEtbanging the length of the
sequence used for training the dynamical model, is also showig. 2. For each length
the mean error was calculated from 20 models trained orrdifféntervals of the original
sequence. For each model, the medliairthe one-step prediction error is calculated over
40 initialization intervals sampled from the original seque at regular intervals.
Although convenient for optimization, the one-step préditerror alone is not suffi-
cient for evaluating of the overall quality of a synthesisequence. Without the ability to
consider extended intervals of time, the stability of theteyn is not captured. Moreover,
the mean-squared error does not measure perceptual qéalitgxample, increasing the
dimension of the appearance model decreases the predictamnbut beyond some small
dimension there was no difference in perceptual qualityrfost textured sequences.
We found a higher-order dynamical model to be necessarypgtumpendulum-like
movement, such as the swaying of the leaves in the housegglgnénce. In the synthetic
sequences generated by a first-order model the leaves flickereas, the sequences
generated by a second-order model capture the swayingmadti@rder to explore this,
one can analyze the temporal frequency of the image integisive expect the jittery
motion to exhibit more power at high-frequencies than thaysmg motion. A set of
image positions were randomly sampled according to a uniftistribution. The image
sequence was spatially blurred by a Gaussian and then neeastithe sampled locations.

3The median was used to accomodate short intervals of frantemerease robustness to the few instances
when the power matrix was ill-conditioned causing the etoaxplode.
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Figure 2: Results for the synthesized house plant sequeigel: The effect of increas-
ing the order of the dynamic model on house plant sequendbessgs. The one-step
prediction error results reflect the visually observed ltssincreasing from a -order
(yellow) to a 29-order (green) dynamic model improves accuracy of the sgitled se-
quence more than increasing from®-»rder to a #-order (blue) model. Models used
appearance models of 25-dimensions and training lengihs 70-2000 frames. RIGHT:
Average magnitude of the amplitude spectrum. The largeruamof high frequency
information in the #-order model (blue) is in loose agreement with the perceptib
the jittery motion in the video. The results from th&2rder model (red) more closely
resemble the training data (green).

After taking the Fourier transform of the resulting tempaignal, the magnitude of the
frequency was averaged over all sampled positions to obtaéngeneralized signal for
each synthesized sequence. A cosine temporal window wddesere taking the Fourier
transform to reduce windowing effects. The average angsigpectrum for the first and
second-order synthesized sequences of the house plant aideshown on the right in
Fig. 2. The larger amount of high frequency information ie fivst-order model is in
loose agreement with the perception of the jittery motiothavideo.

When the autoregresssive model is provided with a sufficiemiber of frames for
training, relative to MESA, the Yule-Walker method findsg@eters which generate im-
ages with a smaller one-step prediction error in the first fiemnes. A full sequence
cannot be generated using these parameters, howeversbdhbapredictions become in-
accurate over time due to model instability. The stabilitpnodels learned with MESA is
guaranteed, but the results of the model are not necesparitgptually accurate. In par-
ticular, without a sufficient amount of training data, theyeo matrices are ill-conditioned
and the error is significant. It is important to note, howetteat neither the Yule-Walker
method nor MESA will provide a useable model under such dardi.

41 Linear Modd Limitations

Our results demonstrate that a significant amount of the mew¢in the scene can be cap-
tured with a linear autoregressive model, especially withér-order dynamics. How-
ever, real-world visual scenes exhibit complex dynamics. e&pected, there are non-
linear components within most observed motions which atewsdl described by our



Figure 3: The higher-order dynamic models produce synthebich resemble the orig-
inal data over a longer interval. From left to right, framed2he flame sequence syn-
tehsized from ¥, 2" 3"9_order dynamic models, and the corresponding frame from the
original sequence.

model.

The deterministic component of the dynamic model providésear prediction of
the subsequent state and the final estimation lies withinladimaensional Gaussian dis-
tribution centered at this prediction. Similar images gmca more complex manifold in
the subspace and learning the manifold may require a lottaftdeensure a dense sample
of the image space [17]. Using linear dynamics with a Gauassiaving distribution will
not guarantee that predicted states remain on this manNtddeover, because the image
dataset is not convex slight inaccuracies in the prediatarse dispersion artifacts in the
synthesis. For example, in the fire sequence synthesis the flmaments are distinct and
compact initially, like the original sequence. As the ldngf the synthesis increases,
the state predictions decrease in accuracy, drift furtttenfthe manifold and the flames
are dispersed across the image plane. As the order of thel inadeases, however, the
syntheses resemble the original data over a longer intaxsahown in Fig. 3.

5 Conclusion

The results of this work illustrate how higher-order dynesrgontribute to the perceptual
accuracy of the novel synthesized sequences generateddrggessive models. The
complicated motion patterns which extend over multiplerfea of dynamic textures are
more adequately represented when additional temporahia#tion is provided during the
learning process and when generating the motion in the scene

Without sufficient training data, previously used techmigjfior learning autoregres-
sive model parameters produced unstable and inaccuratesrexs particular when using
higher-order dynamic models. To overcome this limitatiom applied MESA, a linear
prediction technique common in control theory literatufgick generates a reliably sta-
ble autoregressive model.

Dynamic textured sequences are complicated scenes withblegmotion patterns.
We have found that a significant amount of the perceptualgvamt information in the
scene is captured by higher-order linear autoregressivielmoThe models explored in
this work could be used either for an accurate prediction fevwaframes ahead in the
sequence or to capture a general description of the motion which more detail could
potentially be incorporated. The latter opens an intarggdirection for future research.
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