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Preface

This is a Tutorial Introduction to Functional Programming using the Miranda Language. As there
already exist quite a few books, this volume addresses the needs of the less able students. We draw
heavily from the existing literature as regards examples and exercises. However, a consistent notation
is followed.

Chapter 1 deals with the basic concepts of Functional Programming, and introduces Miranda Basic
Types.

Chapter 2 treats the Structured Types, Lists and Tuples, and then goes on to discuss the link between
pattern matching definitions and inductive proofs, and the question of efficiency of algorithms.

Chapter 3 deals with Type Synonyms and Constructed Types in Miranda (also called Algebraic Types).
Some simple examples of such Concrete Types are given, followed by an end of Chapter Exercise.

Chapter 4 treats the Abstract Types in Miranda, starting with an outside view of Set Type, followed by
the Signature and Representation of sets. A few exercises form the end of Chapter exercises.

Chapter 5 is an approach to Formal Specification using Miranda Abstract Types. Executable specifictions
are illustrated by considering a simple application. The end of chapter exercises test the implementation
of functions used.

Chapters 6 and 7 extend the Abstract Types in Miranda to Maps and their use in an extended specifi-
cation for the problem used in Chapter 5.

Finally, in chapter 8, an animation package as a practical illustration of executable specifications is
described. Further details on it appear in Appendix A.

The book grew out of our lecture notes to second year degree students. The main requirement was to
cater for students with experience in Imperative Programming but with little mathematical maturity.

Thanks are due to Dr. Nick Godwin who contributed towards the introduction and establishment of
such a course in Coventry University.

The book by Bird and Wadler [BW88] has influenced our understanding of Functional Programming,
and we would like to express our appreciation of it.

The Animation Package grew out of Student Projects in Coventry University and uses the Thompson
Model for interactive functional programs [Tho90].

The answers to the end of chapter exercises are available in a separate booklet.






Chapter 1

Introduction

1.1 A functional view of computation

1.1.1 Paradigm

e Model
e Framework
e Mental picture of how to think about something

e Here, how to structure a computation.

1.1.2 The Imperative, Or Procedural Paradigm

Detail of how a given computation is to proceed

Conceptually close to the computer hardware

How to drive that hardware to perform the required computation

Sequences of instructions are organised into procedures. These instructions address and alter
contents of memory locations, and control their own sequence of operations (sequence, selection,

and iteration).

- Imperative style - example - PASCAL:

a := 100 ; * alter memory

b := d+e ; * alter memory + sequence
if a < b then * selection

begin

end



else

begin
end
while b >= 17 do * iteration

begin

end

e This corresponds to the von Neumann computer architecture:

— Modifiable data store,
— Stored instructions,

— Run-time instruction sequence determination.

Examples

FORTRAN, Ada, C, Modula-2.

Advantage

Procedural languages are close to the hardware, hence easy to understand.

Disadvantage

e Programs are very long.

e The central algorithm (i.e. the method for solving the problem) needs to include a lot of detail of
how to implement the method on the von Neumann computer (i.e. storage and manipulation of

values, and control of execution flow).

1.1.3 Aside - Recall that

e specification is the process of defining precisely what tasks the user requires the proposed software
system to perform. The specification should be concise, complete, and correct (this is no mean task!
). The specification is not usually executable: it is usually stated in textual, or other notational

form.

e implementation is the process of producing the programs to perform the tasks.



1.1.4 The Declarative paradigm

e This style of programming states what output the computation is to produce, for each possible
input. In this sense a declarative program is very like a specification (see above); there is some
discussion in the literature as to whether functional programs are actually executable specifications.
The style concentrates on the algorithms for problem solution, and avoids the unnecessary detail
of how values are to be stored and control of instruction sequence.

e Declarative languages can be split into three categories: Functional, Relational (or Logical), and
Specification languages.

e The functional paradigm specifies computation by means of mathematical functions. Examples:
Miranda, Haskell, Hope.

e The logic, or relational programming paradigm is based on mathematical relations. Examples:
Prolog, Poplog.

*ok %k The functional style example:

*okk Function Definitions in Miranda:

> square X = X * X

> mymin x y = X, if x <=y
> =y, if x>y
*% Another comparative example:
*% Imperative style - PASCAL:
SumSq := 0 ;
i:=N;
while i > 0 do
begin
SumSq := SumSq + i*i ;
i=i-1;
end
* ok Functional style - Miranda: (don’t worry about how it works for now!)

0

> sum_sq n = n*n + sum_sq (n-1)

> sum_sq O



1.2 Getting started - Miranda scripts and definitions

e Miranda programming will be done on System K/H.

e Note “&” denotes the Unix prompt

& mira

Miranda

e You are now talking to the Miranda interpreter.
e See lab exercises.

o “Expressions” of arbitrary complexity can be evaluated at the prompt.

1.2.1 Example:

Here are four user-entered expressions to be evaluated by the Miranda command-line interpreter, and
the results:

Miranda 2+3

5

Miranda 6-(3+4.2/2)
0.9

Miranda pi
3.14159265359

Miranda (max 5 10) * 2
20

Miranda square 6

36

Miranda

1.2.2 Standard Environment

e Miranda has a “standard”, or “built-in environment”, which defines all the arithmetic operators,
and a number of useful functions (e.g. ‘max’, above) and constants (e.g. ‘pi’, above).

e Miranda can evaluate expressions as long as these expressions refer to definitions known to the
Miranda interpreter.

e These known definitions are:

— definitions in the “standard environment” - see the Miranda online manual for details.

— function or constant definitions in the current user SCRIPT.



e A ‘script’ is simply a file containing a sequence of function and constant definitions for use by
Miranda. The script contains the “program” you write in Miranda. The UNIX file containing
these lecture notes is itself a Miranda script: all lines starting ‘>’ denote Miranda definitions (e.g.
‘square’ ). Try the above examples in the lab to satisfy yourselves.

IMPORTANT NOTE

There are TWO ways of stating definitions in a Miranda script:

1. If you want a lot of text in your script that Miranda should ignore (such as in these notes!) you
want a “literate” style of script (which is what this file is). The first nonblank character of the
file should be a ‘>’; this ensures that only lines starting with a ‘>’ in position 1 are treated as
Miranda definitions. You will first use this script file in the lab.

2. If most of your text is Miranda definitions, use a standard script (i.e. don’t have a ‘>’ as first
character of the file). You then do not prefix Miranda text lines with ¢ >’. You must, however,
then prefix non-Miranda text lines with the comment symbol ||".

IMPORTANT REMINDER

There are two modes of interacting with Miranda:

1. Interpretive, where you are inputting expressions for evaluation at the Miranda prompt. This is
all you can do in interpretive mode.

2. Programming, where you are editing your script. It’s in the script that you do your ‘programming’,
in the form of structured function definitions.



1.3 Values, Types, Expressions

1.3.1 Types

Values have types

num: 0 3 1414 -6
bool: True False
char: ’a’ Q6

e Use ‘2’ to find type of values.

Examples:

Miranda 2::
num

Miranda ’a’::
char

Miranda True::
bool

Miranda [1,2]::

[num]

1.3.2 Expressions

Denotes unique values.

Examples:
4

1+5/2
square 2

lesser 3 4
square (lesser 3 4)

All these are expressions.

1.3.3 Programming

Programming in Miranda is defining functions and putting them in a script file.



Editing

Editting in Miranda is creating and/or altering a script file.

Execution

When Miranda is started, some standard functions are already in the environment. This is why we can
use it as a calculator. On submitting a script to the Miranda compiler, assuming no errors, the functions
defined in the script are added to this environment. This is available for use during the ensuing Miranda

Session.

Examples:

An example Miranda session:

Miranda 2+5/2
4
Miranda /f 1.3.m

1.3.4 Evaluation

(Often referred to as Reduction.)

Examples:

Miranda square 2
4

Miranda

The expression square 2 is evaluated giving 4. This is simplification to “simplest” form. We often say
that square 2, reduced to its Normal Form is 4.

1.3.5 Literate Style

e Opposite of Standard script style.

Everything is comment except those lines starting with ‘>’.

First char of file must be ‘>’

Text starting without ‘>’ is regarde as comment.

Only lines starting with ‘>’ are executed.



e Must be preceded and followed by a blank line.

Examples:

> || This is literate script

> cube x = X*X*X

End of script.

1.3.6 Standard Style

e Each line preceded by ‘||” is comment

e Lines without ‘||’ at the start form Miranda program

Examples:

|| Standard style:

> square x = x*x || function to find square of a number

> ten = 10 | | defines a constant variable 10

1.3.7 Function

Another example of a function:

>|| function giving the sum of squares of two numbers

> sumsq X y = square x + square y

Function application forms the main part of executing Miranda scripts.

1.3.8 Constant

Constant Function:

> three = 3



1.3.9 Value

The result of evaluating an expression.

Examples:

The value of square 3 is 9.
The value of 3 > 4 is False.

Values are Miranda Language defined objects which cannot be simplified any further.

Examples:

4, 4.0, ‘¢’, True, [1,2]

1.3.10 Operator

Functions written in infix notation, the operator is placed between the two arguments.

Examples:

3 4 7, here + is a binary operator, takes two num and gives num

—6, here — is a unary operator, takes one num and gives one num

1.3.11 Prefix

Normally functions use prefix notation, i.e., arguments follow the function name, e.g.,

sumsq 2 3.

1.3.12 Basic Type
num: Basic type name for numbers (integer or real).
bool: Basic type for logical values True or False.

char: Basic type for character values ’a’,’Z’, etc..



1.3.13 Operator Precedence

In order of decreasing precedence, highest first:

Function application
A (power)

/ dev mod
+ -

1.3.14 Associativity Of Operators
Left-associative

Binary operator ‘-’ is Left-associative:

e1-2-3-4issameas ((1-2)-3)-4(=8).

e Not Right-associative which would give 1 - ( 2 - (3 - 4)) (=-2).

Right-associative
e Binary Operator ‘"’ is Right-associative:

— 27213 is same as 2"\ (2\3) (= 2/'8 = 256).
— Not Left-associative which would give (2°2)"3 (= 43 = 64).

Associative
e If both left- and right- associative(referred to simply as associative).
e Binary Operator ‘4’ is associative:

—1+2+3+4issameas (1 + 2) + 3) + 4 (=10).
— And also same as 1 + (2 + (3 + 4)) (=10).

Similarly “*’ is Associative but ¢/’ is left-associative.

1.3.15 Script

Another name for a program. Consists of a list of definitions.



Example script:

square x = x * x || This defines the function square
|| which takes a value as one argument

|| and returns as result the value

vV V V V

|| of multiplying the argument by itself.

> lesser x y = x, if x<=y || These two lines define the function lesser
> =y, if x>y || which takes two values as arguments

> || and returns as the result the value
>

|| of the smaller of the two arguments.



1.4 More on Function defintion

1.4.1 Arguments: Parameters or Variables

Number of values required to be input to the function being evaluated.

Examples:

> volborabc = axbxc
has three parameters a,b,c. When evaluating, three values need to be supplied for a, b and c:

Miranda volbux 1 2 3
6

Miranda

1.4.2 Evaluation

Function/constant defintions behave like mathematical equations. Equational reasoning can be applied.

Examples:
> T =2
> twice y =2 xy
> result = twice x

The evaluation of this amount to substituting 2 for x and 2*y for twice y. This correctly gives 4.

1.4.3 Guard Expression

Some times function definition gives different possible expressions on the right hand side of the ‘=’ sign,
depending on the values of the arguments.

Examples:

> lesser xy =z, ifr <y
> =y, otherwise
> lexy =True, ifz <y

> = False, otherwise



Notes:

e The conditions on the right (if.., otherwise) are called guards, and these are called guarded defini-

tions.

e Layout rules require that the =’s are aligned vertically between the various parts of the guarded

function definition.

e Each part of the function definition gives a partial function, and all guards must be given to give
the total function.

e The guards must be mutually exclusive, and complete.

1.4.4 Local Definitions

Some times local definitions can be used to simplify the defintion of a function:

Examples:
> areaT abc = sqrt((a+b+c)/2%((a+b+c)/2—a)x
> (a+b+c)/2=b)*((a+b+c)/2—¢))
is better written using local definition as
> areal abc = sqrt (sx(s—a)x(s—b)x(s—¢))
> where
> s=(a+b+c)/2

The local definition uses ’where’. Layout rules determine the expression after where.



1.5 Boolean Type

1.5.1 Binary Boolean Operators for Comparison

Comparison of num-valued expressions using binary boolean operators:

= > >= < <= ~=  (BW uses | =)

Miranda 7=9

False

Miranda 27273 = 256
True

Miranda 3 < 272 + 1
True

Miranda 2 "= 2

False

Notes:

Binary boolean operator takes two num args and gives a bool result:

num — num — bool

1.5.2 Logical operators

& (and)
/ (or)
~ (not)

e Logical operators & and V are binary. They take 2 bool args and give a bool result:

bool — bool — bool

Miranda 3<7 & 17>18
False
Miranda 2=2 \/ 4>7

True

e Logical operator ~ is unary. It takes one bool arg and gives a bool result: bool — bool



Miranda ~2=2

False
Miranda “3>4
True
Examples:

Function definitions with boolean operators:

> testl a b = a>b&a<2xb
> twogtthree = 2>3
Notes:

Predicates use boolean operators

1.5.3 Expression evaluation on Miranda System

e Miranda expression goes through 2 stages:
— Syntax checking:

2+3< 7 ok
54+ 6 x < C no,

* expects a number on both sides of it.

— Type Checking:

2 4+3 <7 ok
17 > ‘d no,

17 and ‘a’ have different types.

e Values and expressions have types:

— Values:
True (bool)
‘a’ (char)
(num)
— Expressions:
2>3 (bool)
TrueV False (bool)
4>3 (bool)
(

2x3+4



e Functions also have types:

— If function f takes an argument of type A and gives result of type B, then f has the type
A — B. In Miranda, this is written as

> f ©A—> B
> square i num — num
> square r =T * I

— If a function f takes two args A and B and returns a result C,

> f tA—->B->C
> test :: num — num — bool
> testab =a>b&ka<2xb

e Since operators are prefixed form of functions, their types are defined in the same way:

num — num — num

bool — bool — bool

NGRS

num — num — bool
Operators with parentheses have the prefix form as functions:

Miranda 2<=3

True

Miranda (<=) 2 3

True

Notes:

Miranda has strong typing.

It infers the types of functions.

No need to specify the type of a function.

e However, specifying the type of a function helps documentation. Provides checks for type errors

in function definitions.



1.6 The character type

Third of the basic types (num, bool, char)

Char values:

17 Q@ #? 7$: )\n) ’\t’

The single quotes (°) are necessary.

The characters are ordered (ASCII).

Can compare using boolean operators:

Miranda ’c’ < ’g’
True
Miranda ’N’ < ’b’

True

1.6.1 Strings

e Miranda defines Strings using chars.

o Sequence of characters in double quotes (”):

” fred”
” 1 23”

e Lexicographical comparison using boolean operators is allowed:

Miranda "fred" < "joe"
True
Miranda "fred" < "123"

Notes:
Basic types (num,char,bool) can be compared using boolean comparison operators.

e Boolean comparison operators can be used with nums:

2 < 3 gives bool result True
i.e., (<) :: num — num — bool

e They can be used also with chars:

‘b <’ a' gives bool result False
i.e., (<) :: char — char — bool

e They can even be used with bools



True < False gives bool result False
i.e., (<) :: bool = bool — bool

e And also with strings:
? fred” < ”joe” gives bool result True

i.e., (<) :: [char] = [char] = bool

Here [char] means String.

Polymorphism

e This means that the type of (<) is variable, depending on its arguments. Such operators and
functions are said to be polymorphic.

e In order to show that the arguments of (<) can be of different types, the type of (<) is written as:

(<) = x = % — bool

(BW wuses (<) ::a — a — bool)

e This is of course, also true of all the other boolean comparison operators.

1.6.2 Type Inference

> square x = T * T
Since * is defined only for num values, £ must be of type num. Hence square takes a num and

gives a num:

square . num — num

> lesserxy = =z, ifx <y
> = y, otherwise
Since < is defined for any type so long both the values on its left and right are of the same type,

both z and y must be of the same type, so

and,

Also,

lesser 1 * = x = x



1.7 Evaluation

1.7.1 Referential Transparency

e Within a given context, an expression always has the same value.
e Using pure reasoning, better shorter and more efficient programs may be found.
e Without it (referential transparency) such improvements are not possible.

e Side effects (assignments) violate referential transparency.

Equational Reasoning

e Evaluation of expressions is Equational.
e Equations are used to replace ‘equals by equals’ to simplify an expression to its Normal form.
e This process of evaluation of an expression is also called Reduction.

e Another name for replacing ‘equals by equals’ is Rewriting, and the equations are called Rewrite

rules.

Examples:
e Definitions of functions:

squarex = X * T (square.0)

doublex = = + =x (double.0)

e Evaluation of the expression square 3:

square
= (square.0)

3x3
= (%, simple arithmetic rule)

9

e The expression is evaluated by pattern matching of it against the definitions (Rewrite Rules).

Examples:

Evaluation of the expression square((double 3) + 2):

square((double 3) + 2)
= (square.0)
((double 3) + 2) * ((double 3) + 2)



= (double.0)
((3 + 3) +2) * ((double 3) + 2)
= (+)
(6 + 2) x ((double 3) + 2)
= (double.0)
(6+2)%((3+3)+2)
= (+)
(6+2) = (6+2)
= (+)
8x(6+2)
= (4
8x8
= (%)
64

Notes:

An 8 step reduction.

Different reduction orders are possible:
square((double 3) + 2)
= (double.0)
square((3 + 3) + 2)
= (+)
square(6 + 2)
= (+)
square 8
=  (square.0)
8x8
= (¥
64

e Only 5 reductions.

e More efficient.

Normal Order Reduction

Outermost, leftmost first

Also called Lazy Evaluation



1.8 End Of Chapter Exercises

1. Define a function which, using distt or dist from the lecture notes, returns triangle area, given the
3 vertices as 2-tuples, or pairs. You need to know that,

if @, b, and c¢ are the lengths of the 3 sides, then
using s = (a+b+¢)/2, we have
squared —area = sx(s—a)x(s—b)*x(s—¢)

2. Define and test a function age for computing a person’s age in years on a given date, given the
date of birth. Two arguments: the first contains the name and date of birth, the second the given
date. Example evaluations of this function:

age (" Joe”,(15,3,1965)) (2,4,1992) answer : 27
age joe today answer : 27

What is the type of age? Enter your type expression into your script to see if Miranda agrees.
The second example above assumes that joe and today are constants that have been defined in
the script, e.g. by:

joe = ("Joe”,(15,3,1965))
today = (2,4,1992)

Notice how the constant looks like a nullary function, i.e. a function with no arguments.
Further development (jumping ahead by making use of the show function and list concatenation):

— Alter your function to yield a more user-friendly string value such as ” Joe is 27”, rather than
a basic num value such as 27.

— USING THE ONLINE MANUAL, and B&W 2.3.2, use library string formatting functions,
format your output in tabular fashion, e.g.

Born on on date Joe is
15/3/1965 2/4/1992 27

3. The two solutions (roots) of the quadratic equation are obtained as follows:

axz> + bxx + ¢ = 0
solutions = (—b + sqrt(b®> —4ax*c))/(2*a)

Define and test a Miranda function which accepts the three coefficients a, b , ¢ as arguments, and
yields as result a pair (2- tuple) whose components are the two roots. Make sure that your function
copes suitably with the case where two real roots do not exist.

Optional extra: Can you make your solution more user friendly, e.g. to output result as a pair if
two roots exist, and a suitable message if not ? You will probably need to use the error built-in

function.

4. The following series tends in the limit to pi/4:
1-1/3+1/5 —1/7 4+ 1/9 — 1/11 + 1/13 — . +..— ..
Define and test a function which, given an argument n, will sum n terms of the series and multiply
by 4, to yield an approximation for pi.



10.

11.

12.

Optional Extra: Investigate the accuracy and time efficiency of your function, by comparing it
with Miranda’s built-in pi constant, and by giving the Miranda command /count (which will track

various execution statistics).

(OPTIONAL brain-teaser:) The following function definition, to yield the n’th Fibonacci number,
is terribly inefficient. Can you devise a more efficient definition? (Compare the relative efficiency
using /count).

fibo = 0
fibl = 1
fibn = fib(n—1) + fib(n—2)

Give the types for the following functions defined before (work them out before using Miranda to
confirm!):

mult, multt, add, addt, succ, pred

Give types for the following function definitions:

onex = 1
applytwice f ¢ = f (f x)
condapplyp fgx = fzx,ifpx

= g x, otherwise

([BW8g|B&W 1.4.2) Give examples of functions with the following types:

(num —  num) — num
num — (num — num)

(num — num) — (num — num)

Which brackets are redundant ?

([BW88IB&W 2.5.1) Define versions of the function (A) and (V) using patterns for the second
argument. Define versions which use patterns for both arguments. Draw up a table showing the
values of AND and OR for each version.

Define two functions:

e to return the greatest common denominator of two numbers
e to determine whether a number is prime or not
What is the type of § defined in the text?
What is the type of the following:
>  makepair zy = (z,y)
Define filter without using list comprehension. What is its type?
Now define filter using pattern-matching. Is this a better definition ?

The function zip takes a pair of lists and returns a list of pairs of corresponding elements:

zip = ([%],[*x]) —  [(x,*x)]
zip ((a:zs),(b:ys)) = (a,b): zip (xs,ys)



13.

14.

15.

16.

17.

18.

19.

20.

Using zip, define and test a scalar product function sp, which returns the sum of the products of
respective elements of two list arguments, i.e. (informally):

sprsys = xlxyl+z2xy2+ ...

Using zip, define and test a function myzip4 which converts a 4- tuple of lists into a list of 4-tuples.
This exercise is not asking you to copy the Miranda standard environment zip4 definition!

Suppose a list xs of integers contains an equal number of odd and even numbers. Define and test a
function 7i f fle so that (rif fle xs) is some rearrangement of xs such that even and odd numbers
alternate.

([Hol91]Holyer 8.1) What is wrong with each of the following, assuming they are to be directly
evaluated? Correct, and evaluate by hand, and confirm using Miranda:

10 / 7 div 3 2+ 3] %4
code x letter 7 x”
(1,2) ++(3,4) # 'abed’

max2 (1,2) tl1:]2..5]

([Hol91]Holyer 2.8.3) Using hd and a list comprehension with one generator and one filter, find the
first power of 2 greater than one million.

16 ([Hol91]Holyer 2.8.5) Use a list comprehension with two generators and one filter to produce
the list

[(1,1), (1,2), -..(5,5)]

of the fifteen pairs of integers between 1 and 5 for which the first number is less than or equal to
the second. Then find a second comprehension to do the same thing using just two generators and
no filter.

([BW88|B&W 2.8.1) Declare the types for the following function definitions:

constzy = «x

subst fgx = fz (g9
Check, using Miranda.

([BW88|B&W 3.5.1) Consider the function all which takes a predicate p and a list s and returns
True if all elements of xs satisfy p, and False otherwise. Give a formal definition of all which uses
foldr.

(a) ([BW88|B&W 3.5.2) Which, if any, of the following equations are true?

foldl (=) xxzs = x — sumxs

foldr (=) xxzs = © — sum xs

(b) ([Hol91]Holyer 3.4.5) Define a version cat of the standard function concat using foldl rather
than foldr. Verify that they have the same effect on finite lists by trying out an example using a
list of numbers and another using a list of strings.

(a) ([Hol91]Holyer 3.4.4) Write a function capitalise which converts the first letter of a lower case
word to upper case using the standard functions code and decode. You do not need to know what
codes the letters have, only that the lower case ones have consecutive code numbers, as do the



21.

22.

23.

24.

upper case ones.

(b) ([Hol91]Holyer 3.4.6) Define a function join which joins two words together with a space in be-
tween. Use join, capitalise and foldr1 to define a function sentence which takes a list of words such as
["the”, "cat”, ”sat”,”on”, ”the”, "mat”] and produce a sentence such as " T he cat sat on themat.”
by joining the words, capitalising the first word, and adding a full stop.

([BW8BIB&W 3.5.4) Consider the following definition of function insert:
insert ¢ s = takewhile (<) s + + [z] + + dropwhile (< z) xs

Show that if zs is a list in non-decreasing order, then so is (insert x xs). Using insert, define a
function isort for sorting a list into non-decreasing order.

([Dav92]Davie 3.13.15) Write a function which converts an integer number from a given base to a
number in base 10.

Refer to the definitions of the f and reverse functions using foldl in the text.
(a) Verify that

oneplus(x plusone(y z)) = plusone(oneplus(z y) z)
and
oneplus x 0 = plusone 0 x
where
onepluszy = 1+ y
and
plusonexy = = + 1
(b) Veify that
postfixz(z prefiz(ys z)) = prefiz(postfiz(z ys) z)
and
postfixx [] =  oprefiz[]zx
where
postfizx x xs = x5 ++ [7]
and
prefirxzsx = [z] ++ s

(OPTIONAL : Lazy infinite lists) Write a definition that prints an infinite list of 1s
Write a program that prints the infinite text

”1 sheep, 2 sheep, 3 sheep, ....”



as an aid to insomniacs.

25. ([BW88|B&W5.1.1) Using the recursive definitions of addition and multiplication of natural num-
bers given in the text; prove all or some of the following familiar properties of arithmetic:

0+n = n=n+0

1 xn n=mn-+1
E+ (m+n) = (k+m) +n

m + n = n +m

k % (m=xn) = (kxm)x*n

kEx (m+n) = (kxm) + (kxn)
mxn = nxm

26. ([BW88|B&W5.1.2) Prove that

Fn+1 x Fn—1 — (Fn)?
Fn+m

for all natural numbers n > land m > 0,

27.
k objects from a collection of n objects.
a) Give a recursive definition of binom.
b) Prove that if £ > n then binom n k =

¢) Rewrite the equation

sum_over_k_from_0_to_n (binom n k)

in functional notation.

(+ has identity 0)
(x has identity 1

(+ associative
(+ commutation

(+ distribution through *

)
)
)
(* associative)
)
(* commutation)

(="
Fn x Fm+1 4+ Fn—1 x Fm

where F'm is the mth Fiboncci number.

([BW88]|B&W5.1.3) The binomial coefficient, binom n k denotes the number of ways of choosing

0.

p— 2"

Prove that the equation is true for all natural numbers.

28.
29.
30. ((BW88B&W5.3.3) Prove the law

init(zs + + [z])
last(zs + + [z])

s

([BW8g|B&W5.3.1) Give a recursive definition of index operation (zs!é).

([BW88|B&W5.3.2) Give a recursive definition of takewhile and dropwhile.

IS

T

init xs + + [last xs]

for every z and every (non-empty) finite list zs.

31. ([BW88|B&W5.3.4) Prove the laws

take m (drop n xs)

drop m (take n zs)

drop n (take (m + n) zs)
drop (m + n) zs

for every natural number m and n and every finite list zs.



32.

33.

34.

35.

36.

37.

38.

39.

([BW88|B&W5.3.5) Prove the laws:

map (f.g9) xs

map [ (concat xss)

map f (map g zs)

concat (map (map f) zss)

for any functions f and g, and every finite list zss.

([BW88|B&W5.3.6) Prove the law:

takewhile p xs + + dropwhile pxs = xs

for every total predicate p, and finite list xs.

([BW88|B&W5.4.1) Prove that

(zs ++ys) ——axs = ys

for every finite list xs, ys.

([BW88]|B&W5.4.2) Prove that
reverse (zs + + ys)

for every finite list xs and ys.

([BW88|B&W6.1.1) Use the T— and O-notations to give computation times for the following

functions: hd, last, (f), fib, and fastfib.

([BW88|B&W6.1.2) If

may we conclude that
g(n) =07

reverse ys + + reverse rs

What should the right-hand side of the equation be?

([BW88]|B&W6.2.1) Give innermost, outermost, and outermost graph reduction sequences for each

of the following terms:
cube(cube 3)

map(l+) (map (2x) [1,2,3])
hd([1,2,3] + + loop)

Count the number of reduction steps in each sequence (if it terminates).

([BW88|B&W6.2.2) Give the outermost reduction sequences for each of the following terms:

zip (map sqr [1..3], map sqr [4..6])
take (1 + 1)(drop(3 — 1)[1..4])
take (42 — 6 = 7)(map sqr[1234567..7654321

Indicate all outermost radixes that are not reduced because of the restrictions imposed by pattern

matching.

)



Chapter 2

Structured Types

2.1 Tuple

e Similar to Modula-2, Pascal Records

e A tuple is a collection of a specific number of values, of specific types, in specific order:

Examples:
(6,—1) (num,num)
(3.1e3,' $', True) (num, char, bool)

(3,(—5.2, False),” fred”) (num, (num, bool), [char])

Note:

The tuple type (a,b) corresponds to the Cartesian Product A x B from set theory,

where a represents a value from SET A
and b represents a value from SET B

Examples:

Area of a triangle in cartesian geometry:
A(za,ya), B(zb,yb), C(zc,yc) are the three vertices of the triangle.

Need a function to find the distance between two points (za,ya), (zb, yb)

dist (za,ya) (zb,yd)

29



= sqrt(xzdelta x xdelta + ydelta * ydelta)
where
zdelta = xb — za

ydelta = yb — ya

This may be rewritten as

> dist pa pb = sqrt(xzdelta x xdelta + ydelta * ydelta)
> where

> (za,ya) = pa

> (b, yb) = pb

> xdelta = xb — xa

> ydelta = yb — ya

The given tuples are identified as the two input parameters.

Area:
> areapapbpec = sqri(sx(s—a)*(s—b)x(s—c))
> where
> a = dist pb pc
> b = dist pc pa
> ¢ = dist pa pb
> s=(a+b+c)/2



2.2 More on functions (—)

Examples:

e The function
multt (z,y) = zT*xy
has type:
maultt :: (num,num) — num
e Compare with
multxy = xxy
which has type:
mult :: num — num — num
e In interpreting
mult x vy,
Miranda follows a convention:

— Function application associates to the left. This means
mult Ty
is interpreted as:

(mult z) y
e The result of applying mult to z is a function which is then applied to y
¢ Examples:
mult 3 4
is interpreted as
(mult 3) 4

which applies

(mult 3)
to

4
to give

12.

¢ Examples:

mult 37



is interpreted as
(mult 3) 7

which applies

(mult 3)
to

7
to give

21.

Thus the result of applying
mult
to
3
is a function
(mult 3)
which takes one num argument and gives a num result.
Type of the function (mult 3)
(mult 3) :: num — num
So mult takes a num argument and gives as result a function of type num — num
This is normally written as
mult :: num — num — num
‘=’ is right-associative, i.e,
num — num — num
means
num — (num — num)

Functions are curried, i.e.,

fxyzmeans ((f z) y) 2

o= (x= (x = %))

The result of applying f to the first argument is to give a function which applies to the second
argument giving another function which is then applied to the third argument.

This is known as partial parametrization.



Examples:

V V.V V VYV

add
add xz y
suce
suce
pred
pred

num — (num — num)
r+y

num — num

add 1

num — num

add (—1)



2.3 Recursion and Pattern-matching

> sum_sq 0 = 0

> sum_sq n = n*n + sum_sq (n-1)
>

> testO = sum_sq O

> testb = sum_sq 5

Notes:

e This works for 0,1,2,3,..., i.e., all the natural numbers.
e Pattern evaluated in sequence in Miranda.

e If the order is reversed, does not work:

>|| sum_sq2 n = n*n + sum_sq2 (n-1)

>|| sum_sq2 0 = 0 ||produces unreachable case error

e Strictly speaking the above definition is in error, as the case 0 is given by both equations.
e This definition depends on the order of evaluation.
e The only reason it works in the first case is due to Miranda’s sequential evaluation.

e However, the following always works for natural numbers:

> sum_sq3 (n+1) = (n+1)*(n+l1) + sum_sq3 n
> sum_sq3 0 =0
>
> test30 = sum_sq3 0
> test35 = sum_sq3 5
e and also this
> sum_sq4 0 =0
> sum_sq4 (n+1) = (n+1)*(n+l) + sum_sqgd n
>
> test40 = sum_sq4 O
> test4b = sum_sq4 5
e A bit like iteration; this example terminates on evaluation of first pattern.
o A safer definition (less elegant) using guards
> sum_sq2 n = 0, if n=0

n*n + sum_sq2 (n-1), if n>0

error"Argument must be non-negative integer", otherwise



2.3.1 More examples:

e Fibonacci:

> fib 0 0
> fib 1 1
> fib n = fib (n-1) + fib (n-2)

o Works, but changing the order of these equations will cause problem.

e However, order does not matter, if the third equation is replaced by

>||£fib (n+2) = fib (n+1) + fibn

e The following does not work:

>||£fib2 n = fib2 (n-1) + fib2 (n-2)
>||£ib2 0 = 0
>||fib2 1 =1

o All three below should work:

> £ib3 (n+2)

fib3 (n+1) + fib3 n

> fib3 0 =0
> fib3 1 =1
> fib4 O =0
> fib4d (n+2) = fib4 (n+1) + fibd n
> fib4 1 =1
> fibb 1 =1
> fibs (n+2) = fib5 (n+1) + fib5 n
> £fib5 0 =0

e The following definition of count is correct:

> count 0O =0
> count 1 =1
> count (n+2) = 2

e Defined for all natural number arguments, and there is a unique definition for each argument value.

e count defined for mutually exclusive (disjoint) and complete (exhaustive) patterns.



2.4 Lists

Linearly ordered collection of values.

Identical to the set-theoretic concept of a sequence.

Elements referred to by their ordinal positions in the list (1st, 2nd, 10th, etc.).

All elements of a list must have the same type.

Bounded (finite) or unbounded (infinite) list.

2.4.1 Examples:

[213,23,4,8] [num]

"abcDEF" [char] (String)
[(75,’a’),(60,’b?),(50,’c?),(40,°d’)] [(num, char)]
["23","quwerty","Manchester United"] [[char]]

[(+), (x),mult’] [num->num->num]
0 [*]

Notes:

+ prefixed form of operator +

(] Empty list, which can have any list type

2.4.2 Abbreviation for arithmetic series

[a..b] [a,a+1,a+2,..,b-1,b] (b>a) [num]
[a..b] [a,a-1,a-2,..,b+1,b] (b<a) [num]
[a,b..c] [a,a+b,a+2*b, . .a+kx*d]

where d=b-a and atk*d <= c <= a+(k+1)x*d

[1,3..10] [1,3,5,7,9]

2.4.3 Infinite list

[1..]



2.5 Basic List operators

2.5.1 head

head::[*]->*

head x:xs = x

e Head — not defined for a null list.

e Returns the 1st element.

Examples:

head [3,4,1,2] => 3

2.5.2 tail

tail:: [*x]->[*]

tail x:xs = Xs

e Tail not defined for an empty list.

e Returns the list without the 1st element of the input list.

Example:

tail [3,4,1,2] => [4,1,2]

2.5.3 init

init:: [*]->[*]
1

init x:xs = x:(init xs)

init x:[]

Example:

init [3,4,1,2] => [3,4,1]

e Returns list with all but the last element.

e Not defined for null list



2.5.4 last

last::[x]->*
last x:[] = x

last x:xs = last xs

Example:

last [3,4,1,2] => 2

e Returns last element of the list.

e Not defined for null list

2.5.5 cons

e cons (construct) inserts an element at the front of a list.

e Infix form for it is “:’.

’:’::*—>[*:|—>[*:|

Example:

8:[3,4,1,2] => [8,3,4,1,2]
P:"iggy" => "Piggy"

e Any list may be written using *’ and ‘[ ]’ in its recursive constructed form:

[3,4,1,2] = 3:4:1:2:[]

(%)

e ‘2 ig right-associateive, i.e.,

3:4:1:2:[1 = 3: (4: (1:(2:[1)))

25.6 4+

e Concatenation joins two lists. Infix form for this operator is ‘++’

e Both operands must be of the same type

Y+ s [x]->[x]->[*]



Example:

[3,4,1,2] ++ [3,7] => [3,4,1,2,3,7]

Exercise:

Type of ‘#’?

‘#2:: [*]->num

Type of ‘map’ ?

map:: *k—>k%=>[*]->[%x]

Type of makepair x y = (x,y)?

makepair: :k=>%x=>(*, %)

Type of fst(a,b) = a?

fst:: (k,kx)—>%



2.6 List Comprehension

A notation for describing lists which is borrowed from set comprehension in Mathematics.

2.6.1 Notation:

[< expression > | < qualifier >;...; < qualifier >)
quali fier: generator or filter

e There can be arbitrary number of qualifiers, e.g.,

— generator
— generator;filter

— generator;generator

Example:

[n*n | n <- [1..5]1]

=> [1,4,9,16,25]

[n*n | n <- [1..10];n mod 2 = 1]

=> [1,9,25,49,81]

[(a,b) | a <= [1..3]; b <= [1..2]]

=> [(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)]

e Function definition using list comprehension:

divisors n = [d | d <- [1..n];n mod d = 0]

sum_sq n sum [m*m | m <- [1..n]]

spaces n = [ ‘|j <= [1..n]]

e Function to return the greatest common denominator of two numbers:

gcd a b = max [d | d <- divisors a;b mod 4 = 0]

o Test

ged 12 9:

a=12, b=9,

divisors 12,

d =1,2,3,4,6,12,

9mod d = 0 =>1,3 => max 3



gcd 21 14:

a=21, b=14,

divisors 21,

d =1,3,7,21,

14 mod d = 0 =>1,7 => max 7

e Function to determine whether a number is prime or not:

is_prime n = (divisors n = [1,n])



2.7 Functions as Values

e Functions are first-class citizens.

e They can be used as values.

Example:
e List whose elements are functions:

> funlist = [tl, init]
> funlist:: [[*]->[*]]

as,

tl::[x]->[*]
init:: [*]->[*]

2.7.1 Function with function arguments:

1.
> map Sq [17 2) 47 5] => [17 47 167 25]
e arguments:

— sq (function),

— [1,2,4,5] (list)

2.
> map isUpper 71X a$Q” = [False,True, False, False, True]
e argument:
— isUpper (function),
— 71Xa$Q” (list)
Notes:

e map applies its function argument to each element of its list argument:
map :: (* = *%) = [x] = [x*]

e — right-associative.

e () appears only in type signature.



2.7.2 Higher-order Function

A function which takes a function as argument and/or returns a function as result is called a higher-
ordered function.

map is a higher-ordered function.

2.7.3 Function composition

f.g x = (g x)
(L) r s (rk=Dxkk ) => (k=>%k% ) => (k=>k%*)

Function compositon (.) takes a function of type (x — %) on its right and a function of type
(x% — xxx) on its left, and returns a functio of type (* — * xx).

> apply f x = f x
> apply :: (x=>%*) => * => *x

>condppxyi=x, ifpi
= y, otherwise
> condp:: (*->bool) —> ** —> %k —> % —> **



2.8 More list operators and functions

2.8.1 filter

e filter as an example higher-order function over lists.

> filter p xs = [x | x <- xs; p x]
e.g.,

filter odd [1..6] => [1,3,5]
filter upper "QwertyKbD" => "QKD"

> filter:: (*->bool)->[*]->[x*]

2.8.2 map

e A definition for map: comprehension definition.

1, if xs=[]
f (hd xs):map f (tl xs), otherwise

> map f xs
>

2.8.3 More functions for lists

> take n xs -- returns a list with 1st n elements of the list xs
> drop n xs -- returns a list with els of xs left after removing 1st n els
Example:

take 3 "the quick" => "the"
drop 4 (map sq [1..6]) => [25,36]

Law:

e The following statement is always true for a list (A Law):

take n s ++ dropn xs = xs

e Such statements (laws) are very useful.



takewhile:

> takewhile p xs

e Returns a list whose elements are all the leading elements of zs satisfying p.

e The first element that does not satisfy the predicate p and all subsequent elements are discarded.

dropwhile:

> dropwhile p xs

e All the leading elements of xs that satisfy p are discarded.

e Returns a list containing the 1st element of zs not satisfying p, and all subsequent elements of zs.

Example:

takewhile isDigit "321abc4b" => "321"
(assume isDigit predicate exists)
dropwhile isDigit "321abc45" => "abc4b"

Aother Law:

e Again a law containing takewhile and dropwhile always holds for a list:

takewhile p xs + + dropwhile p xs = xs



2.9 Programming Example

Conversion table from Metric to Imperial heights:
3 arguments:

Bottom (of the range)

Top (of the range)

Step (Interval width for successive heights to be tabulated)

| | Basic conversion function from m to (f,i):

> mtoimp m = (f,1)

> where

> totali = m/0.0254

> integeri = entier totali

> f = integeri div 12

> i = integeri mod 12 + totali - integeri

|| Function to produce a list of (m,(f,i)) conversion

|| pairs, giving successive rows of the conversion table.

> mimpairs: :num->num->num-> [ (num, (num,num) )]

> mimpairs b t s = [(m, mtoimp m) | m<- [b,b+s..t]]

|| Function to lay out output (First attempt —-- not very tidy!):
> mimptab b t s = lay (map show (minpairs b t s))

|| Some support functions for better layout:

> showpair (m,i) = ljustify 10 (showfloat 2 m) ++ showimp i
> showimp (f,i) = ljustify 6 (shownum f) ++ rjustify 5 (showfloat 2 i)

|| Final function to output table (using these support functions)
|| Example call at Miranda prompt:

[l mimptable 1.0 3.0 0.1

[l Produces conversion table for height 1.0 to 3.0 m

|| in increments of 0.1 m.

mimptable b t s = "\n" ++
cjustify 22 "Metric/Imperial" ++
" \nll ++

cjustify 22 "Table" ++



> "M\n"++
"\n (m)= (ft) + (ins)\n" ++
lay (map showpair (mimppairs b t s))

Notes:

lay :: [[char]] -> [xhar]

This function concatenates a list of strings, terminating each string with a new line character, to facilitate
display on an output device, e.g.,

lay ["strl","str2","str3"] => "stri\nstr2\nstr3"

which will be output as

stri
str2
str3

The inverse function, for inputting data, is lines:

lines:: [char] -> [char]

lines would be used in conjunction with read.
read takes one string argument, the name of a file in the UNIX system, and returns all the text from
the file as a string:

read:: [char] -> [char]

$- is used instead of filename for keybd input.



2.10 The Fold Operators

Fold operators are general operators which can convert lists into non-list values as well as lists, depending
on the arguments.

Two main fold operators: foldr and foldl, are defined to deal with two different reduction orders, e.g.,
reductions starting from the right or from the left respectively.

2.10.1 Examples:

foldl (+) 0[1,2,3,4] = (((0+1)+2)+3)+4 = 10
foldr (+)01[1,2,3,4] = 1+(2+(3+(4+0))) = 10

In addition, two more fold operators are defined as variants of these fold operators that apply to non-null
lists: foldrl and foldll.

2.10.2 Examples:

foldll maz2 [1,2,3,4] = ((1 ‘max2‘2) ‘maz2‘ 3) ‘maz2‘4 = 4
foldrl maz2[1,2,3,4] = 1 ‘maz2‘ (2 ‘mazxs’ (3 ‘maz2‘4)) = 4

No initial value argument is taken by foldl1l and foldrl.

Not defined for null list.

A fifth fold function, foldl' also exists as a variant of foldl which uses the concept of strictness to allow
reduction orders that incorporate space efficiency considerations.

2.10.3 Example:

sum [1..4]
= foldl' (+) 0 [1..4]
= strict(foldl' (+)) (0+1) [2,3,4]
= foldl (+)1[2,3,4]
=
= 10

strict means (non-lazy), the (0 + 1) is evaluated (does not always follow the rule outermost reduction
first.)



2.11 foldr

foldr reduces a list from right to left.

An informal definition of foldr using function f, value a and list [z1, z3, ..., Zy):

foldr f a[z1,22,..;zn] = f 21 (f 22 (..(f zn a)...))

An alternative definition using instead of function f, the operator @ (with its prefix form (®))would be:

foldr (®) a [z1,%2,....,xp) =21 & (22 ® (..(zn & a)...))

In particular, this means:

Example (& = +):

(i.e., sum of 1, 2, 3, 4)

Example (& = x):

(i.e., prouct of 1, 2, 3, 4)

Example (& = ++):

foldr (@) a [z1, x2]
foldr (®) a [z1, x2, x3]

foldr (®) a[]
foldr (&) a [z1]

a

1 D a
1 ® (r2 ® a)
1 ® (z2 ® (z3 © a))

foldr (+) 0 [1..4]
= 1+2+B+4+0)
= 10

foldr () 1 [1..4]
S 1s@x (3% (4xD)
= 24

foldr (++) []1[725”, ” December”, 71994”]
725" + 4+ ("December” + + (719947 + +[]))
725 December 1994”

(i-e., concatenate ”25”, ” December”, 71994”)



Notes:

e brackets group from the right
e the operator is applied from the right

e fold right

2.11.1 Type of foldr

foldr :: (x = xx = *xx%x) = xx — [¥] & *x

type of list element: *

type of a: *

type of result of application of @®: * *
typeof ®: (x = x%x — xx)

The type of a (xx) may be the same as the type of the list element (%) as in the following examples:

sum = foldr (+) 0 | |ladd a list of nums

product= foldr (*) 1 | |Imultiply a list of nums
concat = foldr (++)[ ] |[|concat a list of lists
and = foldr (&) True |lconjoin a list of bools

or foldr (\/)Falsel|disjoin a list of bools

As +, *, &, \/ and ++ are associative operators and for each of the above, identity element a are defined
sum (identity 0): z + 0 = z = 0 + =

product (identity 1): z * 1 = 2z = 1 x z

concat (identity []): s ++[] = xs = [] ++ @s

and (identity True): ¢ & True = x = True & =z

or (identity False): x \/ False = x = False \| =

In the above cases, as @ is associative and a is the identity element, the following simpler definitions
without brackets apply:

foldr (®)a[] = a
foldr (®) a [z1,%2,...,Zn] = Z1 & T2 & ... ® T,

This will not work if the operator is not associative as in the case of (—).

Example (& = -):

foldr (=) 0 [1..4]



= 1-2-3—-4-0)
= -2

(ie,1-2+3-4and NOT 1-2-3-4)

2.11.2 Definition of (#) using foldr

Anther case where the operator (@) is not associative is the following definition of length of a list using
foldr:

(#)=foldr oneplus 0

where oneplus x n =1 +n

The function oneplus is not associative:

oneplus x (oneplus y z) = oneplusz (1 + 2) = 2 + 2

oneplus (oneplus x y) z = oneplus (1 + y)z = 1 + 2

Not the same.

Example (#):

foldr oneplus 0 [1..3]
= (foldr)
oneplus 1 (oneplus 2 (oneplus 3 0))
= (oneplus)
oneplus 1 (oneplus 2 (1 +0))
= (+)
oneplus 1 (oneplus 2 1)
= (oneplus)
oneplus 1 (1+1)
= (+)
oneplus 1 2
= (oneplus)
1+2
= (+)
3



Example (#):

foldr oneplus 0 ['a', b', ']
= (foldr)
oneplus 'a’ (oneplus 'b' (oneplus 'c’ 0))
= (oneplus)
oneplus 'a’ (oneplus 't (1+0))
= (+)
oneplus 'a’ (oneplus '’ 1)
= (oneplus)
oneplus 'a’ (1+1)
= (+)
oneplus 'a’ 2
= (oneplus)
1+2
= (+)
3

Type of oneplus:

oneplus :: * — num — num

oneplus ignores the value of the first argument, it simply counts it.

2.11.3 A function to reverse a List

reverse =  foldr postfiz []

where postfix x s = xs + + [z]

Example:

reverse "TOM”
= (reverse)

foldr postfiz [ "TOM”
= (string)

foldr postfiz [ ['T') O, 'M']
= (foldr)



postfiz "T'(post fixz 'O’ (post fiz 'M' []))
= (postfix)
postfixz "T'(postfiz 'O'([ ] + +['M']))
= (++)
post fiz '"T' (post fiz 'O" [ M'])
= (postfizx)
postfiz 'T' (M'] ++ ['0'))
= (++)
postfiz 'T' ('M') O")
= (postfizx)
(MOl ++ [T']
= (++)
[M') O T']
= (string)
" MOT”

This definition of reverse appends successively the elements starting from the rightmost element of the
list to the null list.

2.11.4 Definition of T'akewhile using foldr

takewhilep = foldr (®) [] (takewhile.1)
where

Tz @ xs = [zg] ++zs, ifpx (takewhile.2)

=], otherwise (takewhile.3)

Example (takewhile):

takewhile (<' r') "bird”
= (takewhile.l)

foldr (®) [] ”bird”
= (foldr)

Yoo (e (re (del[])
= (takewhile.2)

Voo (e (e ((d ++[])
= (++.1)

Ibl (II @ (IT, @ [Idl]))
= (takewhile.3)

@ (Ii' e [])
= (takewhile.2)



Ve (Y ++[])
= (++.1)

Yoo [
= (takewhile.2)

(0] ++ ['i']

= (++.2)
I[Ibl’l?:l]

= (string)
77bi”

Type of (&)

2.11.5 Formal definition foldr

A formal definition of foldr using recursive pattern matching is:

> foldr fal[] =a (foldr.0)
> foldr f a x:xs = f x (foldr f a xs) (foldr.1)

Example:

foldr (+) 0[1,2,3,4]

= (foldr.1)

(+) 1 (foldr (+) 0 [2,3,4])
= (foldr.1)

() 1 ((+) 2 (foldr (+) 0 [3,4]))
= (foldr.1)

() L((+) 2 ((+) 3 (foldr (+) 0 [4])))
= (foldr.1)

() L((+) 2 ((+) 3 ((+) 4 (foldr (+)
= (foldr.0)

(+) 1((+) 2((+) 3 ((+) 40)))
= ()

() 1((+) 2((+) 34))



= (+)
(H)1(+)27)
= (+)
(+)19
(+)

9 reduction steps.
The maximum space required («+—) is much larger than the average.



2.12  foldl

foldl reduces a list from left to right.

An informal definition of foldl using the operator @, list [z1,Z2, ..., Zy], and an inital value a is:

foldl (®) a [z1,22,....zp) = (-..((@ & z1) & z2)...) ® =y

This means:
foldl (®)a]] = a
foldl (®)alz1] = a & 21
foldl (®) a[z1,22] = (a & 1) ® 22
foldl (®) a [r1,22,23] = ((a & z1) & z2) & x3
Notes:

Brackets group to the left.

2.12.1 Type of foldl

foldl :: (xx — x —= *x) = xx = [¥x] = *x*

type of a : * %

type of list element: *

type of result of applying @: * x
type of @: (x% — % — *x%)

When & is associative x and ** of same type, then foldl and foldr have the same type.

Example (& = +):

foldl (+) 0 [1.4]
= (((0+1)+2) +3) +4
= 10
Same as foldr (+) 0 [1..4].

Similarly foldl (%) 1 [1..4] reduces to the same as foldr (%) 1 [1..4].

On the other hand,



foldl (=)0 1.4 = ((0-1)—-2)-3)—4 => -10
which is NOT the same as foldr (=) 0 [1..4] (= —2).

Even when they reduce to the same, foldl is more efficient (i.e., faster or requiring less space or both)
for some cases and foldr in others.

For example, foldl (rather its strict variant foldl") is more efficient in sum and product, while foldr is
more efficient in concat and and.

Example pack:

pack xs = foldl (®) 0 xs
wheren & = 10 *x n + x
This means:
pack [Tn_1,Tn_2,--, 2] = (w0 * 10°)+ (1 * 10Y) +

(22 * 10%) + ... + (1 * 10n — 1))

pack 1234
(el @2 @3 @4
(10%x0+4+1) ® 2) © 3) @ 4
1le2 o3 o4
(10x1+2) @ 3) @ 4
102%x1+10'%x2+3) @ 4
10°%14+10% %24+ 10" *3+4

A~ o~ o~ o~

S

2.12.2 Definition of (#) using foldl

(#) = foldl plusone 0

where plusone n x = n+l

Example (# using foldl):

foldl plusone 0 [1..3]
= (foldl)

plusone (plusone (plusone 0 1) 2) 3
= (plusone)

plusone (plusone (0+1) 2) 3
= (+)

plusone (plusone 1 2) 3



= (plusone)
plusone (14+1) 3

= (4
plusone 2 3

= (plusone)
(2+1)

= (+)
3

2.12.3 Definition of reverse using foldl

reverse = foldl prefix []

where prefix xs x = [x] ++ xs

Example (reverse a list using foldl):

reverse['a’,' b, ]
= (reverse)

foldl prefiz []['d',) V', ]

= (foldl)
prefiz (prefiz (prefiz []'a’) V') 'c
= (prefiz)
prefiz (prefiz (['a’] ++[]) V) "¢
= (++)
prefiz (prefiz ['a’'] ') 'c
= (prefiz)
prefiz (V'] ++ ['d]) 'd
= (+4+)
prefiz [V, a'] '
= (prefiz)
['d] ++ [V, d
= (++)

[ICI,I bl,l al]

These are equivalent to the corresponding definitions using foldr, but are more efficient.



2.13 foldl1l & foldr1

foldl1l and foldrl take only two arguments, the function to be applied to the sucessive elements of the
list, and the list. There is no a, the argument giving the initial or stating value.

2.13.1 foldll

foldll is a variant of foldl with the following informal properties:
foldll (®) [z1, 2, ..xs] = (.((x1 © 22) ® 23)..) ® =,

More specifically,

foldll (®) [z1] T
foldll (®) [z1,2]

foldil (®) [x1,z2, 3]

1 D T2

(z1 ® 22) © z3

It is undefined for an empty list, and is related to foldl as follows:

foldll (®) zs = foldl () (hd zs)(tl zs)

Example (maximum element of a list):

The function mazel to find the maximum element of a non-empty list is defined by,

mazel = foldll (max)
where
xmaxy = x, ifzx>y

= y, otherwise

Here max is a binary operator that finds the maximum of its two arguments.

mazel ['a’,)'n','n', €]

foldll (mazx) ['a',n')/n') €]
(('a' maz 'n') maz 'n') maz '€’
('n' maz 'n') maz "¢’

'n' mazx e

Inl

SRR}



2.13.2 foldrl

Similarly foldrl is defined as,

foldrl (@) [z1,22,..xp] = (21 ® (22 @ ..(Tp—1 & z,)..))

More specifically,

foldrl (®) [z1] = =
foldrl (@) [z1,22] = 1 & =2
foldrl (®) [z1,22,23] = 1 @ (22 O z3)

It is also undefined for an empty list, and is related to foldr as follows:

foldrl (®) xs = foldr (®) (last zs)(init xs)

Example (minimum element of a list):

The function minel to find the maximum element of a non-empty list is defined by,

minel = foldrl (min)
where
zminy =z, ifx<y

= vy, otherwise
Here min is a binary operator that finds the minimum of its two arguments:
minel [Ijl,l OI,I hl,l TLI]
foldrl (min) ['')' o) B n']
5" min ("o’ min ("h' min 'n'))
5" min ("o’ min ')

Ijl m'];n Ihl

AT}

[
o

Both have the type:

foldll, foldrl: (x — x — %) = [¥] = x



2.14 strict foldl — foldl'

A recursive pattern matching definition of the strict version foldl’ of foldl is:
> foldl' fal] =a || (foldl'.0)
> foldl' fax:xzs =foldl' f (fazx)zs | (foldl' 1)

Example: foldl' (+) 0

foldl' (+) 0[1,2,3]

= (foldl' 1)
foldl' (+) ((+) 01) [2,3]

= (4
Foldl' (+) 1[2,3]

= (foldl'1)
foldl" (+) ((+) 12) [3]

= (4) (innermost reductions — strict)
foldl' (+) 3 [3]

= (foldl'1)
foldl" (+) ((+) 33) []

= (4) (innermost reductions — strict)
foldl' (+) 6]

= (foldl'0)
6

7 reduction steps.

The maximum space required remains virtually the same throughout the reduction, (O(1)). Space
efficiency is improved, by choosing a mixture of outer and inner reuctions.

Formal definition of foldr using recursive pattern matching is:
> foldr f al] =a || (foldr.0)
> foldr fax:xzs = fuz (foldr fazs) |l (foldr.l)

Example: foldr (+) 0

foldr (+) 0[1,2,3]

= (foldr.l)
(+) 1 (foldr (+) 0[2,3)])
= (foldr.l)

(+) 1 ((+) 2 (foldr (+) 0 [3]))



= (foldr.l)
() 1((+)
= (foldr.0)
() 1((+)
= (+)
(+) 1((+) 23)
= ()
(+)15
= (+)
6

2((+) 3 (foldr (+) 0[]))) (<—-)

2((+)30)

7 reduction steps.

The maximum space required <-- is much larger than in the previous case using foldl’, O(n).



2.15 Pattern Matching on Lists

?

“cons” operator is written as ’:’ in pattern matching:

> lengthp i [%] = num

> lengthp [ ] =0 [|(lengthp.1)
> lengthp (a:xzs) = 1 + lengthp zs [|(lengthp.2)
> sump :x [num] = num

> sump [ | =0 [|(sump.1)
> sump (a: zs) = a + sump s [|(sump.2)
> mapp i (% = k) =[] o [kx]

> mapp f [ ] =[] ||(mapp.1)
> mapp f (x:x8) = fx : mapp f xs [|(mapp.2)

2.15.1 Using guards (Non-pattern matching)

> lengthg xts = 0, if zs = []
> = 1 + lengthg.tl xs, otherwise
> sumg s =0, if xs = []
> = hd zs + sumg.tl xs, otherwise
> mapg f xs =[], if zs = ]
> = f.hd x5 :map [ (tl zs), otherwise

(uses function head (hd) and tail (/) and function composition ’.")

2.15.2 More complex pattern-matching definitions

> mylimit :: [num] - num

> mylimit (a : b : zs) = a,

> = mylimit (b: xs),
> mylimit other = error ”...”

> error :: String — *

if abs(a—b) < 0.000001
otherwise



2.16 Infinite lists

Miranda provides infinitely long lists.

Try evaluating the expression

[1.]

It produces every integer, starting with 1.
How can the machine hold an infinite object?

Only LAZY machines (such as Miranda) can do so. They do it by not attempting to evaluate anything
they do not need to. So as long as you only need to look at a finite part of an infinite object, everything
will be all right.

Consider the following,

> ints = 1 : map (14) ints [|(ints.1)

This is the infinitely long list of integers. In fact, ‘ints = [1..]".
Let us see how a lazy machine evaluate ’take2ints’. It finds the outermost expression it can match:

take 2 ints
= (ints.1)
take 2 (1 : map (14) ints)
= (+ patterns)
take (14+1) (1 : map (1+) ints)
=  (take.3)
1 : take 1 (map (1+) ints)
= (ints.1l)
1 : take 1 (map (14) (1 : map (1+4) ints))
= (map.2)
1 : take 1 ((14) 1 : map (14) ints)
= ()
1 : take 1 (2 : map (1+) ints)
= (4 patterns)
1 : take (0+10) (2 : map (1+) ints)

= (take.3)
1 : 2 : take 0 (map (1+) ints)
= (take.l)

1:2:]]



= (pretty printing)
[1, 2]

Conversely, an EAGER implementation evaluates the *innermost * expression it can match.

take 2 ints
= (ints.1)
take 2 (1 : map (14) ints)
= (ints.1)
take 2 (1 : map (1+) (1 : map (1+) ints))

...and so on for ever, only ever using ‘ints.1’...

The ability to have potentially infinite values allows us to write some very elegant and simple programs,
such as ‘ints’.



2.17 Recursion and Induction

Function defintions using recursion allow inductive proofs of useful Laws. Main areas of application:
Natural Numbers and Lists.

e Natural numbers:
Every natural number is either 0 or else has the form (n + 1) (i.e., 1, or 2, or 3, ...) for some n
(=0,0r1,o0r 2, ..).

e Lists:

Every list is either empty ([ ]), or has the form z : zs (i.e., one element list, or two elements list,
or three elements list, ...) for some z and zs.



2.18 Natural Numbers

2.18.1 Example: Exponentiation

z " n, x to power n, n natural number

Recursive definition:

> A0 1 [l ("1
> zNn+1) =z x (x"n) ||("2
Note:

Pattern matching. n - natural number (0,1,2,...)

Non-pattern matching:

> zn =1, ifn =0
> =zxz"(n-1), ifn >0
Note:

e Pattern matching definition: easy to use equational reasoning.
e Ideal for proofs using mathematical induction.

e Easy to check that the definition covers every case:
z " n defined for all natural numbers n:
forn =0 (*.1)
forn >0 (*.2)

Reduction Example:

273
= ("2,n=2)
2 % (212
= ("2,n=1)
2 x (2% (271)
= ("2,n=0)
2% (2% (2% (2"0)
= (M)



2 x (2 % (2% 1))
= (arith *)

2 % (2 % 2))
= (arith %)

2 x4
= (arith x)

8

Here, 2 * 3 matches (*.2) for n = 2.
For every natural number power, n, £ ** n matches with EITHER the equation (*.1) when n = 0, OR
the equation (*.2) when n = 1, or 2,... but NEVER both.

e FEzhaustive: 0 and n + 1 cover all natural numbers.

e Disjoint: No natural number matches more than one pattern.

e Order: Order of equations immaterial.

Recursive definition:

x ™ 0 has a value given by the equation (".1)
and
z " (n+ 1) defined in terms of z * n by equation (".2)

Proof by mathematical Induction:

Inductive proof of a proposition P(n) for all natural numbers n, consists of two steps:
case 0 : Proof that P(0) holds; and
case (n+1) : Proof that if P(n) holds then so does P(n + 1).

Proof by Induction of a Law for exponents:

To prove

A

z™N(m+n) = (x m)*x(z" n)

for all z and all natural numbers m, n.
Proof by induction on m.
case 0:

z” (0+n)



" n
= (%)
1x(z " n)
= (M)
(2°) * (2™
This establishes the theorem for m = 0.
case (m + 1):
Assume for some arbitrary m,
z™N(m+n) = (" m)*(xz”" n) (HYP)
z " ((m+1)+n)
= (+)
z ™ ((m+n)+1)
= ("2
z x (z” (m+n))
= (HYP)
z* (" m)*(x"n)
= ("2

This establishes that the result holds for m + 1, if it holds for m.

2.18.2 Another Example: Fibonacci

Fibonacci numbers, fib n:

> fib0 = (fib.1)
> fib1 = (fib.2)
> fib(n+2) = fibn + fib(n+1) (fib.3)

Pattern matching definition of fib n for n natural (n =0,1,2,...).

fib 0 matched by first equation

fib 1 matched by second equation

fib 2, fib 3, .. matched by third equation.

For any n the value of fib n is defined by exactly one of the above equations.

Using algebra one can show (there are general methods of solving such second order recurrence relations):



fibk = (k= f k) (sart 5)
where
fi=(1+sgrt 5)/2
fa=(1—sqrt 5)/2

(Exercise: Test it in Miranda.)

Inductive proof of this result:

This invovles showing equivalence of this result to the pattern matching definition of fib:

case 0:
First show that it is true for case for fib 0:

RHS

(f' 0 — f3 0)/(sqrt 5)
= (")

(1 —1)/(sqrt5)
=  (algebra: -)

0

LHS

case 1:
Next show that it is true for fib 1:

RHS

(fi = £2)/(sqrt 5)
= (A.2)

(fi = f2)/(sqrt 5)
= (algebra)

((1+sgrt 5)/2 — (1 — sqrt 5)/2)/(sqrt 5)
= (algebra)

1



LHS

case k+2:

Now show that it is true for fib k for any &k >= 2:

For this, we show that if the result holds for fib k and fib k + 1 then it holds for fib k + 2:
Assume true for k and k+1 (hypotheses).

fibk = (ff = £3)/(sqrt 5)
where
Ji = (1+sqrt 5)/2
fo=(1—sqrt 5)/2

fib(k+1) = (Fr+1) — fk+1)/(sqrt 5)
where
fi = (L+sqrt 5)/2
f2 (1 —sgrt 5)/2

fibk + fib(k+1)
= (ff = f5 + [ = )/ (sart 5)
= (ff+@+f) = fF+0+ f))/(sert 5)
= (ff*? = £51)/(sqrt 5)
= fib(k+2)

where we have used

(1 + sqrt 5)%/4
(1+2x%sqrt 5+5)/4
(6+2x*sqrt 5)/4
(3+sgrt 5)/2

= 1 + (1+sqrt5)/2
1+ fi

and

3



(1 — sqrt 5)%/4

= (1—2xsqrt 5+5)/4
(6 —2%sqrt 5)/4

= (3—sqrt5)/2

= 1+ (1-—sqrt5)/2

= 14/

Proved.

2.18.3 Some other Recursive definitions (4 and *):

+:
0+ n =n (+1)
m+1)+n = (m+n)+1 (+.2)
0 xn =0 (.1

(m+1)xn = (mx*n) + n (x.2)



2.19 List: zip

2.19.1 zip

zipz ([#],[ex]) = [(x, %)]

Recursive definition of zip:

> zip([ ], ys) =[] || (zip.1)
> zip(z = s,[ ]) =[] || (2ip.2)
> zip(z i ws,y 1ys) = (z,y):zip(ws,ys) || (zip.3)
Notes:

o Exhaustive:

— First list empty covered by (zip.1)

— Both empty covered by (zip.1)

— Second empty, first non-empty covered by (zip.2)
— Neither empty covered by (zip.3)

e Disjoint:

— Only one equation true for every possible pair of lists.

A Law involving zip:

e The result of zip is another list with length minimum of the two list lengths. For evey finite list

xs and ys:
> fzip(zs,ys) = min2 (fzs) (fys)
> where
> min2 T y = z,ifz<y
> = vy, otherwise

e Proof by induction on both xs and ys:

case [ ], ys:

fzip([ ], ys)
= (zip.1)
()
= (1)

0



= (min20n = 0 for all n)
min2 0 (fys)

case z :xs, []:

fzip(z : xs,[ ])
= (zip.2)
(N))
= (#1)
0
= (min2n0 = 0 for all n)

min2 f(z : zs) 0

case T : TS, Y:yYs:

fzip(z : x5,y : ys)
= (zip.3)
t((x,y) : zip(zs, ys))
= (82
1+ $zip(xs,ys)
= (hyp)
1+ (min2 fzs tys)
= (+ distribution through min2)
min2 (1 + fzs) (1 + fys)
= (42
min2 §(z : xs) §(y : ys)

Proved.

Note:

e Wrong recursive definition of zip:

zip([,ys) = []
zip(zs,[]) = []
zip(z :xs,y:ys) = (z,y): zip(xs,ys)



This is wrong, because both (zip.1) and (zip.2) give zip([ ],[ ]) as each of zs and ys can be [ ],
even though both consistently, result in [ ].

It is required that every possible value of an argument can bind to only one equation in the pattern
matching definition.

e However, this works in Miranda as the equations are evaluated top down.



2.20 List: take & drop

2.20.1 take

take n xs is the list made by taking the first n elements of the list xs. (this will be the whole of zs if
n >= fzs)

take :: num — [¥x] = [¥]

Recursive definition of take:

> take 0 zs =[] | (take.1l)

> take (n+1) [] =[] | (take.2)

> take (n+1) (x:28) = z:taken zs || (take.3)
Notes:

o Exhaustive:

— take 0 zs: Only (take.1) deals with this case, take none from any list.
— take n + 1 []: Only (take.2) deals with this case, take 1 or more from [ ].

— take n+ 1 (x : xs): Only (take.3) deals with this case, take one or more from nonempty list.
e Disjoint:

— Only one equation true for every possible pair of num and list.

2.20.2 drop

drop n zs is the list left on removing the first n elements of the list zs. This will be []if n >= fzs.

drop :: num — [¥x] = [¥]

Recursive definition of drop:

> drop 0 zs = zs || (drop.1)

> drop (n+1) [] =[] || (drop.2)

> drop (n+1) (z:x8) = dropn xs || (drop.3)
Note:

o Exhaustive:

— drop 0 zs: Only (drop.1) deals with this case, drop none from any list.



— drop n+1 []: Only (drop.2) deals with this case, drop one or more from [ ].
— drop n+1 zs: Only (drop.3) deals with this case, drop one or more from a nonempty list.
e Disjoint:

— Only one equation true for every possible pair of lists.

A Law involving take & drop:

e To show

take n xs ++ dropn zs = xs

for every natural number n and finite list zs.

e Proof by induction on n and zs:

case 0, []:

take 0 [] 4+ + drop 0[]
= (take.l, drop.l)

[] ++ s
= (++.1)

IS

case (n+1), []:

take (n+1) [] ++ drop (n+1) []
= (take.2,drop.2)

[] ++1]
=  (++.1)

[]

case (n+1), (z:xs):

take (n+1) (z:2s8) ++ drop (n+1) (x: zs)
= (take.3, drop.3)

(z : take n zs) + + (drop n xs)
=  (++.2)

x: (take n zs + + drop n xs)
= (hyp)

r.xs



Proved.



2.21 List: hd & tl

2.21.1 hd

hd selects the first element of the list.
hd:: [¥] = =

Definition of hd:

> hd(zx:zs) = (hd.1)

Note:

e hd [ ] undefined.

tl

tl selects the list without the head.
>t [¥] = [¥]

Definition of ¢l:

> tl(z:zs) = zs (t1.1)

Note:

e t/ [] undefined.

A law involving hd & tl:

e To show

[hd zs] ++ tl xs = zs

for every non-empty finite list xs.

e Proof by case analysis on xs.
case (x : xs) :

[hd (z :zs)] ++ tl (z:xs)



Proved.

=

=

=

(hd.1,t1.1)

[z] ++ zs

(byde finitionof[x])

(:[]) ++ zs

T :

xT

(++.2)
([] ++ =s)
(++.1)

s



2.22 Lists: init & last

2.22.1 it

init gives a list of all the elements of the list apart from the last.
init:: [x] = [%]

Definition of init:

> init [z] =[] | (init.1)
> init (z:3' :xs) = z:init(z' : xs) | (init.2)
Notes:

e init [ ] not defined.
e (init.1) defines it for one element list.

e (init.2) defines it for two or more elements list.

last:

last gives the last element of the list.
last :: [x] — =

Definition of last:

> last [x] =z || (last.1)
> last (z :x' : xzs) = last(z' : zs) || (last.2)
Notes:

e last [ ] not defined.
e (last.1) defines it for one element list.

e (last.2) defines it for two or more elements list.

A law involving init & last:

e To show

init xs = take (fxs — 1) zs



for any finite non-empty list zs.

e Proof by induction on zs :

case [z] :
init [z]
= (indt.1)
[]
= (take.l)
take 0 [z]
= (81
take ([ ]) []
= (82
take (f(z : []) — 1) [2]
= (z:[] = [«])

take (ffz] — 1) [4]

case (x :x': xs) :
init (z: 2’ : Ts)
= (init.2)

x :init(x' : xs)

= (hyp)
x:take (f (z':2s) —1) (2': xs)
= (1.2
x : take (fzs) (z' : xs)
= (take.3)
take (f zs + 1) (z:2' : z5)
= (1.2
take (f (z' : z5)) (z : 3’ : z5)
= (1.2

take (f(z :2' :2s) — 1) (z:2' : xs)
Proved.

e Wrong to have the following definition:
> init [x] =[] || (init.1)
> init (z:xzs) = z:init xs || (init.2)
because xs can be [ ], and there are two ways of reducing init [z], [ ] by the first equation and
x :init [ ] by the second.

e Similarly for last, wrong to define:
> last [z] =z || (last.1)
> last (x : xs) = last zs || (last.2)



because zs can be [ ], and there are two ways of reducing last [z], by the first equation and
last [ ] by the second.



2.23 Lists: map & filter

2.23.1 map

map applies a function to each element of a list.
map:: (x = *x%) — [¥] — [#]

Recursive definition of map:

> map f [] =[] || (map.1)
> map f(x:28) = fx :map f xs [| (map.2)

2.23.2 filter

filter removes elements of a list that do not satisfy a predicate.
filter .= (x — bool) — [¥x] = []

Recursive definition of filter:

> filter p [ ] =[] || (filter.1)
> filter p(x:x8) = z: filter pxs, if px || (filter.2)
> = filter p zs, otherwise || (filter.3)

Example using map and filter:

filter even (map ("2) [1,2,3,4])
= (map.2)

filter even (1:map ("2) [2,3,4])
= (filter.3)

filter even (map ("2)[2,3,4])
= (map.2)

filter even (4 : map ("2) [3,4])
= (filter.2)

4: filter even (map ("2) [3,4])
=  (map.2)

4: filter even (9 : map ("2) [4])
= (filter.3)

4 : filter even (map ("2) [4])
= (map.2)



4: filter even (16 : map ("2) [])
= (filter.2)

4:16 : filter even (map ("2) [])
= (map.l)

4:16 : filter even [ ]
= (filter.1)

4:16:[]

[4,16]

A law involving map & filter:

e To show

filter p (map f xs) = map f (filter (p.f) zs)

for any function f, total predicate p, and finite list xs.

A predicate p is total if for every x the value of p is always True or False and never undetermined.

e Proof by induction on s :

case []:

filter p (map f [])
= (map.l)
filter p[]
= (filter.1)
[]
= (map.l)
map f ]
= (filter.l)

map f (filter (p.f) [])

case (x :xs), (p(f x)) = True:

filter p(map f(z : xs))
= (map.2)

filter p( f x :map f xs)
= (filter.2)

fx : filter p(map f xs)
= (hyp.)



[z : map f(filter (p.f) xs)
= (map.2)

map f (z: filter (p.f) xs)
= (filter.2)

map [ (filter (p.f) (z : zs))

case (x : xs), (p(f x)) = False:

filter p(map f(x : zs))
= (map.2)

filter p( f x :map f xs)
= (filter.3)

filter p(map f xs)
= (hyp)

map f(filter (p.f) xs)
= (filter.3)

map f (filter (p.f) (z : zs))

Because p is total considering the two possibilities True and False for the value of (p(f(z)) is
sufficient.



2.24 Lists: — —

2.24.1 List Difference, (— —)

The value of zs — — ys is the list that results when, for each element y in ys, the first occurrence (if
any) of y is removed from zs.

——s o Mo

Recursive definition of (— —):

> zs — — [] = zs [| (= —.1)

> s — — (y:ys) = removezsy — — ys || (- —.2)

> remove [ ]y =[] || (remove.1)
> remove (x :x8)y = 8, ifr=y || (remove.2)
> = z :remove xSy, otherwise || (remove.3)



2.25 Lists: reverse (A Reverse Function)

reverse is a function to reverse the elements of a list, with type:
reverse :: [¥x] — [#]

Definition of reverse:

> reverse [ | =[] || (reverse.l)
> reverse (x :xs) = reversexzs ++ [z] || (reverse.2)

A law for reverse:
e To show
reverse(reverse xs) = I8
for every finite list xs.

e Proof by induction on zs:

case []:

reverse(reverse [ ])
=  (reverse.l)
reverse | |

= (reverse.l)

case (x:xs) :

reverse(reverse (r : xs))
=  (reverse.2)

reverse(reverse ts + + [z])

(hyp)

= (auzrev.l, an auxiliary result proved below)

x : reverse(reverse s)

= (hyp)
z xS
Proved.
e The auxiliary result:
reverse(zs ++ [z]) = x:reverse xs

for every z and every finite list xs.

(auzrev.1)



— Proof by induction on zs :

case []:

reverse([ ] ++ [z])
=  (++.1)
reverse [z]
= (list pretty printing, no reduction)
reverse (z :[])
= (reverse.2)
reverse [ | + + [2]
=  (reverse.l)
[] ++ [a]
= (++.1)
z:[]
= (reverse.l)

x : reverse[ |

case Yy : ys :

reverse(y : ys + + [z])
= (++.2)
reverse(y : (ys + + [z]))
=  (reverse.2)
reverse (ys + + [z]) + + [y]
= (hyp)
(z : reverse ys) + + [y]
=> (++.2
z : (reverse ys ++ [y])
=  (reverse.2)

x : reverse(y : ys)

Proved.

2.25.1 Example using reverse

reverse['a’,' b, ¢']
=  (reverse.2)
reverse['t','c'] ++ ['d’]
= (reverse.2)

(reverse['c'] ++ ['b']) ++ ['d]



=  (reverse.2)
((reverse[] ++ ['d]) ++ [b']) ++ [d']
= (reverse.l)
([T ++[D ++[V]) ++[d]
=  (++.1)
(] ++[¥]) ++ [a]
= (list pretty printing, no reduction)
(" :[1 ++[¥]) ++[a]
=> (++.2)
(=[] ++¥]) ++[d]
=  (++.1)
'] ++ [d]
=  (++.2)
(Y] ++ )
= (list pretty printing, no reduction)
(0[] ++ ()

=  (++.2)
¢ (Y (] ++ [a])
= (++.1

ICI . (Ibl . [Ial])
= (list pretty printing, no reduction)

[ICI,I bl,, al]

Note:

number of elements in the list 3.

3 reductions by (revrse.2);

followed by 1 reduction by (reverse.l);

followed by 1 reduction by (++ .1) for [ | + + ['c'];

followed by 1 reduction by (+ + .2), followed by 1 reduction by (+ + .1) for ['¢'] + + ['¥];

followed by 1 reduction by (+ + .2), followed by 1 reduction by (4 + .2), followed by 1 reduction
by (+ +.1) for ['¢")/¥'] + + ['a].



2.25.2 order of function reverse
e Number of reduction steps using ++:

[%1, 22,73, .., Tn_1] + + [Zn]

= (list: pretty printing, no reduction)
x1: [X2, %3, ., Tn1] + + [Zn]

> (++.2
z1 : ([T2,%3, .., Zn_1] + + [Zn])

= (list : pretty printing, no reduction)
x1 (2 1 [T3, ., Tpo1] ++ [Zn])

= (++.2)
x1: (22 : ([23, 0, Zn_1] ++ [24]))

= (.)
21 (22 (@31 (Zpe1 : ([] + + [20])--)))
= (++.1)

x1: (z2: (23 : (o1t [T0]--)))
= (list : pretty printing, no reduction)

[51]'1,372,:173, ,.'Un]

n—1 (+ + .2) reductions followed by 1 (+ + .1) reduction

e The above definition of reverse amounts to putting each element of the list individually in reverse
order first and then concatenating them:

[$1,$2,$3, amn]
= (n (reverse.2) followed by 1 (reverse.l))
[@n] ++ [Tno1] ++ [Bao2] ++ o ++ [71]-

e This is then concatenated to form [z, 2z, 1,%n_2,...Z2,21] by using (++.1) and (++.2):

[Zn] ++ [Tn-1] ++ [Bn—2] ++ [Tn-3] ++ ... ++ [1]
= (1 x (++.2),1 x (++.1))

[T, Zn-1] ++ [Zn-2] ++ [Th_3]-- ++ [21]
= 2 x (++.2),1 x (++.1))

[@n, Tn—1,Tn_2] ++ [Tn_3]... ++ [21]
= B x (++.2),1 x (++.1))

[Ty Trn1,Tn—2,Tn-3] ++ .. ++ [21]

This will mean a total of n reductions by (++.1) and (1+2+..n—1 = (n — 1) *n/2) reductions
using (+ + .2).



e Thus

In general for a list of length n:

n reductions by (reverse.2), followed by 1 reduction by (reverse.l), followed by n + (n —1) *
n/2 =nx* (n + 1)/2 reductions using (++).

— Total number of reduction steps = n+1+nx*(n+1)/2=1+3xn/2+n?/2. For large n
this is proportional to n2.

We say the function reverse is of order n? and is denoted using “Big O” as O(n?).



2.26 Lists: rev (A Fast Reverse Function)

Definition of rev:

> rev s = shunt [] zs || (rev.1)
> shunt ys | ] = ys || (rev.2)
> shunt ys (z : zs) = shunt (z:ys) xs || (rev.3)

2.26.1 Example using rev

rev ['a’,' V') ']
= (rev.l)
shunt [] ['d') V') ]
= (list pretty printing,
shunt [] ('a' : ['b') ')
= (rev.3)
shunt ('a’ : []) [V, ']
= (list pretty printing,
shunt ['a'] ['b') ¢']
= (list pretty printing,
shunt ['a'] ('b' : ['c])
= (rev.3)
shunt ('b' : ['a']) ['¢]
= (list pretty printing,
shunt ['0') a'] ['¢]
= (list pretty printing,
shunt ['b')a'] (¢ : [])
=  (rev.3)
shunt (¢ : ['v')a']) []
= (list pretty printing,
shunt ['d',)b') a'] []
= (rev.2)

[ICI,I bl,l al]

Notes:

e number of elements in the list 3.
e 1 reduction by (rev.1);

e followed by 3 reductions by (rev.3);

no reduction)

no reduction)

no reduction)

no reduction)

no reduction)

no reduction)



o followed by 1 reduction by (rev.2).

2.26.2 Order of function rev

e This defintition of reverse amounts to shunting out (or more intuitively,” pouring out”) the elements
of the given list to an empty list:

— If the given list is empty, then its reverse is also an empty list. This involves 2 reduction
steps: first the use of (rev.1) with s =[], and then the use of (rev.2) with ys =[].

— If the given list is non-empty, then the shunt function removes the current head of the second
list and makes it the head of the first list, using (rev.3). This ’shunting’ operation is a single
reduction step. This process is repeated until all the elements of the given list are ’shunted
across’, i.e., removed from the second list and put at the head of the first list. Finally, (rev.2)
is used to give the reversed list. So for a list of length n, one reduction by (rev.1) to invoke
shunt, n reductions by (rev.3) to ’empty’ the given list & to ’build’ the reversed list, and 1
reduction by (rev.2) to ouput the reversed list.

— So altogether, n + 2 reduction steps are required to reverse a list of size n, O(n).
e Note:
— The function rev uses the function shunt, which does reversing and concatenation in one
reduction step, giving it a O(n) time complexity.

— The function reverse does all the reversing first, and then concatenates one by one. The con-
catenation function (++) has a O(n?) behaviour. This makes reverse have a time complexity
of O(n?).



2.27 fastfib (A Fast Fibonacci Function)

2.27.1 Order of fib

e Fibonacci function, fib, as previously defined is:

> Fib 0 -0 I| (fib.1)
> fib1 =1 Il (£ib.2)
> fib(n+2) = fibn + fib(n+1) [| (fib.3)

e Number of reduction steps to evaluate fib 0 is 1, e.g.,
fib 0
= (fib.1)
0
We'll denote it as T(0).
e Similarly, number of reduction steps to evaluate fib 1 is 1, e.g.,
fib1
= (fib.2)
0
We'll denote it as T'(1).

e Also, denote, the number of reductions to evaluate fib n, fib (n + 1) and fib (n + 2) by T'(n),

T(n+ 1) and T(n + 2), respectively.
Since, only 1 reduction step is needed to evaluate fib (n+2), once fibn and fib (n+1) are known,
ie.,

fib (n+ 2)

= (fib.3)

fibn + fib(n+1)

we can write:

T(n+2) = Tn+1) + T(n) + 1

— This is a second order non-homogeneous recurrence relation, for which solutions can be found

in a standard way. Its solution is:

Tn) = ec1x((1—sgrt5)/2)" +co*((1+sgrt 5)/2)" —1
where the coefficients ¢; and c2 are found using the initial values 7'(0) = 1 and T'(1) = 1, to
be
a = (1 — sqrt5)/(sqrt 5)
ca = (1 + sqrt 5)/(sqrt 5)

On substituting and simplifying the above solution becomes:

T(n) = —(2/sqrt 5)=((1 — sqrt 5)/2)"+Y)
+(2/sqrt 5) * (1 + sqrt 5)/2)("+Y —1



Using the value of
fibn+1) = ((1+ sqrt 5)/2)"TY /(sqrt 5)
—((1 = sqrt 5)/2)") /(sqrt 5)
we can write
T(n) = 2«fib(n+1) — 1

This means that the number of reductions using the above definition of fib increases very
rapidly as n increases. Since

(14 sgrt5)/2 = 1.6180 (mod > 1)
and
(1-—sgrt5)/2 = —0.6180 (mod < 1)

for large n, T'(n) increases as (1.6)", i.e., exponentially with n. We say T'(n) is non-polynomially
bound (NP). This is very inefficient.

In the above we used the general result from the Mathematical Theory of Recurrence relations,
without proof. However, it is possible to prove by induction the above result for T'(n), i.e.,

Tn) = 2xfib(n+1) — 1
as follows:
casen = 0:
TO) = 2 % fib(1) — 1
= 2x1 -1
= 1
which we have proved before.
casen = 1:
T1) = 2% fib(2) — 1
= 2x1-1
= 1

which also we proved earlier.

We shall now make the inductive hypothesis that the solution holds for n and n + 1,
T(n) = 2xfibn+1) —1
and
Tin+1) = 2xfibn+2) — 1
We now use the recurrence relation for T'(n + 2) above:

Tin+2) = Tn+1)+Tn)+1
= 2% fib(n+2)—1+2x% fibn+1)—-1+1
= 2(fib(n+2)+ fib(n+1)) -1
= 2% fib(n+3)—1

Proved.



2.27.2 Definition of fastfib

We now define a faster version of the fibonacci function:

> fastfibn = fst(twofib n) [| (fastfib.1)
> twofib 0 = (0,1) [| (fastfib.2)
> twofib (n+1) = (b,a+1b) [| (fastfib.3)
> where

> (a,b) = twofibn

Equivalence between fib and fastfib:

e Let us first convince ourselves that this indeed gives the same number sequence as the function

fib.

In fact, > twofibn = (fibn, fib(n + 1)) || (hyp)
e This can be proved by induction as follows:
casen = 0:
twofib 0 = (fib 0, fib1)
= (0, 1)

which agrees with the definition (fastfib.2).

casen = n+1:
twofib(n + 1)
= (twofib.3)
(b,a + b) where (a,b) = twofibn
= (hyp)
(b,a + b) where (a,b) = (fibn, fib(n+ 1))
=
(fib(n+ 1), fibn + fib(n+1))
= (fib.3)
(fib (n+1), fib (n+2))
Proved.

Order of fastfib:

This definition is much faster:

fastfibn
= (twofib.1)
fst (twofibn)

This is 1 reduction step.



twofib n is reduced succexxively to twofib (n — 1), twofib (n — 2),... down to twofib(0) in n reduction
steps using (twofib.3)

twofib(0) itself is reduced to (0,1) using (twofib.2).

Hence the total number of reduction steps for fastfib n is (n + 2) which is O(n). This is more efficient,
i.e., the number of reductions required is much less and so the result is obtained much faster.



2.28 Efficiency

Efficiency of programs:

e How fast programs run, how expensive are they in memory?
e Modelling efficiency of programs (environmental factors)

e Complexity - comparing performance (time and space)

2.28.1 Example:Sum of Natural Numbers

> sumto 0 =0 [| (sumto.1)
> sumton+1 =(n+1) + sumton || (sumto.2)
Order:
sumto 0
=  (sumto.l)
0
Hence,
TO) =1
sumto (n+ 1)
= (sumto.2)
(n+1) + sumton
Hence,

T(n+1) = T(n) + 1

This is a first order recurrence relation, and has the solution:

T(n+1) = T@O) + n+1

This may be arrived at by backward recursion from T'(n) to T'(n — 1), then to T'(n—2),...

to T(0). Alternatively, use inductive proof.
Hence,

Tn+1)=1+ n+1

ie., T'(n) is O(n).

and eventually



2.28.2 Example:Factorial n

> fact 0 =1 [| (fact.1)
> factn+1 =(n+1)=x factn [| (fact.2)
T(0) =1

Tn+1) = T(n) + 1

This is same as for sumto above giving T'(n) to be O(n).

2.28.3 Example: Binary string with no two 1’s consecutive

> count 0 =0 || (count.l)
> count 1 =2 || (count.2)
> count 2 =3 || (count.3)
> count(n+3) = count(n+1) + count(n+2) || (count.4)
TO) = 1
T1) = 1
T2) = 1
Tin+3) = Tn+1) + T(n+2) + 1

This is a non-homogeneous second order recurrence relation. Comparing it with the fib case, we find
that it has the solution,

Tn+1) = 2xfib(n+1) — 1
(and, T(0) = 1)

This means T'(n + 1) has the form (1.6("*1), i.e., T(n) is O(a™). This means an exponentially rising
number of reduction as n increases.

2.28.4 Example: Towers of Hanoi

If T(n) is the number of steps required to move n discs from peg A to peg B, this is same as moving
n — 1 discs from peg A to peg C, T(n — 1), moving the last disc from A to B, 1 move and moving the
n — 1 discs from C to B, T'(n — 1):

T(1) = 1
2«T(n—1) + 1

=
2
I

This has the solution,

Tn) = 2Vs7(1) + 2072 4 20073 4 41
2(n=) 4 on=2) 4 o(n=3) 4 41
= 2" — 1



(Check:

= 2xT(n-1)+1
= 22xT(n—-2)+1)+1
= 2(2x(2xT(n—-3)+1)+1)+1

14+2+22 428+ . +2ln —1)«T(1)

Il

A more rigorous proof is by induction. )

Hence, the recursive algorithm for solving the Tower of Hanoi problem is of O(a™). This means that the
number of steps increases exponentially with n, the number of discs - very inefficient:

1 disc requires 1 move

2 discs requires 3 moves
3 discs requires 7 moves
4 discs requires 15 moves

2.28.5 Example: Travelling Salesman

Shortest route from T0 to T1,T2,...,Tn (no repeats).
T'(n): number of routes from TO to n other towns T1,T2,..,Tn,
T(n — 1): number of routes from TO to n — 1 other towns T1,T2,..,Tn-1

For each of the T'(n — 1) routes there are n possible routes that can be formed with T'n.

Hence,
Tn) = nxT(n-1)

e.g.,

T(1) = 1(T0T1)

T2) = 2(T0T1T2,T0T2T1)

T3) = 6 (T0r1T273,T0T1T3T2, TOT3T1T2, T0T2T1T3, T0T2T3T1,T0T3T2T'1)
etc.
Hence,

T(n) = 1%x2x3x4.%n

= n!



Again proof by induction.

This means that the number of possible routes in the Travelling Salesman problem increases as the
factorial function, which grows very rapidly as the number of towns to be visited increases.

2.28.6 Need for Efficency Measures:

e Criteria for comparing algorithms:

— Execution time

— Memory requirement
e Complexity functions:

— Comparison of different algorithms for the same task

— Behaviour of complexity functions with change in the size of the task.



2.29 Asymptotic Behaviour

Example:

1.

2.

reverse xs: For a list xs of size n, number of steps needed to reduce reverse xs (i.e., to evaluate

the expression reverse xs) is proportional to n?.

rev xs: Number of steps needed to reduce rev zs is proportional to n.

2.29.1 Notation:T & O

Ty (x):

1.

Number of reduction steps to compute f z, i.e., the number of steps required to reduce f z to

canonical (normal) form.
It gives a measure of the time required to perform the computation.

The actual number of reduction steps depends on the model of computation used. We shall use
Outermost Graph Reduction.

. ‘O’ stands for order of at most.

. Examples: Treperse(zs) = O(n?), and Tyey(zs) = O(n) where n is the length of zs.

More precise meaning of O:

If g(n) is some function of n, then whenever we write:

this means that there exists some constant M such that
lg(n)| < M]|h(n)|
for every positive n.

Does not define g(n) precisely, but does say that g(n) is bounded by a function that is proportional
to h(n).

Here |g(n)| is the absolute value of g(n); normally g(n) is positive as it represents the time resource
used by the program with input of size n.

Example:

g(n) = ao+ a1 *n+azyxn?+ .. +ap*n™



To show

A suitable M for this problem is

M = lao| +|ar] + . + |am]
For,
g(n) = (ag/n™+ay/n(™ YV + . +ap)n™, forn > 0
()| < (lao/n™| + lar /™ V| + .. + |am]) xn™
< (laol + |a1| + .- + |am|) xn™
< Mxn™
where M = |ag| + |a1| + ... + |am]
and n > 0.
Note:
if
fn) = O(h(n))
&

it does NOT follow that f(n) = g(n).

2.29.2 Example: reverse & rev

Thus there exist constants M; and M> such that for every list of size n > 0,
T’I‘C’UG’I'SC (:L.S) = 0(”2)

= no. of steps to compute reverse xs < My xn?forn > 0

&
Treo(rs) = O(n)

= no. of steps to compute rev xs < My *n forn > 0

The relative sizes of M; and M, are unimportant, and for large n, the second program is the faster one.
For Ml = 2, M2 =20
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11

My xn? 2 8 18 32 50 72 98 128 162 200 242

My xn 20 40 60 80 100 120 140 160 180 200 220
For longer lists the second program is better.



2.29.3 Asymptotic analysis

Order of magnitude:

1. reverse xzs: O(n?), quadratic order of magnitude

rev zs: O(n), linear order of magnitude

2. Program with smaller order of magnitude runs faster under all implementations for sufficiently
large inputs.

3. Asymptotic analysis yields implementation independent information.
4. More detailed information needed to compare two programs with the same order of magnitude.

5. For small data (n):
Size of the constant of proportionality may be important. Actual number of reduction steps, and

timing analysis in particular implementations may be required.



2.30 Models of Reduction

2.30.1 Meaning of number of reduction steps

Example: pyth

Definition:
> pythxy =sqrx + sqry || (pyth.1)
> sqr =z *x T || (sqgr.l)

Evaluation of pyth 3 4:

pyth 3 4
= (pyth.1l)

sqr 3 + sqr 4
= (sgr.l)

(3 x 3) + sqr4
= (%)

9 + sqr4
= (sqr)

9 + (4 % 4)
= (%

9 + 16
= ()

25

6 reduction steps.

Notes on reduction:

e Each reduction step replaces a subterm by an equivalent term.

A subterm which can be reduced is referred to as a redex (reducible expression).

In each reduction step a redex on the left side (e.g., pyth 3 4) is replaced by the right side (e.g.,
sqr 3 + sqr 4).

The right hand side may itself be a redex (like sqr 3 + sqr 4, 3 x 3) or a primitive value (like 9,
25).

e When no redexes are left, the reduction is complete.

The number of reduction steps depends on the order in which the redexes are reduced.



Example:

Using the definition of fst:

> fst(zy) ==z Il (fst.1)
Evaluation of fst(sqr 4, sqr 2):
One possible reduction:

fst (sqr 4, sqr 2)
= (fst.l)

sqr 4
= (sqr.l)

44
= (%)

16

3 reduction steps.
Another possible reduction:

fst (sqr 4,sqr 2)
= (sqgr.l)

fst (4%4,sqr2)
= (%)

fst (16,sqr 2)
= (sqr.l)

fst (16,2 % 2)
= (¥

fst(16,4)
= (fst.l)

16

5 reduction steps.

2.30.2 Reduction Policies

Two reduction policies:

1. Outermost reduction:

Pick the redex that is NOT CONTAINED IN any other redex (fst).

Reduce it (fst) using the equation for it (results in sqr).

Pick the next redex NOT CONTAINED IN any other redex (sqr).

Reduce it (sqr) using the equation for it (results in ).



e Pick the next redex NOT CONTAINED IN any other redex ().

e Reduce it (%) using the equation for it (results in primitive, 16).
2. Innermost reduction:

e Pick the redex that does NOT CONTAIN any other redex (sqr, either of the two).
e Reduce it (sqr) using the equation for it (results in x*).

e Pick the next redex that does NOT CONTAIN any other redex (x or sqr, either will do,
choose *, say).

e Reduce it (whichever of * or sqr was picked) using the equation for it (results in primitive,
16, if * chosen).

e Repeat (i.e., reduce) for the other redex that was not chosen first (sqr, results in *).
e Now reduce the redex that does NOT CONTAIN any other redex using the equation for it(x,
resulting in 4).

e Finally, reduce the resulting redex that does NOT CONTAIN any other redex (results in the
primitive, 16).



2.31 Termination

Some reduction orders may fail to terminate.

Example:
> answer = fst(42,loop) || (answer.1)
> loop =tl loop | (loop.1)

fst and tl are as defined before.

2.31.1 Innermost Reduction

answer
= (answer.l)

fst(42, loop)

= (loop.1)
fst(42,tl loop)
= (loop.1l)

fst(42,tl (1 loop))

Does NOT terminate.

2.31.2 Outermost Reduction

answer
=  (answer.l)
fst(42,loop)
= (fst.1)
42

2 reductions.

Notes:

e When both the reduction methods terminate, they give the same value (reduce to the same result).

e Whenever there is a reduction order which terminates, then the outermost reduction terminates.



2.31.3 Outer vs Inner Reduction

e Qutermost reduction is usually referred to as Normal Order Reduction. This is because it results

in a normal form (a canonical nonreducible value) whenever such a normal form exists.

e Qutermost reduction is also sometimes referred to as Lazy evaluation, because it does not reduce
a redex unless it is essential for evaluating the result.

e Inner reduction is usually referred to as Applicative order reduction, and sometimes as Eager

evaluation.

2.31.4 Strict vs Non-strict Functions

e A strict function is undefined whenever its argument is undefined. For example:

— Multiplication is strict in its first and second argument, since

and

— The tuple constructing function is not strict since
(La) # L
and
(@, 1) # L
e Qutermost reduction is essential for evaluating non-strict functions.

e Unlike Miranda some functional languages allow only strict functions (SML). For such languages,

innermost and outermost reductions are equivalent.



2.32 Graph Reduction

e Outermost reduction seems to require fewer (at most same number of) reduction steps than inner-
most reduction.

e On efficiency grounds outermost reduction seems to be preferable to innermost reduction.

e However, for the outermost and innermost reductions as defined above, it is possible to have

examples where innermost reduction takes fewer reduction steps.

2.32.1 Example: sqr(4 + 2)

More outermost reduction steps than innermost reduction steps.

Innermost reduction:

sqr(4 +2)

sqr 6
= (sqgr.l)
6 %6

36

3 reduction steps.

Outermost reduction:

sqr (4+2)
= (sqr.l)
(A4+2)x(4+2)
= ()
6x(4+2)
= (4
66
= (¥
36

4 reduction steps.



Note: Time Complexity

e Reason obvious — the reduction of 4 + 2 to 6 is duplicated.

e If all such duplicate reductions were to be counted only once, then we can ensure that outermost
reduction never takes more reduction steps than the innermost reduction steps.

e Graph Reduction achieves this. Shared sub-terms are represented by graphs. Sharing subterms in
a graph is achieved using where clause in the language implementation.

e With graph reduction, outermost reduction never requires more reduction steps than innermost
reductions.

e Since, number of reduction steps gives a measure of time efficiency, outermost graph reduction is
the fastest.

2.32.2 Space Complexity

e Size of a term or a graph is measured by the total number of arguments in it.

e Size of a graph gives Space efficiency measure, the size of the largest graph during reduction to
the normal form being used for it.

Example:sqr 3 + sqr 4

sqr 3 + sqr 4
Each of the sqr take one argument, and + takes two arguments.
So, this term has size 4.

Example:sqr (4 + 3)

sqr (44+3)=(4+3)%x(4+3)
+ takes two argument and * takes two argument. The two +’s are counted only once (graph reduction).
So, this graph has size 4.



2.33 Reduction & Pattern matching

2.33.1 Example:zip(map sqr [ |, loop)

Using zip,
> zip([ ], ys) =[] || (zip.1)
> zip(z : ws, [ ]) =[] || (zip.2)
> zip(z : zs,y 1 ys) = (z,y) : zip(zs,ys) || (zip.3)
map
> map f[] =] || (map.1)
> map f(x:28) =fx:map [ xs [| (map.2)
and loop
> loop = tl loop [| (loop.1)

zip(map sqr [ ], loop)
= (map.l)

zip(( ], loop)
= (zip.1)

[]

This is outermost reduction. In order to reduce zip(map sqr [ ] had to be reduced, i.e, map sqr [ ]
appears inside no other redex.
Alternatively, loop which also appears no other redex could have been reduced:

zip(map sqr [ ], loop)
= (loop.1)
zip(map sqr [ ],tl loop)
= (loop.1)
zip(map sqr [ ], tl (tl loop)

This is also outermost reduction, since each ¢l loop appears inside no other redex.
To decide which sub-term is to be reduced in pattern matching definition,

1. Check whether the result of reducing the term will be used by the pattern match. If so reduce it.

2. After its reduction, check whther the second term reduced is needed by the pattern match. If so
reduce it.

In the above example, zip requires one of the terms to be in a form z : s or [ ]. As the second sub-term
loop does not lead to either, the first sub-term was reduced.
Consider zip(1 : map sqr [2], map sqr [4,5,6])



The first sub-term is in the form z : zs (as required by zip). In order for zip to work the second term
should be in the form [ ] or y : ys. Hence, it needs to be reduced:

zip(1 : map sqr [2],map sqr [4,5,6])

= (map.2)

zip(1 : map sqr [2],16 : map sqr[5,6])
= (zip.3)

(1,16) : zip(map sqr [2], map sqr[5,6])
= (map.2)

(1,16) : zip(4 : [ ], map sqr[5,6]) (needed for further zip)
= (map.2)

(1,16) : zip(4 : [ ],25 : map sqr[6])
= (2ip.3)

(1,16) : (4,25) : zip([ ], map sqr [6]
= (zip.1)

(1,16) : (4,25) : [ ]

The second sub-term map sqr [6] does not need to be reduced for the pattern match needed for zip’s
reduction.



2.34 Models of Implementation

Use outermost graph reduction.
If the reduction steps are:

€0
=

€1
=

€2
=
=

€n

where e, is the normal form od eo.
Time taken is proportional to the number of reduction steps, n.
Space required is the size of the largest graph (maximum of sizes of ey to ep).



2.35 End Of Chapter Exercises

1. Define a function which, using distt or dist from the lecture notes, returns triangle area, given the
3 vertices as 2-tuples, or pairs. You need to know that,

if @, b, and c¢ are the lengths of the 3 sides, then
using s = (a+b+¢)/2, we have
squared —area = sx(s—a)x(s—b)*x(s—¢)

2. Define and test a function age for computing a person’s age in years on a given date, given the
date of birth. Two arguments: the first contains the name and date of birth, the second the given
date. Example evaluations of this function:

age (" Joe”,(15,3,1965)) (2,4,1992) answer : 27
age joe today answer : 27

What is the type of age? Enter your type expression into your script to see if Miranda agrees.
The second example above assumes that joe and today are constants that have been defined in
the script, e.g. by:

joe = ("Joe”,(15,3,1965))
today = (2,4,1992)

Notice how the constant looks like a nullary function, i.e. a function with no arguments.
Further development (jumping ahead by making use of the show function and list concatenation):

— Alter your function to yield a more user-friendly string value such as ” Joe is 27”, rather than
a basic num value such as 27.

— USING THE ONLINE MANUAL, and B&W 2.3.2, use library string formatting functions,
format your output in tabular fashion, e.g.

Born on on date Joe is
15/3/1965 2/4/1992 27

3. The two solutions (roots) of the quadratic equation are obtained as follows:

axz> + bxx + ¢ = 0
solutions = (—b + sqrt(b®> —4ax*c))/(2*a)

Define and test a Miranda function which accepts the three coefficients a, b , ¢ as arguments, and
yields as result a pair (2- tuple) whose components are the two roots. Make sure that your function
copes suitably with the case where two real roots do not exist.

Optional extra: Can you make your solution more user friendly, e.g. to output result as a pair if
two roots exist, and a suitable message if not ? You will probably need to use the error built-in

function.

4. The following series tends in the limit to pi/4:
1 -1/3+1/5 —1/7 4+ 1/9 — 1/11 + 1/13 — .+ .. —..
Define and test a function which, given an argument n, will sum n terms of the series and multiply
by 4, to yield an approximation for pi.



10.

11.

12.

Optional Extra: Investigate the accuracy and time efficiency of your function, by comparing it
with Miranda’s built-in pi constant, and by giving the Miranda command /count (which will track

various execution statistics).

(OPTIONAL brain-teaser:) The following function definition, to yield the n’th Fibonacci number,
is terribly inefficient. Can you devise a more efficient definition? (Compare the relative efficiency
using /count).

fibo = 0
fibl = 1
fibn = fib(n—1) + fib(n—2)

Give the types for the following functions defined before (work them out before using Miranda to

confirm!):
mult, multt, add, addt, succ, pred

Give types for the following function definitions:

onex = 1
applytwice f ¢ = f (f x)
condapplyp fgx = fzx,ifpx

= g x, otherwise

([BW8g|B&W 1.4.2) Give examples of functions with the following types:

(num —  num) — num
num — (num — num)

(num — num) — (num — num)

Which brackets are redundant ?

([BW88IB&W 2.5.1) Define versions of the function (A) and (V) using patterns for the second
argument. Define versions which use patterns for both arguments. Draw up a table showing the
values of AND and OR for each version.

Define two functions:

e to return the greatest common denominator of two numbers
e to determine whether a number is prime or not
What is the type of § defined in the text?
What is the type of the following:
>  makepair zy = (z,y)
Define filter without using list comprehension. What is its type?
Now define filter using pattern-matching. Is this a better definition ?

The function zip takes a pair of lists and returns a list of pairs of corresponding elements:

zip = ([%],[*x]) —  [(x,*x)]
zip ((a:zs),(b:ys)) = (a,b): zip (xs,ys)



13.

14.

15.

16.

17.

18.

19.

20.

Using zip, define and test a scalar product function sp, which returns the sum of the products of
respective elements of two list arguments, i.e. (informally):

sprsys = xlxyl+z2xy2+ ...

Using zip, define and test a function myzip4 which converts a 4- tuple of lists into a list of 4-tuples.
This exercise is not asking you to copy the Miranda standard environment zip4 definition!

Suppose a list xs of integers contains an equal number of odd and even numbers. Define and test a
function 7i f fle so that (rif fle xs) is some rearrangement of xs such that even and odd numbers
alternate.

([Hol91]Holyer 8.1) What is wrong with each of the following, assuming they are to be directly
evaluated? Correct, and evaluate by hand, and confirm using Miranda:

10 / 7 div 3 2+ 3] %4
code x letter 7 x”
(1,2) ++(3,4) # 'abed’

max2 (1,2) tl1:]2..5]

([Hol91]Holyer 2.8.3) Using hd and a list comprehension with one generator and one filter, find the
first power of 2 greater than one million.

16 ([Hol91]Holyer 2.8.5) Use a list comprehension with two generators and one filter to produce
the list

[(1,1), (1,2), -..(5,5)]

of the fifteen pairs of integers between 1 and 5 for which the first number is less than or equal to
the second. Then find a second comprehension to do the same thing using just two generators and
no filter.

([BW88|B&W 2.8.1) Declare the types for the following function definitions:

constzy = «x

subst fgx = fz (g9
Check, using Miranda.

([BW88|B&W 3.5.1) Consider the function all which takes a predicate p and a list s and returns
True if all elements of xs satisfy p, and False otherwise. Give a formal definition of all which uses
foldr.

(a) ([BW88|B&W 3.5.2) Which, if any, of the following equations are true?

foldl (=) xxzs = =z — sumxs

foldr (=) xxzs = © — sum xs

(b) ([Hol91]Holyer 3.4.5) Define a version cat of the standard function concat using foldl rather
than foldr. Verify that they have the same effect on finite lists by trying out an example using a
list of numbers and another using a list of strings.

(a) ([Hol91]Holyer 3.4.4) Write a function capitalise which converts the first letter of a lower case
word to upper case using the standard functions code and decode. You do not need to know what
codes the letters have, only that the lower case ones have consecutive code numbers, as do the



21.

22.

23.

24.

upper case ones.

(b) ([Hol91]Holyer 3.4.6) Define a function join which joins two words together with a space in be-
tween. Use join, capitalise and foldr1 to define a function sentence which takes a list of words such as
["the”, "cat”, ”sat”,”on”, ”the”, "mat”] and produce a sentence such as " T he cat sat on themat.”
by joining the words, capitalising the first word, and adding a full stop.

([BW8BIB&W 3.5.4) Consider the following definition of function insert:
insert ¢ s = takewhile (< ) s + + [z] + + dropwhile (< z) xs

Show that if zs is a list in non-decreasing order, then so is (insert x xs). Using insert, define a
function isort for sorting a list into non-decreasing order.

([Dav92]Davie 3.13.15) Write a function which converts an integer number from a given base to a
number in base 10.

Refer to the definitions of the f and reverse functions using foldl in the text.
(a) Verify that

oneplus(x plusone(y z)) =  plusone(oneplus(z y) z)
and
oneplus x 0 = plusone 0 x
where
onepluszy = 1+ y
and
plusonexy = =z + 1
(b) Veify that
postfixz(z prefiz(ys z)) = prefiz(postfiz(z ys) z)
and
postfixx [] =  oprefiz|[]zx
where
postfix x xs = x5 ++ [7]
and
prefirxzsx = [z] ++ s

(OPTIONAL : Lazy infinite lists) Write a definition that prints an infinite list of 1s
Write a program that prints the infinite text

”1 sheep, 2 sheep, 3 sheep, ....”



as an aid to insomniacs.

25. ([BW88|B&W5.1.1) Using the recursive definitions of addition and multiplication of natural num-
bers given in the text; prove all or some of the following familiar properties of arithmetic:

0+n = n=mn+20

1 xn n=mn+1
E+ (m+n) = (k+m) +n

m + n = n +m

k % (m=xn) = (kxm)x*n

kEx (m+n) = (kxm) + (kxn)
m*xn = nxm

26. ([BW88|B&W5.1.2) Prove that

Fn+1 % Fn—1 — (Fn)?
Fn+m

for all natural numbers n > land m > 0,

27.
k objects from a collection of n objects.
a) Give a recursive definition of binom.
b) Prove that if £ > n then binom n k =

¢) Rewrite the equation

sum_over_k_from_0_to-n (binom n k)

in functional notation.

(+ has identity 0)
(x has identity 1

(+ associative
(+ commutation

(+ distribution through *

)
)
)
(* associative)
)
(* commutation)

(="
Fn x Fm+1 4+ Fn—1 x Fm

where F'm is the mth Fiboncci number.

([BW88]|B&W5.1.3) The binomial coefficient, binom n k denotes the number of ways of choosing

0.

p— 2"

Prove that the equation is true for all natural numbers.

28.
29.
30. ((BW88B&W5.3.3) Prove the law

init(zs + + [z])
last(zs + + [z])

s

([BW8g|B&W5.3.1) Give a recursive definition of index operation (zs!é).

([BW88|B&W5.3.2) Give a recursive definition of takewhile and dropwhile.

IS

T

init xs + + [last xs]

for every = and every (non-empty) finite list xs.

31. ([BW88|B&W5.3.4) Prove the laws

take m (drop n xs)

drop m (take n xs)

drop n (take (m + n) xs)
drop (m + n) zs

for every natural number m and n and every finite list zs.



32.

33.

34.

35.

36.

37.

38.

39.

([BW88|B&W5.3.5) Prove the laws:

map (f.g9) xs

map [ (concat xss)

map f (map g zs)

concat (map (map f) zss)

for any functions f and g, and every finite list zss.

([BW88|B&W5.3.6) Prove the law:

takewhile p xs + + dropwhile pxs = xs

for every total predicate p, and finite list xs.

([BW88|B&W5.4.1) Prove that

(zs ++ys) ——axs = ys

for every finite list xs, ys.

([BW88]|B&W5.4.2) Prove that
reverse (zs + + ys)

for every finite list xs and ys.

([BW88|B&W6.1.1) Use the T— and O-notations to give computation times for the following

functions: hd, last, (f), fib, and fastfib.

([BW88|B&W6.1.2) If

may we conclude that
g(n) =07

reverse ys + + reverse rs

What should the right-hand side of the equation be?

([BW88]|B&W6.2.1) Give innermost, outermost, and outermost graph reduction sequences for each

of the following terms:
cube(cube 3)

map(l+) (map (2x) [1,2,3])
hd([1,2,3] + + loop)

Count the number of reduction steps in each sequence (if it terminates).

([BW88|B&W6.2.2) Give the outermost reduction sequences for each of the following terms:

zip (map sqr [1..3], map sqr [4..6])
take (1 + 1)(drop(3 — 1)[1..4])
take (42 — 6 = 7)(map sqr[1234567..7654321

Indicate all outermost radixes that are not reduced because of the restrictions imposed by pattern

matching.

)






Chapter 3

Constructed Types

3.1 Type Synonyms

3.1.1 Example:Point, Side & Area

> point == (num,num)

> geomarea == num

> length == num

> area b point — point — point — geomarea

> side : point — point — length

> sideab =  sqrt((fsta — fsth)? + (snda — sndb)?)

> area abc = sqrt(sx (s — (sideab)) = (s — (sidebc)) * (s — (sideca)))
> where

> s = ((sideab) + (sidebc) + (sideca))/2

123



3.2

3.2.1
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3.3

3.3.1

3.3.2

Enumerated Types

Example: Direction&Day

direction

day

nextday
nextday Mon
nextday Tues
nextday Weds
nextday T hur
nextday Fri
nextday Sat

nextday Sun

workday
workday d

North|East|South|West
Mon|Tues|Weds|T hur|Fri|Sat|Sun
day— > day

Tues

Weds

Thur

Fri

Sat

Sun

Mon

day — bool
Mon <d< Fri

Algebraic Types

Example:Fahrt, Date, &Perrec

fahrtemp

freezing

freezing (Fahrt n)

day
perrec

Example:

3.3.3 Example:

filex ==
perfile ==

File

= Fahrt num
* fahrtemp — bool
= n<32

Date num num num
Perrec num string day

Celc, Fahr&Kelv

temp ::= Celenum|Fahrnum|Kelvnum

File [«]

file perrec



3.4 File & Pair

3.4.1 Example: File & Pair

> file * u= File [¥]

> num file = File[3, 2, 33, 0, —13]

> stringfile =  File ["My”, "name”, ”is”, " Fred”]
> pair x xx = Pair x *x

> pairnb = Pair 7 False

> pairlns =  Pair [8, 9, 17] "kid's ages”

3.4.2 Natural Numbers as Algebraic Types

3.4.3 Example: speed, temp, nat, & radd

> speed x=  Slow | Average | Fast

> temp u=  Fahr num | Celc num | Kelv num
> nat u=Zero | Succ nat

> radd n Zero = n

> radd n (Succm) =  Succ (radd n m)

3.4.4 List of Natural Numbers

3.4.5 Exercise: numlist, stringlist & rtake

> list * u= Nil | Cons x (list %)
> numlist == list num

> stringlist == list [char]

> rtake i nat — list x — list *
> rtake Zero xs = Nil

> rtake (Succ n) Nil = Nil

> rtake (Succ n) (Cons e xzs) =  Cons e (rtake n zs)



3.4.6 Binary Tree

3.4.7 Exercise: btree, build, squash & magic

\%

V V.V VYV VYV

vV V.V V

\%

3.5

zbtree u= Null | Leaf % | Node (xzbtree x) % (zbtree x)
build w o [¥] > zbtree x
build ] = Null
build [z] = Leaf x
build (x : xs) =  Node left x right
where

left = build (filter (<= x) zs)
right = build (filter (> z) xs)

squash x xbtree x — [x]

squash Null =

squash (Leaf x) = [z

squash (Node left x right) =  squash left + +[z] + +squash right
magic = squash.build

End Of Chapter Exercises

. Give an alternative definition of addition (to radd) for type nat.

Can you define subtraction for type nat as a model of the naturals? If so, how, and are there any
problems? If not, why not?

([BW88]|B&W 8.3.2) Define multiplication as an operation on type nat.

Define subtraction for the following representation of the integers:
int ::= Pos nat | Neg nat

Define operations rtakewhile and rconcat (analogous to takewhile and ++ for type [*]) for type
list *.

Define operations rmap and rlength (analogous to map and # for type [*]) for type list .
Define a function mirror to form the mirror image of a tree of type xbtree *.

For type btree *in B&W define a function maptree which will apply a given function (type * -> **)
to the data item type * contained in each leaf (tip according to B&W).

Using functions you have seen in lectures & the book, define a function which will take any numeric
tree of type zbtree x and convert it into an ordered tree, i.e. one which can be ”squashed” (using
squash) into an ordered list.
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24.

Test the set functions: define some example sets and try out the functions. Get a feeling for what

more complex expressions do, such as (for example)
comp (union (intersect a b) ) (<10)

where a, b, ¢ are of type set num.

Test the laws discussed in section 3.2 for sets, by defining example constant sets. Suggest one or
two laws of your own and test them.

Give an expression using function comp and an input list of strings, to return the set of strings
in that input list containing at least one upper case letter. You will need to specially define a
predicate function.

Give an expression using function gen and the input list [1..10], to return the set of squares of

even numbers between 1 and 10.

Give an expression using function exists to determine whether the set of names of your classmates
contains one starting with the letter "U’.

Define (an implementation function for) forall, for type aset™ *.

a, b, and c are three sets that intersect. Define a function using aset * operations intersect and
setdiff that returns all elements in set a that are NOT in BOTH b and c. (You will need to
complete exercises 4.1 and 4.2 if you want to execute your function, but this is an option)

Experiment with type stack * to satisfy yourself that

- operations work as you would expect - operations only work when preconditions apply -
the laws are satisfied by example stacks - the representation of the type is ”encapsulated”,
e.g. what happens if (knowing the representation is ’[*]’), you try to do

5 : s where s is of type stack num ?

- the comments in the lecture about show functions are justified:

The following is a constructed type for temperatures:

temp ::= Fahr num | Celc num

You are required to make an example stack of temp’s. - Define an element display
function, to display an element as Celcius. - Apply verb+showaset+ to your example
stack, to show the stack in Celcius format. Use the UNIX script facility to record your
results.

For the abstract type stack *, give the signature and definition of operation pop.
Prove law 2 for type stack .

Prove law 4 for type stack .

Give the signature of, and define, the precondition for pop.

Give signatures and definitions for operations join and front for type queue *.

Prove the two stated laws for type queue .






Chapter 4

Abstract Types

4.1 Abstract Types from Outside: The Set

e Yet another mechanism for type construction: WHY?

e Recall: Comparison of Miranda ‘built-in‘ / ‘primitive‘ types with constructed ‘representation‘
types. e.g., (Section 3.1.2, Section 3.1.3)

— nat for (some of) num

— list * for [¥]
e So, built-in types (e.g., [¥]) come with built in structure, e.g.,

[, ] : [z]z < . -]

We examined the possible internal structure (representation) using constructed types.

4.1.1 Type aset *

e Imagine a type aset * which gives us sets of things of type * (cf. [«])
e Sets vs Lists:

— No duplication

— No ordering
e So:
— Not valid set: {5,1,1,3,3}
— {1,3,5} = {5,1,3} = {5,3,1}
— Valid list: [5,1,1,3,3]
- [5717173a3] # [173a5] 7& [57]-;3] 7& [57371]

129



e Some operation definitions for asetx

> abstype aset *

> with

>| |emptyset: give an empty set

> emptyset :: aset *

>| |mkaset: makes a list of elements into a set of those elements
> mkaset :: [*¥] -> aset *

>| |setaslist: useful operation to express a set as a list

> setaslist :: aset * -> [*]

>||card: give cardinality of set (no. of elements)

> card :: aset * -> num

>| |belongs_to: is a value a member of a set?

> belongs_to :: * -> aset * -> bool

>| |subset_of: is a set a subset of another set?

> subset_of :: aset * -> aset * -> bool

>| |union: give the union of two sets

> union :: aset * -> aset * —-> aset *

>| |showaset: set display operation

> showaset :: (* -> [char]) -> aset * -> [char]

>||comp: gives a set as set comprehension using a single predicate
> comp :: aset * -> (* -> bool) -> aset *

>||gen: gives a set using a filter and a generator function

> gen :: aset * —> (¥ => bool) -> (* —> *x) -> aset *x*

4.1.2 Examples:
e mkaset :: [*] -> aset *
mkaset [1,2,3,2,1,4] = {1,2,3,4}

> numset :: aset num
> numset = mkaset [1, 2, 3, 1, 4]

mkaset [‘a‘,‘z*,‘$] = {‘a‘,‘2*,‘$‘}
> chset :: aset char
> chset = mkaset [‘a‘, ‘z‘, ‘\$‘]
mkaset [“fred", “joe”, usuell] = {“fred”, ujoell7 usuell}

> strset :: aset [char]

> strset = mkaset [‘‘fred’’, ‘‘joe’’, ‘‘sue’’]

e card :: aset * —> num
card (mkaset [1,2,3,1,4]) = 4



card (mkaset [‘a‘,‘z*,‘$]) = 3

"«

card (mkaset [“fred”, “joe", “sue']) = 3

e belongs_to :: * -> aset * -> bool
belongs_to 5 (mkaset [1,2,3,1,4]) = False
belongs_to ‘a‘ (mkaset [‘a‘,‘z‘,‘$‘]) = True

"o«

belongs_to “jim" (mkaset [“fred’, “joe", “sue']) = False

e union :: aset * -> aset * —> aset x*

> setl = mkaset [1,3,5,3,7,9]

setl = {1,3,5,7,9}

> set2 = mkaset [2,4,6,8,9]
set2 = {2,4,6,8,9}

union setl set2 = {1,2,3,4,5,6,7,8,9}

setl U set2
e comp :: aset *x => (* -> bool) -> aset *
comp set2 (>5) = {6,8,9}

{s:S|p s}

“filter for sets”
e gen :: aset * -> (*x -> bool) -> (¥ —-> %) -> (aset *x*)
gen setl (<=15) (x100) = {100, 300,500}

{s:S|ps.gs}

“generator for sets”
e forall:: aset * -> (* ->bool) -> bool
forall setl (>=1) = True

forall setl (< 6) = False

Vs:setl.s<6
e exists :: aset * -> (* -> bool) -> bool
exists set2 (> 8) = True
Js : set2.s > 8

e operator sections:
(>8), (<6)



4.1.3 Set Laws

Some LAWS for aset *: For any sets A, B of type aset x and any element a of type x,

1.
AUB=BUA
ie.,
union A B = union B A
Miranda Notation:
> union setA setB $seteq union setB setA
2.

aceA={a}CA

ie.,
belongs_to a A = subset_of (mkaset [a]) A

Miranda Notation:

> belongs_to a setA = subset_of (mkaset [a]) setA+

4.1.4 Examples:

\4

a = mkaset [2,3,4,3,5,6,6]
b = mkaset [3,5,79,11,3,5]
c = mkaset [8,6,4,2,6]

vV Vv

\4

testlLawl = union a b $seteq union b a

\4

testLaw2 = union a (union b c¢) $seteq union (union a b) c

4.1.5 Miranda Sessions

Miranda (union a b) $seteq (union b a)

True

Miranda ((interesct a b) $union (setdiff a b)) $seteq a
True

Miranda belongs_to 5 a

True

Miranda subset_of (mkaset [5]) a

True

..etc.



4.1.6 Implementation of aset x using Lists

> aset x == [¥]

> emptyset =

> mkaset [] = [

> mkaset (r : xs) = mkaset zs,if member rs z

> = 1z :mkaset xs, otherwise

> setaslist set = set

> card set = #set

> belongsio x set = member set

> subset, f setl set2 = and [belongsio © set2 | x + setl]

> union setl set2 = mkaset (setl + + set2)

> intersect setl set2 = mkaset [z|z + setl;y < set2;z =y

> setdif f setl set2 = mkaset (setl — — set2)

> comp set p = filter p set

> gen set p g = map g (filter p set)

> seteq setl set2 = subset_of setl set2 & subset_of set2 setl

> showaset f set = 7{? + +init(showmems f set) + +7}”,if set = emptyset
> = "{}", otherwise

> where

> showmems f set = 77, if set = emptyset

> = f (hd set) + +7,” + +showmems [ (tl set), otherwise

4.1.7 Some Constant Definitions

> charset = mkaset[‘a’, ‘b’ ‘5, ‘8¢, ‘§*, ‘'S¢, W]

> strset = mkaset ["quwerty”,” KBD”,”123”,” father”,” etc.”,” $%°&”]
> digset = comp charset digit

> lenset = gen strset hasUpper(#)

> hasUpper str = or (map isUpper str)

> 1sUpper ¢ = A" <= ¢ <= Z¢

4.2 Abstract Types

e Composite types so far have been made up by grouping ‘primitive’ types into particular forms (or
templates) for values they are to describe, e.g.,

string == [char]

atuple == (string, [num],string)
atuplist * == [(num, *)]
vehicle ::= Car string |

Truck string num num |

V V V V V V

Bicycle

e Fach of the types above on the left are determined by the form and the ’primitive’ types on the
right, i.e., by the kinds of values they represent. They are called Concrete types (Bird & Wadler).



e The operations satisfied by values of such types depend purely on the form of these definitions and
on the operations satisfied by the primitive types they are made from.

e Such types are very unlike ‘primitive’ types (e.g., num), which have their forms HIDDEN, and are
determined purely by the operations that the values undergo (e.g., add num num).

e Classifying values by the kinds of operations they usually undergo rather than by their form makes
types more useful in describing solutions of real problems.

e This suggests a better way of defining another kind of composite types - Abstract types, by
operational considerations rather than by the representation of values. They are better at modelling
real (more abstract) objects.

e An example of abstract type is aset *. This models mathematical sets. Its operations are in the
forefront having the properties of the mathematical sets. The actual representation is HIDDEN,
just like in the case of primitive types like num. Another example is the stack.

e The operations satisfied by abstract types satisfy certain properties. For example, for num, idem-
potent, commutative, associative and distributive laws under its various operations, +, *, -, /. We
have also seen laws satisfied by operations on sets.

4.2.1 Abstype Stack

The operations of interest are:

1. empty: return an empty stack

2. push: give a new stack formed by adding an element to an old stack.

3. top: give a copy of the top element of the stack

4. pop: give a new stack obtained after removing the top element of an old stack.

5. isempty: is the given stack empty?

These operations satisfy laws such as:

1. top(push x s) = x (... for any element x and any stack s)
2. pop(push x s8) = s (... for any element x and any stack s)
3. isempty empty = True

4. isempty(push x s) = False (... for any element x and any stack s)

Law 1 simply restates LIFO (Last In First Qut) property of a stack

Abstract types are constructed in Miranda in two stages:

1. Defining a type name with appropriate operation signatures. The syntax for this is:



abstype <typename> ---- <typename> may be polymorphic (e.g., stack *)
with

<operation type signatures>

This is the only part of the abstract type that is visible to the application. In other words, variables
of this type may be operated on only by the operations that appear in its type definition.

2. Implementing the type giving a definition of the type, and definitions of the operations.

This part is hidden from the application in which this type is used. There are usually many ways of
implementing the abstract type. These are called different representations for the type. However
different the implementation the operations will have the same effect. In theory, the application
should not be aware of the implementation. In practice, however, this might be noticed by speed

and memory requirement differences.

Miranda Abstract types are NOT truely abstract. In addition to operations in the type definition, certain
other operations may be available in one representation, but not in another. For example, equality and

ordering relations are available in representations using lists, but not in represerntions using functions.

Example: stack * (polymorphic stack)

> abstype stack *

> with

>|| signature expressions

>|| return an empty stack

> empty :: stack *

>|| return a stack after pushing an element to stack
> push :: * -> stack * -> stack *

>|| pre-condition for top (stack non-empty?)

> pre_top :: stack * -> bool

>|| return top element of stack

> top :: stack * -> *

>|| pre-condition for pop (stack non-empty?)

>|| pre_pop :: 77

>|| return stack after popping

>|| pop :: 77

>|| check stack is empty (stack empty?)

> isempty :: stack * -> bool

>|| display all stack elements

> showstack :: (* -> [char]) -> stack * -> [char]

This models stacks (of numbers, of characters, of plates, etc., hence polymorphic).

(There may be some problem with “offside rule”. Start the implementation indented to the left of the
operations list above.)

An implementation (representation) of the stack using lists is given below:



>|| hidden representation of type

> stack * == [*]

>|| implementation equations for operations
>|| return a null list (stack)

> empty = []

>|| return element consed list (stack)
> push a xs = a:xs

>|| is list non-empty? (stack)

>|| pre_top xs = 77

>|| copy head of list (stack)

> top (a:xs) = a

>|| is list non-empty? (stack)

>|| pre_pop xs = 77

>|| return head removed list (stack)
>|| pop (x:xs) = 77

>|| is list empty? (stack)

> isempty xs = xs=[]

>|| show all list elements (stack)

> showstack f [] =

> showstack f (x:xs) = ““(‘“ ++ f x ++ " " ++ showstack f (xs) ++ )’

4.2.2 Laws on stack function

Law 1: top (push  s) = x ... for any element x, any stack s

Proof :

top (push z s)

= (defn. of push : push.1)

top (z : s)

= (defn. of top : top.1)

T

Law 3 : isempty empty = True

Proof :

isempty empty

= (defn. of empty : empty.1)
isempty []

= (defn. of isempty : isempty.1)

!

= (apply ' =' operator := .1)



4.2.3 Testing the Laws

> numstack push 3 (push 7 (push 6 empty))
> strstack = push ”123” (push ” father"
> (push ”caught” (push ”a flea” empty)))

4.2.4 Another Law

pop :: stack x — (x, stack *)

Law : pop(push x s) = s
> showstack (push 6(snd(pop s)))

4.2.5 Notes on Abstract Types:

1. Encapsulation of representation: dirty programming (using *hd’, ’tI’, etc.)
2. Implementation independence

3. Display of values of abstract types: cannot be automatically shown. showstack function has two
arguments: a 'show’ function, taking a stack componennt of type *’ to (displayable) type [char],
and the stack argument.. Define an abstype operation 'showx’ gor an abstype 'x’.

Mira> push 1 empty
<abstract object>

Mira>push 1 empty
(push 1 empty)

showstack show (push 1 empty)

will work.

4. Precondtion and Postcondition: What happens if you try to apply 'top’ or 'pop’ to an empty
stack? ... Partial function So define PRECONDITION for any given operation. If

op ::< some argument >—< result >
then its precondtion is a PREDICATE with the same signature, except for the result:
pre_op ::< some argument >— bool

So,
pre_top s = "isempty s

The Precondition: Usually seen as a predicate on both the arguments to, and the result of the
operation. It tells us something about what the operation does.



5. Classifying operations of an abstract type:

(a) CONSTRUCTOR.

(b) ACCESSOR:

(¢) TRANSFORMER:

op :: things - T

op = things — (T, things)

op :: things = T — things

op :: things - T — (T, things)

6. Abstract types don’t need to be polymorphic!

4.2.6 Abstract Queue

> string == [char]

> abstype queue *

> with

> start queue *

[l empty queue

> join

Il return queue after joining

> pregront queue * — bool
[l check queue non — empty

> front queue x — x

[l view front element

> pre_reduce queue * — bool
[l check queue non — empty

> reduce queue * — queue x
[l return queue after serving

> showqueue

||hidden representation
> queue * == [¥]

||implementation
> start

> join x x8

> pre_front s
> front (z : xs)
> pre_reduce s
> reduce (z : xs)
> showqueue f ||

> showqueue f (z : xs)

*x = QUEUE * — queue x

zs + +[z]
vs =

s

” []77
fx++":7 4+ +showqueue f s

(x — string) — queue x — string



||another hidden representation

|| > queue * == repqueue *

||implementation

|| > repqueue * uz= Start | Join * (repqueue x)
|| > start = Start

|| > join z Start = Join x Start

|| > join y (Join z q) = Joiny (Join z q)

|| > pre_front g = (¢~ = Start)

|| > front Start = error” Empty Queue”

[| > front (Join x Start) = =z

[| > front (Join z q) = frontgq

[| > pre_reduce q = (¢~ = Start)

|| > reduce (Join x Start) = Start

[| > reduce (Join z (Joiny z)) =  Join z (reduce (Join y x))
|| > showqueue f q = 7Empty”, if (pre_reduce q)
[| > = f (front q) + +showqueue f (reduce q), otherwise

4.2.7 Four Laws on Queues:

Lawl = front (join x start) = z

Law2 = front (joiny (joinx q)) = front (join z q)

Law3 = reduce (join = start) = start

Law4 = reduce (joiny (join z q)) = join y (reduce (join x q))

4.2.8 Tesing the Laws on Queues:

> testLawl = front (join x start) = =z

> where

> z =1

> testLaw2 = front (join y (join x q¢)) = front (join z q)

> where

> z =1

> y = 2

> g = join 5(join 6(join 7(join 8(join 9 start))))
> testLaw3 = reduce (join x start) = start

> where

> z =1

> testLawd = reduce (join y (join z q)) = joiny (reduce (join z q))

> where

> z =1

> y = 2

> g = join 5(join 6(join 7(join 8(join 9 start))))



4.3 The Set Abstype

describe precisely the operations and properties we wish sets to have.

define the operation signatures and properties (laws) before we choose a model.

prove the model.

polymorhic

4.3.1 ADT aset Signatures

> abstype aset *

> with

> emptyset 1 aset x

> mkaset x [x] = aset x

> setaslist  :  aset x — [¥]

> card : aset x = num

> belongsto :: x — aset * — bool

> subset.of :: aset x — aset ¥ — bool

> union it aset ¥ — aset x — aset *

> seteq ;1 aset x — aset x — bool

> intersect :: aset x — aset x — aset x

> setdif f ;. aset x — aset x — aset *

> comp = aset x = (x — bool) — aset *

> gen i aset * = (x = bool) = (x = *xx) — aset **
> erists = aset x — (x — bool) — bool
> forall = aset x — (x — bool) — bool
> showaset : (x — [char]) — aset * — [char]

4.3.2 ADT aset Representation

>aset x == [¥]



4.3.3 ADT aset Implementation

> emptyset =

> mkaset ] =

> mkaset (r : xs) = mkaset s, if member xs x

> =z :mbkaset xs, otherwise

> setaslist set = set

> card set = #set

> belongs_to x set = member set x

> subset_of setl set2 = and [ belongsto z set2 | z + setl ]

> union setl set2 = mkaset (setl + + set2)

> seteq setl set2 = subset_of setl set2 subset_of set2 setl
> intersect setl set2 = [z|z < setl;belongs_to x set2]

> setdif f setl set2 = [z|z « setl; belongs_to x set2]

> comp set p = filter p set

> gen set p g = map g (filter p set)

> exists set p = or (map p set)

> forall set p = (comp set p = set)

> showaset f set > = "{" + + init(showmems [ set) ++ "}, if set "= emptyset
> = {}, otherwise

> where

> showmems f set = "7, if set ~ = emptyset
> = f (hd set) ++",” ++ showmems f (tl set), otherwise

4.3.4 Notes

> atestset = mkaset [“abc”, “def", “ghi"]
> listset = mkaset [[1,2,3]. [4,5,6], [2,4,6], [1,3,5]]
>dlistls= = “[“ ++ concat (map shownum ls) + + “]"

4.4 End Of Chapter Exercises

1. Give an alternative definition of addition (to radd) for type nat.

2. Can you define subtraction for type nat as a model of the naturals? If so, how, and are there any
problems? If not, why not?

3. ([BW88|B&W 8.3.2) Define multiplication as an operation on type nat.

4. Define subtraction for the following representation of the integers:
int ::= Pos nat | Neg nat

5. Define operations rtakewhile and rconcat (analogous to takewhile and ++ for type [*]) for type
list .

6. Define operations rmap and rlength (analogous to map and # for type [*]) for type list .



. Define a function mirror to form the mirror image of a tree of type xbtree *.

. For type btree *in B&W define a function maptree which will apply a given function (type * -> **)
to the data item type * contained in each leaf (tip according to B&W).

. Using functions you have seen in lectures & the book, define a function which will take any numeric
tree of type zbtree = and convert it into an ordered tree, i.e. one which can be ”squashed” (using
squash) into an ordered list.



Chapter 5

Specificatios

5.1 Introduction To Specification

5.1.1 Example: plane
Informal Specification
System to record the passengers on board a plane:

1. record identity of each person on board — name (assume unique)

2. initialise capacity of the plane — a fixed number (no. on board cannot exceed it)

Formal Specification
Some Auxiliary Type Synonyms:
To simplify matters introduce the following type synonyms:

string==[char]

person==string

State:
The state of the system at any time is described by:

e set of people on board at that time

e capacity of plane
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This is represented in Miranda as a tuple:

(aset person, num)

using ADT aset *.

Type Synonym:

The type synonym plane will then give the state of the system:

plane == (aset person, num)

ADT plane

In order to encapsulate (hide) this structure we define an abstract data type plane whose implementation
will be this tuple.

State Invariant

The ADT plane needs to satisfy the state invariant for this system. This invariant (or law) is:

e no. of people on board < capcity of the plane

e the capacity is a non-negative whole number

In Miranda, this is expressed as a function, p_inv:

| signature (part)

p_inv :: plane -> bool

| | implementation (part)

p-inv (onboard, capacity) = card onboard <= capacity &

natural capacity

Here, natural is a built-in (predicate) function:

natural :: num -> bool

natural x = integer x & x >= 0

natural itself uses the built-in predicate integer. p_inv is a predicate on values of type plane.



Initial State:

| |signature (part)
p_empty :: num -> plane
| | implementation (part)

p_empty n = (emptyset, n)

e p_empty is a CONSTRUCTOR for ’plane’.

e It creates a plane with an initial state with specified capacity and empty set of persons.

Precondition for p_empty

In order for plane so constructed to satisfy the invariant, p_inv, n must be natural.This is because

p_empty assumes that num is a natural number.

| Isignature (part)
pre_p_empty :: num ->bool
| | implementation (part)

pre_p_empty n = natural n

Boarding operation on plane

board: takes a person and adds it to plane:

| |signature (part)

board :: person -> plane -> plane

This amounts to adding a person to the set of people on board using set union:

| [implementation (part)

board per (onboard, capacity) = (union onboard (mkaset [per]), capacity)

Precondition for board

| |signature (part)

pre_board :: person -> plane -> bool

This precondition requires:

e Person should not already be in plane.



e No. on board must be less than capacity of plane.

| [implementation (part)
pre_board per (onboard, capacity)

= 7 belongs_to per onboard & card onboard < capacity

Note:

Because, a set cannot contain duplicate elements, board operation will not aboard a person already on
board (the cardinality is not affected either), i.e., board will succeed, but will not affect the state of the
plane. So,

| [alternative implementation

pre_board per (onboard, capacity) = card onboard < capacity

will do.

Reporting

Operation to determine whether a person is on board

| |signature (part)
is_onboard :: person -> plane -> bool
| [implementation (part)

is_onboard per (onboard, capacity) = belongs_to per onboard

Precondition for is_onboard

>|| pre_is_onboard:: person -> plane -> bool

>|| pre_is_onboard per pln = True

Note:

e is_onboard is a TOTAL operation.

e Can be applied to every person and plane, including the case when the person is null or plane is
empty.

So no need for precondition, as is_onboard is always defined.



Packaging

Using the ADT plane:

%include ‘¢

plane.m’’
u_board: :person->plane->plane
u_board per pln
= board per pln, if pre_board per pln

= error‘‘Cannot do ... person already aboard or plane already full’’, otherwise

Note:

e plane.m already includes aset.m.

e Only plane operations are visible, not set operations.

Testing

Use in-script definitions such as :

> eplan = p_empty 4

> pl = board ‘‘fred’’ epln
> p2
> p3 = board ‘‘mary’’ p2

board ¢‘joe’’ pl

and capture as UNIX script files the Miranda session (animation):

Miranda pre_board ‘‘fred’’ p2
False
Miranda is_onboard ‘‘susan’’ p3

False

5.1.2 Another Example: Plane Reservation/Confirmation System

Reservation

e reserve: record reservation

e pre_reserve: record must not be in the reservation or confirmation lists

This forms the basis of your next course-work.



Confirmation
e confirm: remove from reservation list and add to confirmation list

e pre_confirm: must be in resevation list and NOT in confirmation list

Here, rplane is an ADT which encapsulates set of reserved persons, set of confirmed persons and the
capacity of the plane.

ADT rplane (incomplete)

abstype rplane
with
rp_inv :: rplane -> bool

rp_reserve:: 77
rp_pre_reserve:: 77

rp_confirm:: person -> rplane -> rplane

VvV V V V V VvV V

rp_pre_confirm:: person -> rplane -> bool

> rplane ==(aset person, aset person, num)

> rp_inv (res,con,n) = card (union res con) <= n &
intersect res con $setequal emptyset &

natural n

> rp_confirm r (res, con, n) = (comp res p, union con (mkaset [r],n)
where

p elt =elt "=r

> rp_pre_confirm r (res, con, n) = belongs_to r res & “belongs_to r con

Testing rplane

To test the abstype ’rplane’ it will be useful to define

erplane = rp_empty 4
rrpl = rp_reserve ‘‘brian’’ erplane

rrp2 = rp_reserve ‘‘mary’’ rrpl

VvV V V V

4

rrp3 = rp_confirm ‘‘mary’’ rrp2

etc.

5.1.3 Conclusion

e SPECIFYING: Required system behaviour is precisely specified



e ANIMATING: The behaviour of the system is animated, with a view to improving the specification.
Prototyping.

SPECIFICATION

Specification phase involved:

1. Identifying user requirements,

2. Specifying the objects (types) required to build the system,
3. specifying any invariant properties of the system,

4. specifying the initial “empty” state of the system,

5. For each operation required:

(a) specifying the type of the operation,
(b) specifying the precondition of the operation.

Specification vs Animation vs Implementation
e Specification = WHAT the system is and does.
e Animation = WHAT the specification looks like.

e Implementation = HOW the system will do it.

Specifying Big Systems

e Objects of many types, hierarchies: e.g., different booking classes in the plane example (first, club,
economy); booking system for all planes, routes, sources, desinations, etc.

e MODULARITY helps break up the system into manageable, logically related components.

e Miranda abstype is a helpful modularisation construct. e.g.,
airline == (aset plane, aset person,...)

using ADT plane to build ADT airline, just like ADT set was used to build ADT plane.

Postconditions

e In the examples an operation (function) definition was regarded as its own postcondition.

e Such a definition imposes certain relationships (or constraints) between the input arguments and
the output result of the operation.

e The postcondition is essentially a predicate on the objects (types) involved.



e For big system, it is not always possible to arrive at operation definitions. Usually a lot of devel-
opment work is needed.

e In such cases it is easier to arrive at the postcondition as a predicate. The predicate gives the
constraints on the input arguments and the output result of the operation.

5.2 End Of Chapter Exercises

1. Complete the signatures and definitions for functions intersect and setdiff of abstype aset *.
2. Experiment with aset * :

(a) Create some sets (of differing types);
(b) Try out the operations, including showaset;

(¢) Can you apply a binary set operation (e.g. subset\_of,union) to two sets of different types
?

(d) State some laws about sets and test them out (see whether they hold) for your created sets.

3. Are any operation preconditions for type aset x are other than True ? If so, say why, and define
them. If not, suggest why.

4. Define the operation (i.e. type, pre- and postconditions) of disembarkation for type plane. Define
the corresponding user-oriented operation.

5. Define an operation to report the number of passengers on a plane.

6. Define and package plane as an abstype. Implement and test one or more user-oriented operations.



Chapter 6

Maps

6.1 The Map Abstype

6.1.1 Introduction: Plane Booking System Revisited

e Need to book (i.e., associate) seats to passengers.

— No such association was made in the simple plane example considered so far.

— Only passenger identifiers (names) and the capacity of the plane were used.

e Relevant type synonyms as before (but including seat):

string == [char]
person == string
seat == string

e A simple model of the assignment of seats to passengers could be given as a tuple:

seating == (seat,person)

— However, this allows too much freedom:

* For each person there could be any number of seats
(i-e., for each possible second value of person in the pair, there could be all possible
choices for the first value of seat).

x For each set there could be any number of persons
(i-e., for each possible first value of seat in the pair, there could be all possible choices

for the second value of person).

— Mathematically, the tuple pair (seat, person) is a Cartesian Product of the types (sets) seat
and person, i.e.,
seat X person
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— Clearly, this does not model the real world:

* Whereas, it is OK to have more than one seat assigned to a person,

x it is NOT ok for a seat to be allocated to several persons.
e What is needed is a MAP type where:

— A seat is “mapped” to a corresponding person.
— This is done by defining a Miranda abstype amap * = * which maps a type * to a type **.

— A first element of type seat must be associated with at most one second element of type

person.

— The seat forms a set of seats, and the person forms the range of the “mapping” of ’seats’ to

‘persons’.

e So,
amap seat person

will represent the seat booking system.

6.1.2 ADT amap * *x

ADT amap * *x* Signatures

> %include "aset.m"

> abstype amap * **

> with

>|| give the empty map

> emptymap :: amap * **

>|| make a map from a list of pairs

> mkamap :: [(*,**)] -> amap * **

>|| give domain of map (set of first components of pairs)
> dom :: amap * ** —> aset *

> give range of map (set of second components of pairs)
>|| ran :: 77

> ran :: amap * ** -> aset *x*

>|| domain restrict map: remove all maplets apart from
>|| those with first components in specified set

>|| drestrict :: 77

> drestrict :: aset * -> amap * ** —> amap * *x*

>|| domain-delete map: remove all maplets with first
>|| components in specified set

> ddelete :: aset * —-> amap * %% —-> amap * %%

> range-restrict map: remove all maplets apart from



>|| those with second component in specified set

> rrestrict :: aset ** -> amap * ** -> amap * **
>|| range-delete map: remove all maplets with second
>|| componenets in specified set

>|| rdelete :: 77

> rdelete :: aset ** => amap * ** =-> amap * *%*

>|| overwrite mapl with map2: return map2 plus any maplets
>|| from mapl with first components not in dom map2

> overwrite :: amap * ** -> amap * ** -> amap * **

>|| form union of two maps

> mapunion :: amap * %% —> amap * ** —> amap * *x*

>|| apply map to value: given value (type *), return

>|| second component (type **) of corresponding maplet

> apply Dioamap k kk => kx => %%

>|| convert map to set of pairs

> mapasset :: amap * **x —> aset (*,%x)

>|| convert set of pairs to map

> setasmap :: aset (*,%x) -> amap * *x*

>|| show map contents, using given display functions

>|| for domain and range types

>  showamap :: (*->[char])->(**->[char])-> amap * **->[char]

ADT amap * *x* Representation

> amap * **% == [(k,%%)]

ADT amap * *x* Implementaion

> emptymap = []
>|| mkamap : throw away any duplicates in domain

> mkamap [] = []

> mkamap ((x,y):rest) = mkamap rest, if member (map fst rest) x
>

(x,y) :mkamap rest, otherwise
> dom amap = mkaset(map fst amap)
>|| ran 77 = 77

> ran amap = mkaset(map snd amap)

>|| drestrict 77 = 77

> drestrict set amap = [(x,y) | (x,y) <- amap ; belongs_to x set]
> ddelete set amap = [(x,y) | (x,y) <- amap ; “belongs_to x set]

> rrestrict set amap = [(x,y) | (x,y) <- amap ; belongs_to y set ]

>|| rdelete 77 = 77



>

>

rdelete set amap = [(x,y) | (x,y) <- amap; “belongs_to y set]

overwrite mapl map2 = mapunion map2 (ddelete (dom map2) mapl)

>|| overwrite: another, more model-dependent, definition:

>|| overwrite mapl map2 = map2 ++ (ddelete (dom map2) mapl)

>
>

vV V V V V

mapunion mapl map2 = setasmap (union (mapasset mapl) (mapasset map2))

apply m e = hd [y | (x,y) <- m ; x=e ]

mapasset m = mkaset m

setasmap = mkamap.setaslist

showamap f g map = showaset showmaplet (mkaset map)
where

showmaplet (x,y) = f x ++" |-> "++ g y

IMPORTANT NOTES:

e Some of these operations will have non-"True’ preconditions.
e Experiment with the operations.
o LAWS (PROPERTIES) for this type:

— Is mapunion mapl map2 always/ever/not = mapunion map2 mapl?

— Is overwrite mapl map2 always/ever/not = overwrite map2 mapl?

6.2 End Of Chapter Exercises

1. Complete the signatures and definitions for remaining operations of abstype amap * * x, i.e.
ran, drestrict, rdelete

2. Experiment with amap * *x*:

(a) Create some maps (of differing types);
(b) Try out the operations, including showamap;

(c) State some laws about maps and test them out (see whether they hold) for your created maps.

3. Are any operation preconditions for type amap x x x are other than True ? If so, say why, and
define them. If not, suggest why. What is strange or wrong about operation mkamap ?

4. State and try out some laws for types amap and aset.

5. How would you test two sets for equality? Two maps ?



Chapter 7

Plane Specification

7.1 plane: Specification using Map
7.1.1 ADT’s and Type Synonyms to be used in plane ADT
First include the definitions of abstypes aset * and amap * x* *:

> %include "aset.m"

> %include "amap.m"

and the defintions of type synonyms:

> string == [char]
> person == string
> seat == string

7.1.2 Simplifying Assumptions on the System
ADT plane
Use the following type (plane) to specify a seat booking system (ignoring capacity of the plane, for the

time being, for simplicity):

amap seat person

Invariants on the ADT plane

For simplicity assume no invariants.
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ADT plane Signature

The abstype plane is defined with the following signature:

> abstype plane

> with

>|| create an initial state: empty plane

> p-empty: :plane

> give the owner of a given seat in the plane;

>|| ’owner’ is a partial function;

>|| can be applied only if seat is booked (i.e., precondition true).
> owner::seat —-> plane -> person

>|| precondition for owner: returns true if seat booked, and ’owner’
>|| can be applied; otherwise (returns false) owner cannot be applied
> pre_owner::seat -> plane -> bool

>|| associate given seat to given persion, and add this to the

>|| plane booking; can not be applied, if seat already booked;

>|| must satisfy the precondition that seat is not booked.

> book :: seat -> person -> plane -> plane

>|| precondition for book: returns true if seat unbooked, so that
>|| Dbook can be applied, otherwise book cannot be applied.

> pre_book :: seat -> person -> plane -> bool

>|| remove the booking by deleting the association between given seat
>|| and person from ’plane’, can not be applied if seat not booked.
> cancel:: seat -> person -> plane -> plane

>|| pre-condition for cancel: returns true if seat booked, so cancel
>|| can be applied, otherwise cancel cannot be applied.

> pre_cancel::seat -> person -> plane -> bool

>|| change existing seat booking; overwrite the ’plane’;

>|| cannot be applied, if seat has not been booked already;

>|| precondition: seat must be booked;

> if ’change’ is to mean that overwrite, if seat booked, and book
>|| the seat for the person any way, even if the seat is not booked
>|| then pre-condition is weaker, i.e., always true, so not needed.
>|| ‘’change’ can be applied always: total function.

> change:: seat -> person -> plane -> plane

>|| precondition for change: returns true, if seat booked,

>|| and ’change’ can be applied, otherwise not;

> pre_change :: seat -> person -> plane -> bool

>|| report change: change made to booked seat cancels previous

>|| booking of it; shows as a tuple, the new plane and the person
>|| who lost the seat, so that appropriate actions are be taken;

>|| no pre-condition needed as report can always be produced.

> rchange :: seat -> person -> plane -> (plane, persomn)

>|| output seats booked by a person; can be always applied;

>|| no pre-condition needed: always true



> s_booked :: person -> plane -> aset seat

>|| show the bookings: the set of all bookings (all seats and
>|| their associated persons); no pre-condition: always true
> showplane :: plane -> string

ADT plane Representation

plane == amap seat person

ADT plane Implementation

> p_empty = emptymap

>|| creates an empty map, using map op. emptymap

>|| an initial state with no association of seat & person

> owner s p = apply p s

>|| gives the owner of seat s in plane p; using map op. ’apply’
>|| pre-condition: seat s of plane p must be booked.

> pre_owner s p = belongs_to s (dom p)

>|| returns true if s is booked: s in the domain of map, p;

>|| returns false, if s not booked: not in the domain

> book st per plane = mapunion plane (mkamap [(st,per)])

>|| form a maplet: (seat,person) pair, and add it to the

>|| ’plane’ map, by forming the ’mapunion’ of the two maps

> pre_book st per plane = ~ belongs_to st (dom plane)

>|| st must not be booked; uses set op. belongs_to as (dom plane)
>|| is a set;true if st not in the domain of map ’plane’

> cancel st per plane = ddelete (mkaset [st]) plane

>|| removes maplet with first component st, i.e., {(st, pr)}

>|| from the map ’plane’, using map op. ’ddelete’

> pre_cancel st per plane = belongs_to (st, per) (mapasset plane)
>|| (st, per) must be in the ’plane’ map, map converted to

>|| set before set op. ’belongs_to’ is used.

> change st per plane = overwrite plane (mkamap [(st,per)])
>|| map op. ’overwrite’ replaces in the map ’plane’, the maplet
>|| associated with st by the maplet:(st, per) pair

> pre_change st per plane = belongs_to st (dom plane)

>|| seat st must have been booked (does not use per)

>|| true if st is in the domain of the map ’plane’

> rchange st per plane = (change st per plane, apply plane st)
>|| map op. ’apply’ gives the person in ’plane’ who lost the
>|| seat ’st’; ’change’ assigns seat ’st’ to person ’pr’

> s_booked per plane = dom (rrestrict (mkaset [per]) plane)
>|| map op. ’rrestrict’ gives the set of all maplet pairs of
>|| ’plane’ with second element ’per’, and then map op. ’dom’

> gives all the seats associated with it



> showplane pln = showamap show show pln
>|| map op. showamap is used along with the built-in ’show’ for

>|| both first and second elements of the maplet pairs of ’pln’

7.1.3 Testing ADT plane

Some test examples:

pl = book "S1" "fred" p_empty

p2 = book "S2" "joe" pil

pre_pduff = pre_book "S2" "brian" p2
p3 = book "S3" "fred" p2

p3can = cancel "S1" "fred" p3

report = s_booked "fred" p3

p3chg = change "S1" "george" p3

VvV V V V V V V V

p3chgr = rchange "S1" "george" p3

7.1.4 An injective map

e Assume for type plane that a person may book at most ONE seat.

The map model supporting this is INJECTIVE, or ”one-to-one”.
e This can be seen from various points of view, e.g.

— each range element is associated with at most ONE domain element

— there are as many range elements as domain elements, i.e.,

p-inv plane = card (ran plane) = card dom plane
e The ’change’ operation is unchanged:

> change:: seat -> person -> plane —-> plane

>|| change st per plane = overwrite plane (mkamap [(st,per)])
e But the precondition is now:
>|| pre_change :: seat -> person -> plane -> bool

>|| pre_change st per plane = belongs_to st (dom plane) &
> ~ belongs_to per (ran plane)

7.1.5 A more realistic example

e Planes come in models with different seat numbers and ranges.

e To model this, plane type should include a set of possible seat numbers on the plane.



e Capacity of the plane is catered for: it’s impossible to book a non-existent seat.

e A better plane:
> betterplane == (aset seat, amap seat person)
e Invariant: Any booked seat must exist on the plane

> p_inv:: betterplane -> bool

> p_inv (seats, bookings) = subset_of (dom bookings) seats
e Initial State: a possibe definition:

>bp_empty:: betterplane
>bp_empty = (emptyset, emptymap)

e this needs operations for ”install seats” and ”remove seats”.

e Simpler to define seats already fixed in the initial state:

> bp_empty:: aset seat -> betterplane
> bp_empty seats = (seats, emptymap)

e Example operation: book a (specific) seat to a passenger:

Set of sets is unchanged, and the new booking is ”map-union-ed” onto the existing map

of bookings.
> bpbook :: seat -> person -> betterplane -> betterplane
> bpbook st per (seats, bookings)
> = (seats, mapunion bookings (mkamap [(st,per)]))
> pre_bpbook :: seat -> person -> betterplane -> bool
> pre_bpbook st per (seats, bookings)
> = belongs_to st seats & || seat exists
> ~ belongs_to st (dom bookings) || seat not yet booked

e Finally: need we check that?

> card (mapasset bookings) < card seats

7.2 End Of Chapter Exercises
1. Define an operation (i.e. type, pre- and postconditions) for type plane, to report any free (un-
booked) seats.

2. Assume that no person is allowed to book more than two seats on a plane. What would the state
invariant look like? Redefine the book operation precondition for type plane under this assumption.

3. For type betterplane, make the assumption in QQ.3. State what the state invariant would look like,
and define the change operation.
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Appendix A

A Guide to the ADT Animator
Toolkit

A.1 Linking to ADT Animator Toolkit scripts

Prepare for a ADT animator development by creating a directory, making it the working directory and
linking to the animator programs:

1. Create a directory for the ADT animation (e.g., STACK):
$ mkdir STACK

2. Move into this directory:
$ cd STACK

3. Make symbolic links to the toolkit driver and animator programs in my area:
$ 1n -s /usrpk/cs/staff/csx135/205CS/ANIMATOR/*.m .

The directory STACK will now contain links to the following files of the Toolkit: (use 1s to check)

animator.m driver.m linker.m string_handling.m
ansi.m interact.m menu.m types.m

des.m io.m menued.m utils.m

desed.m linem screen.m

A.2 Creating ADT and Interface scripts

Create a ADT miranda file and an interface file, and ensure that there are no errors (types, etc.):

A.2.1 ADT
Create a ADT miranda file, with no errors (types, etc.):

1. Create a ADT miranda script file (e.g., stack.m) using an editor (e.g., emacs):
$ emacs stack.m
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2. Use Miranda to ensure that there are no errors in this script:

$ mira

miranda /f stack.m

The completed stack.m is:

|| stack ADT -- A. Amatya & M. Poppleton -- 2/8/95
abstype stack * with
|| signature expressions

empty :: stack *

push :: * -> stack * —-> stack *

pre_top :: stack * -> bool

st_top :: stack * -> x*

pre_pop :: stack * -> bool
pop :: stack * -> stack *
showstack :: (¥ -> [char]) -> stack * -> [char]

|| hidden representation
stack * == [*]

|| implementatioin equations

empty = []

push a xs = a:xs
pre_top xs = (xs "= []1)
st_top (x:xs) = x
pre_pop xs = (xs "= [])
pop (x:xs) = xs

showstack f xs = f (st_top xs) ++ showstack f (pop xs), if pre_top xs

= "Empty", otherwise

A.2.2 Interface
Create an interface (configuration) miranda file, with no errors (type, etc.):

1. Create an interface miranda script file (e.g., int — stack.m):
$ emacs int-stack.m
2. Again, use Miranda to ensure that there are no errors in it:

$ mira

miranda /f int-stack.m

The completed int-stack.m files is:
[ IThis is a toolkit interface file for the Abstract Data Type Stack

| I The ADT file related is stack.m

%include "stack.m"

%export "stack.m" statetype init_state call_new call_push call_pop call_top call_show_stack



statetype == stack num

init_state = empty

call_new :: statetype->[[char]]->(statetype, [[char]])

call_new st [answer]
(newst,out), if ((answer = "Y") \/ (answer = "y"))

(st,outerr), otherwise

where

newst = empty

out = [line]

outerr = [errlinel

line = "A new stack has been created."

errline = "No new stack has been created"

call_push :: statetype -> [[char]] -> (statetype,[[char]])
call_push st [arg]
= (newst,out)

where

X = numval arg

newst = push x st

out = [linel]

linel = arg ++ " has been pushed into the stack"

call_top :: statetype -> [[char]] -> (statetype, [[char]])
call_top st [arg]
= (st,out), if pre_top st
= error "Can’t take the top of an empty stack", otherwise
where
out = [linel]
linel = "The top of the stack is " ++ show tp

tp = st_top st

call_pop :: statetype -> [[char]] -> (statetype, [[char]])
call_pop st [arg]
= (newst, out), if pre_pop st
= error "Can’t pop an empty stack", otherwise
where
newst = pop st
out = [linel]
linel = "The popped stack is " ++ showstack show newst

call_show_stack :: statetype -> [[char]] -> (statetype,[[char]])
call_show_stack st [answer]
= (st,out), if ((answer = "Y") \/ (answer = "y"))
= (st,outerr), otherwise
where
out = [linel]++[otherLines]



linel = "Elements of the Stack:\n"
otherLines = showstack show st

outerr = ["No output"]

A.3 Menu and Data Screen Design

Use Miranda to compile the toolkit driver program for creating menu and data entry screens and to link
them together. As this is a large program you will need to increase the heap size to over 300,000 cells:

1. Increase heap size:
miranda /heap 400000
2. Compile the toolkit driver (driver.m):
miranda /f driver.m
3. Now execute the interactive function (toolkit) generated in store by it:

miranda toolkit

A.3.1 Menu and Data Entry Screens

1. Use the menu generation option to create menu screens, and save them (using S option, and
supplying a file name, < filename > to the prompt).

a) Give it the same name as the ADT (e.g. stack — without extension .m).

b) The menu screens information will be saved in a file PROJ— < filename > .m (e.g., PROJ—
stack.m).

c¢) If an earlier version of this file already exists, it is best to remove it first (the update functions
have bugs!).

2. Use the data entry screen generation option to create data entry screens, and save them under
the same name as the menu screens (i.e., using " S option, and supplying the same file name
< filename > to the prompt, as in the menu case above.

a) Again, do not include .m extension.

b) You will also be prompted to provide names for each of the data entry screens as you save
them. Make these names meaningful, preferably using the ADT function names (e.g., data
entry screen for push as push).

¢) The data entry screens information will be saved in the same file PROJ— < filename > .m,
as above (e.g., PROJ — stack.m).

3. It is best to do both these operations in one session, even though it is possible to add the data
entry screens information to an already existing PROJ— < filename > .m. In that case you need
to ensure that no data entry screens information from previous session is already contained in it.

Again the update functions have bugs!

4. By now the PROJ— < filename > .m will contain both menu and data entry screen information.



A.3.2 Linking

1. The third option of toolkit is used for linking these screens.

a)

On selecting this option you will be prompted to supply the name of the project file. This is
just the file where the information on menus and data entry screens were saved, PROJ— <
filename > .m (e.g., PROJ — stack.m). Give just the < filename > (without the prefixed
PROJ— and the extension .m). In our example, it will be just stack.

The toolkit then shows all the menu and data entry screen information numbered in the order
they were created. You will be prompted to supply the name of the ADT file. Supply the
ADT file name, again without extension .m (stack, in our example).

Now, follow the prompts to supply the information on linkage and the associated interface
functions. These must be the same as the ones given in the interface file created earlier (e.g.,
int — stack.m for our STACK example). For example, for our example the function associated
with the data entry screen (called push above) will be call_push (defined in the int — stack.m
file).

2. There is no need to save the file of linkages, this is done automatically, when all the required

information as requested by the prompts have been supplied. The file is saved with a prefix link—
to the project file, i.e., link — PROJ— < filename > .m (link — PROJ — stack.m, for our
example).

3. When all the associated functions have been supplied, use " X to exit from toolkit.

A.4 Animation

1. Using Miranda compile the animator (animator.m):

miranda /f animator.m

2. Execute the interactive animator function (animator) produced in store:

miranda animator

3. The top level menu will appear. Use it to have an animation session. For our example, stack, we

could create a new stack, push numbers, view top element, pop the top element or show the whole

stack.

4. Exit the animator by “ X. Alas, there is a (yet another?) bug! The terminal does not return to

normal mode!! Give the command to return to echo and canonical mode (! is shell escape for
Miranda):

miranda !stty echo icanon



