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Abstract

This dissertation deals with a number of algorithmic problems motivated by
computer aided formal verification of finite state systems. The goal of formal
verification is to enhance the design and development of complex systems by
providing methods and tools for specifying and verifying correctness of de-
signs. The success of formal methods in practice depends heavily on the de-
gree of automation of development and verification process. This motivates
development of efficient algorithms for problems underlying many verifica-
tion tasks.

Two paradigmatic algorithmic problems motivated by formal verification
that are in the focus of this thesis are model checking and bisimilarity checking.
In the thesis game theoretic formulations of the problems are used to abstract
away from syntactic and semantic peculiarities of formal models and specifica-
tion formalisms studied. This facilitates a detailed algorithmic analysis, lead-
ing to two novel model checking algorithms with better theoretical or practical
performance, and to an undecidability result for a notion of bisimilarity.

The original technical contributions of this thesis are collected in three re-
search articles whose revised and extended versions are included in the disser-
tation.

In the first two papers the computational complexity of deciding the win-
ner in parity games is studied. The problem of solving parity games is poly-
nomial time equivalent to the modal mu-calculus model checking. The modal
mu-calculus plays a central role in the study of logics for specification and ver-
ification of programs. The model checking problem is extensively studied in
literature on computer aided verification. The question whether there is a poly-
nomial time algorithm for the modal mu-calculus model checking is one of the
most challenging and fascinating open questions in the area.

In the first paper a new algorithm is developed for solving parity games,
and hence for the modal mu-calculus model checking. The design and analysis
of the algorithm are based on a semantic notion of a progress measure. The
worst-case running time of the resulting algorithm matches the best worst-case
running time bounds known so far for the problem, achieved by the algorithms
due to Browne at al., and Seidl. Our algorithm has better space complexity: it
works in small polynomial space; the other two algorithms have exponential
worst-case space complexity.

In the second paper a novel approach to model checking is pursued, based
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on a link between parity games and discounted payoff and stochastic games,
established and advocated by Puri. A discrete strategy improvement algo-
rithm is given for solving parity games, thereby proving a new procedure for
the modal mu-calculus model checking. Known strategy improvement algo-
rithms, as proposed for stochastic games by Hoffman and Karp, and for dis-
counted payoff games and parity games by Puri, work with real numbers and
require solving linear programming instances involving high precision arith-
metic. The present algorithm for parity games avoids these difficulties by effi-
cient manipulation of carefully designed discrete valuations. A fast implemen-
tation is given for a strategy improvement step. Another advantage of the ap-
proach is that it provides a better conceptual understanding of the underlying
discrete structure and gives hope for easier analysis of strategy improvement
algorithms for parity games. However, so far it is not known whether the al-
gorithm works in polynomial time. The long standing problem whether parity
games can be solved in polynomial time remains open.

In the study of concurrent systems it is common to model concurrency
by non-determinism. There are, however, some models of computation in
which concurrency is represented explicitly; elementary net systems and asyn-
chronous transition systems are well-known examples. History preserving
and hereditary history preserving bisimilarities are behavioural equivalence
notions taking into account causal relationships between events of concurrent
systems. Checking history preserving bisimilarity is known to be decidable
for finite labelled elementary nets systems and asynchronous transition sys-
tems. Its hereditary version appears to be only a slight strengthening and it
was conjectured to be decidable too. In the third paper it is proved that check-
ing hereditary history preserving bisimilarity is undecidable for finite labelled
asynchronous transition systems and elementary net systems. This solves a
problem open for several years. The proof is done in two steps. First an in-
termediate problem of deciding the winner in domino bisimulation games for
origin constrained tiling systems is introduced and its undecidability is shown
by a reduction from the halting problem for 2-counter machines. Then unde-
cidability of hereditary history preserving bisimilarity is shown by a reduction
from the problem of domino bisimulation games.
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Chapter 1

Introduction

This dissertation illustrates how game theoretic arguments help to study some
fundamental algorithmic problems in the area of computer aided verification
of finite state non-terminating systems, such as the modal μ-calculus model
checking and bisimilarity checking. Adopting game theoretic formulations
helps to abstract away from syntactic and semantic peculiarities of modelling
and specification formalisms and makes the computational problems in ques-
tion more easily amendable to algorithmic analysis.

1.1 Formal methods

Non-terminating computing systems involving multiple, distributed, and in-
teracting agents abound today and can be found in environments as varied
as household appliances, medical equipment, industrial control systems, flight
control systems in airplanes, etc. Failures caused by design faults may be very
costly and they should be avoided as much as possible. Behaviour of such
systems is typically very complex which makes their design and validation a
challenge. Formal methods try to address this challenge by developing formal
models of such systems, and methods to specify and reason about their prop-
erties. A formal method is of particular interest if it offers not only a rigorous
and unambiguous way to describe systems and their intended behaviour, but
also provides efficient algorithms allowing to automate (parts of) design and
validation tasks. We believe that software tools based on such algorithms are
one of the keys for the industrial success of formal methods. Two important
trends in formal methods are verification and synthesis, both aiming to design
efficient algorithmic techniques supporting development and analysis of com-
plex systems are verification and synthesis.

In verification, we are typically given a formal model of a system, and a for-
mal specification of its intended behaviour, and we are asked to check whether
the system implements the specification. The two paradigmatic problems stud-
ied in the verification community are model checking and equivalence check-
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10 CHAPTER 1. INTRODUCTION

ing. In the model checking problems we are typically given a transition system,
and a temporal logic formula, and we are to decide whether the behaviours of
the system satisfy the formula. The input to an equivalence checking procedure
are usually two transition systems, one can be often thought as a specification
and the other as an implementation; the task is to decide if they are equivalent
with respect to some notion of behavioural equivalence. Synthesis achieves a
more ambitious goal. Instead of building the system from scratch by hand, and
then trying to validate it, an automatic procedure is given to synthesize the sys-
tem which is guaranteed to satisfy the specification of its intended behaviour.

1.2 Model checking

Model checking is one of the most successful automatic methods for formal
verification of hardware and software systems [CGP99]. The approach is to
model systems as labelled transition systems or Kripke structures and to spec-
ify properties of their behaviours with formulas of some logic of programs.
The verification task then boils down to model checking, i.e., deciding for a
given labelled transition system and a formula of the logic, whether the tran-
sition system satisfies the formula. One of the reasons for the success of the
model checking approach to verification stems from establishing a proper com-
promise between expressibility of the specification formalisms (propositional
temporal logics), and efficiency of their model checkers (low polynomial time
complexity). Another attractive feature of model checking is a high degree of
automation of the verification process. It is a common observation that model
checking often requires less skill and effort to apply than verification methods
based on (computer aided) theorem proving. Last but not least, model checkers
often provide useful diagnostic information in the case when a system under
consideration does not satisfy the intended property. Such information is of
great help for the designer in identifying and correcting errors.

The modal μ-calculus introduced by Kozen [Koz83] is a very expressive
logic capable of specifying a variety of correctness properties of non-terminating
concurrent systems, e.g., safety, liveness, fairness, etc. Moreover, most of the
studied temporal logics of programs can be succinctly encoded in a modest
fragment of the modal μ-calculus [EL86, EJS93]. Importantly, efficient model
checking algorithms are known for the relevant fragments of the logic [EL86,
AC88, CS91, EJS93]. Even though formulas of the modal μ-calculus are noto-
riously hard to understand for humans, the logic has been widely accepted as
the common low-level language into which other specification formalisms are
automatically translated in order to perform model checking. This approach is
compatible with symbolic model checking [BCM+92, CGL94] which has been
devised to alleviate the so-called state explosion problem in model checking.

An intriguing question is that of the computational complexity of the modal
μ-calculus model checking. The problem is known to be in NP ∩ co-NP [EJS93],
so it is considered unlikely to be NP-complete. A considerable research effort
has been carried out to devise a polynomial time algorithm for the problem (see
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for example [EL86, EJS93, BCJ+97, Sei96, Jur00, VJ00b] and references there),
but no such algorithm has been found so far. From the remarks above about the
model checking approach to verification it is clear that establishing the exact
complexity of the model checking for the whole modal μ-calculus is not of big
practical importance, but it is still a fascinating theoretical challenge.

There is a very close connection between the modal μ-calculus and other
temporal and modal logics of programs with automata on infinite words and
trees. The essence of the so-called automata theoretic method is, for every
formula of a logic, to associate a finite automaton recognizing exactly those
infinite structures in which the formula holds. Then the algorithmic verifica-
tion problems for the logic, such as satisfiability and model checking can be
rephrased as the problem of checking non-emptiness of automata. The advan-
tage of this approach is the separation of the logical and combinatorial aspects.
The translation from logic to automata often allows to abstract away from syn-
tactic and semantic peculiarities of the logic. The automata theoretic problem
of checking non-emptiness is more easily amendable to algorithmic analysis
and it can be studied by people who are not experts in formal methods.

The central algorithmic problem of checking non-emptiness of automata on
infinite trees can be rephrased as the problem of deciding the winner in infinite
duration path-forming games played by two players on a finite graph. The
winner in these games is determined using the infinitary acceptance condition
of the automaton. In this thesis we study the computational complexity of the
modal μ-calculus model checking using this game theoretic formulation of the
problem. This facilitates a transfer of new algorithmic techniques for the model
checking problem from literature on other games: mean payoff, discounted
payoff [ZP96, Pur95], and stochastic games [HK66, Con93].

1.3 Bisimilarity checking

Bisimilarity [Par81, Mil80] is a behavioural equivalence notion that has at-
tracted most attention in concurrency theory. It is often used to provide se-
mantics for numerous models of concurrent systems: two systems are consid-
ered to have the same meaning if they are bisimilar. The prominent role that
bisimilarity plays is owing a lot to the pleasant properties it enjoys.

Two systems are bisimilar if and only if there is a witness, called a bisimu-
lation, relating them. There may be many bisimulations relating two systems
and different insights can guide a choice between witnesses. Proving bisimi-
larity of systems by exhibiting a bisimulation relating them is considered as a
convenient proof rule for showing equivalence of programs.

A process of checking whether two systems are bisimilar has a simple yet el-
egant interpretation as a two player game which can be seen as an Ehrenfeucht-
Fraı̈ssé game for modal logic [Tho93, Sti97]. One of the players tries to prove
the system not to be bisimilar, while the other player defends the hypothesis
that the systems are bisimilar. In other words, two systems are bisimilar if and
only if they are indistinguishable by formulas of modal logic [HM85].
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A notable property of bisimilarity is its computational feasibility for a wide
range of finite and infinite state models of computation. For example, for fi-
nite state systems there are algorithms for checking bisimilarity running in
low polynomial time, while the classical language equivalence is PSPACE-
complete, i.e., intractable. For a class of infinite state systems generated by
context free grammars bisimilarity is decidable, while language equivalence is
not. Algorithmic tractability makes bisimilarity attractive for automatic verifi-
cation of concurrent systems.

The essence of bisimilarity “is that the behaviour of a program is deter-
mined by how it communicates with an observer” [HM85]. Therefore, a no-
tion of bisimilarity crucially depends on what is observable of a behaviour of a
system. Joyal et al. [JNW96] formalize this idea by giving an abstract definition
of bisimilarity parameterized by a notion of observable behaviours. For a cate-
gory of models where objects are behaviours and morphisms capture a notion
of simulation, and given a subcategory of observable behaviours, the abstract
definition yields a notion of bisimilarity for all behaviours with respect to ob-
servable ones.

It is common to model concurrency by non-determinism: if events can oc-
cur independently of each other in parallel then it is reflected in the model
of the system by allowing all linearizations, also called interleavings, of oc-
currences of concurrent events. In order to model concurrency more faith-
fully several models have been studied that make explicit the distinction be-
tween events that can occur concurrently and those that are causally related.
A selection of fundamental models including trace languages, Petri nets, asyn-
chronous transition systems, event structures, and their mutual relationships
are surveyed in the chapter by Winskel and Nielsen [WN95]. In the mod-
els with an explicit representation of concurrency it is quite natural to extend
the notion of observable behaviour from sequences, i.e., linear orders of oc-
currences of events to partial orders describing their causal relationships. If
we take labelled partial orders as observable behaviours then the above ab-
stract definition of bisimilarity yields hereditary history preserving bisimilar-
ity [Bed91, JNW96] which is a back-and-forth version of history preserving
bisimilarity [RT88, GG89]. In this thesis we show that hereditary history pre-
serving bisimilarity is undecidable for finite state elementary net systems [JN00].

1.4 Outline of dissertation

This dissertation consists of two parts. Part II contains our original technical
contributions to the area of formal verification of non-terminating computa-
tional systems. In Part I we provide the context for the results of Part II with
a high-level overview of the relevant theory: we define the basic notions and
survey related work.

Part I consists of two chapters. Chapter 2 contains an overview of the modal
μ-calculus and the role it plays in the theory of computer aided formal verifi-
cation of non-terminating finite state systems. In particular we focus on the
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connection between logic and automata. We survey the application of the so-
called automata theoretic method for solving satisfiability and model checking
problems for the modal μ-calculus. We also mention the relation of the modal
μ-calculus model checking problem to solving infinite parity games. Finally we
survey model checking algorithms and we compare them with algorithms for
model checking derived from algorithms for solving parity games. Chapter 3 is
concerned with models with explicit representation of concurrency and with a
number of behavioural equivalences for these models. We recall two classical
models: elementary net systems and asynchronous transition systems. Then
we mention a few bisimilarity notions, recall their logical and game theoretic
characterizations, and discuss decidability of checking bisimilarity for finite
state asynchronous transition systems and elementary net systems.

Part II contains revised and extended versions of the following three arti-
cles.

• Chapter 4: Marcin Jurdziński. Small Progress Measures for Solving Par-
ity Games. In Horst Reichel and Sophie Tison, editors, STACS 2000, 17th
Annual Symposium on Theoretical Aspects of Computer Science, Proceedings,
volume 1770 of Lecture Notes in Computer Science, pages 290–301, Lille,
France, February 2000. Springer-Verlag [Jur00].

• Chapter 5: Jens Vöge and Marcin Jurdziński. A Discrete Strategy Im-
provement Algorithm for Solving Parity Games (Extended Abstract). In
E. A. Emerson and A. P. Sistla, editors, Computer Aided Verification, 12th
International Conference, CAV 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science, pages 202–215, Chicago, IL, USA, July 2000.
Springer-Verlag [VJ00b].

• Chapter 6: Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Bisimilarity Is Undecidable. In Horst Reichel and Sophie Ti-
son, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects
of Computer Science, Proceedings, volume 1770 of Lecture Notes in Computer
Science, pages 358–369, Lille, France, February 2000. Springer-Verlag [JN00].

For completeness we mention other published contributions we have made to
the theory of formal verification and synthesis of concurrent programs. The
results contained in the two articles listed below do not form a part of this
dissertation; they are included in the author’s M.Sc. thesis [Jur97].

• Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How
Much Memory Is Needed to Win Infinite Games? In Proceedings, Twelfth
Annual IEEE Symposium on Logic in Computer Science, pages 99–110, War-
saw, Poland, July 1997. IEEE Computer Society Press [DJW97].

• Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP.
Information Processing Letters, 68(3):119–124, November 1998 [Jur98].
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Chapter 2

Modal µ-calculus, model
checking, games

This chapter contains an overview of the modal μ-calculus and the role it plays
in the theory of computer aided formal verification of non-terminating finite
state systems. In particular we focus on the connection between logic and au-
tomata. We survey the application of the so-called automata theoretic method
for solving satisfiability and model checking problems for the modal μ-calculus.
We also discuss the relation of the modal μ-calculus model checking problem
to solving infinite parity games. Finally we survey model checking algorithms
and we compare them with algorithms for model checking derived from algo-
rithms for solving parity games.

2.1 Modal µ-calculus

Modal μ-calculus is a powerful logic used for specification and verification of
computer systems. Consult papers by Emerson [Eme96], Niwiński [Niw97],
and Bradfield and Stirling [BS00], for recent comprehensive surveys on μ-calculi
and related topics.

Syntax

Let Prop be a set of atomic propositions and let Var be a set of variables. The set
of formulas of modal μ-calculus [Koz83] is defined by the following grammar:

X
∣∣ p

∣∣ ¬p ∣∣ α ∨ β
∣∣ α ∧ β

∣∣ 〈·〉α ∣∣ [·]α ∣∣ μX.α
∣∣ νX.α

where X ranges the set Var of variables, p ranges the set Prop of propositions,
and α, β range over formulas. Formulas of the form μX.α and νX.α are called
fixpoint formulas; symbols μ and ν are called least and greatest fixpoint oper-
ators, respectively.

17
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Semantics

A Kripke structure K = (S, R, L) consists of a set of states S, transition relation
R ⊆ S × S, and a labelling function L : S → ℘(Prop) that maps to every state
the set of propositions true in it. A rooted Kripke structure (K, r) consists of a
Kripke structure and a state r ∈ S called the root.

The meaning of a formula α in a Kripke structure K with respect to a val-
uation V : Var → ℘(S) is the set of states [[α]](K, V ), defined in the following
way:

[[X ]](K, V ) = V (X)
[[p]](K, V ) = { s ∈ S : p ∈ L(s) }

[[¬p]](K, V ) = { s ∈ S : p �∈ L(s) }
[[α ∨ β]](K, V ) = [[α]](K, V ) ∪ [[β]](K, V )
[[α ∧ β]](K, V ) = [[α]](K, V ) ∩ [[β]](K, V )

[[〈·〉α]](K, V ) =
{

s ∈ S : there is t ∈ S, s.t. (s, t) ∈ R, and t ∈ [[α]](K, V )
}

[[[·]α]](K, V ) =
{

s ∈ S : for all t ∈ S, s.t. (s, t) ∈ R, we have t ∈ [[α]](K, V )
}

[[μX.α]](K, V ) = LFP
(
S′ → [[ϕ]](K, V [S′/X ])

)
[[νX.α]](K, V ) = GFP

(
S′ → [[ϕ]](K, V [S′/X ])

)
where LFP(f) and GFP(f) are the least and the greatest, respectively, fixed points
of a function f : ℘(S) → ℘(S). Note that we allow negation only in front of
atomic propositions. By Knaster-Tarski theorem [Tar55], the meaning is well
defined for all formulas of the modal μ-calculus.

Let α be a modal μ-calculus sentence, i.e., a formula without free variables.
We say that α holds in a state s of a Kripke structure K if s ∈ [[α]](K, ∅); we
write K, s |= α to denote this. A sentence α holds in a rooted Kripke structure
(K, r) if K, r |= α.

Alternation depth

Niwiński [Niw86] introduced a hierarchy of fixpoint terms based on the num-
ber of alternations between least and greatest fixpoint operators. Emerson and
Lei [EL86] defined a similar notion of alternation depth of a formula; consult
Niwiński’s paper [Niw97] for a comparison of the two notions. We follow
Niwiński’s definition here.

We introduce classes Σμ
i and Πμ

i of modal μ-calculus formulas, for all i ∈ N,
in the following way. We define Σμ

0 = Πμ
0 to be the set of modal μ-calculus

formulas without an occurrence of a fixed point operator. We define the class
Σμ

i+1 (Πμ
i+1) to be the smallest set containing Πμ

i (Σμ
i ) and closed on the follow-

ing rules:

1. if α, β ∈ Σμ
i+1 (Πμ

i+1) then α ∨ β, α ∧ β, 〈·〉α, [·]α ∈ Σμ
i+1 (Πμ

i+1),

2. if α(X), β ∈ Σμ
i+1 (Πμ

i+1) then α(β) ∈ Σμ
i+1 (Πμ

i+1), provided that no free
variable in β is bound by a fixed point operator in α,
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3. if α ∈ Σμ
i+1 (Πμ

i+1) then μX.α ∈ Σμ
i+1 (νX.α ∈ Πμ

i+1).

We define the alternation depth of a modal μ-calculus formula α to be the
smallest number d, such that α can be obtained from formulas in Σμ

d ∪ Πμ
d by

application of rules 1. and 2. above.

Expressiveness

The fixpoint operators of the modal μ-calculus give it an immense expressive
power. It subsumes most studied logics of programs, for example PDL [FL79],
LTL [Pnu77], CTL [CE81], and CTL∗ [EH86]. Translations of these logics into
the modal μ-calculus [EL86, Dam94] are formulas of alternation depth at most 2.

On the infinite k-ary trees the modal μ-calculus is equal in expressive power
to Rabin tree automata [Niw88, EJ91, Niw97]. Therefore, by the results of Ra-
bin [Rab69], modal μ-calculus is equivalent to monadic second order logic on
the infinite k-ary tree, which is known to be one of the most expressive decid-
able mathematical theories.

The question whether the hierarchy of properties based on alternation depth
of the formulas is strict and infinite has been positively resolved by Brad-
field [Bra98] and Lenzi [Len96]; Arnold [Arn99] gave an elegant automata-
theoretic proof by diagonalization.

Theorem 2.1 ([Bra98, Len96])
For all i ∈ N, there is a formula in Σμ

i which is not equivalent to a formula
in Πμ

i . Therefore, the modal μ-calculus alternation depth hierarchy is infinite
and strict.

Decidability and complexity

The two key algorithmic problems for the automatic verication of specifications
written in the modal μ-calculus are satisfiability and model checking. Satisfia-
bility problem is, given a modal μ-calculus sentence α, to decide whether there
is a rooted Kripke structure (K, r), such that α holds in (K, r). Model checking
problem is, given a modal μ-calculus sentence α and a rooted Kripke structure
(K, r), to decide whether α holds in (K, r). Both problems are decidable and of
manageable computational complexity.

Theorem 2.2 ([SE89, EJ99])
Modal μ-calculus satisfiability problem is DEXPTIME-complete.

Theorem 2.3 ([EJS93, EL86])
Modal μ-calculus model checking problem is in NP ∩ co-NP.

A substantial part of this thesis is dedicated to a more detailed study of the
computational complexity of the model checking problem for the modal μ-
calculus.
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Problem 2.4 ([EJS93]) Is there a polynomial time algorithm for the modal μ-
calculus model checking?

In Chapters 4 and 5 of this thesis we propose two new algorithms for the
polynomial-time equivalent problem of solving parity games but the above
challenging question remains open.

We mention another challenging open problem in this area.

Problem 2.5 Is the modal μ-calculus alternation hierarchy decidable? More
precisely, is there an algorithm for the following problem: given a number
i ∈ N, and a modal μ-calculus formula α, decide whether there is a formula in
Σμ

i equivalent to α.

The problem is known to be decidable in the very special cases: for i = 0 [Ott99],
and for i = 1 [Wil99a, Wal99].

2.2 Automata on infinite trees

Automata on infinite trees have been introduced by Rabin [Rab69]; for compre-
hensive and accessible surveys of the subject see the papers by Thomas [Tho90,
Tho96]. In the context of the modal μ-calculus automata are meant to run on
variable arity labelled trees obtained by unfolding of rooted Kripke structures.
For simplicity, following the tradition [Tho90], we consider automata on in-
finite binary trees here. There are several proposals for more adequate au-
tomata running on variable arity trees [JW95, Wil99b, KVW00]; the differences
between them are not very important for our considerations.

Non-deterministic automata

A Σ-labelled infinite binary tree T = ({1, 2}∗, L) consists of the set of nodes
{1, 2}∗ and the labelling function L : {1, 2}∗ → Σ. A non-deterministic tree
automaton A = (Q, Σ, q0, δ,W) consists of:

• a finite set of states Q,

• a finite alphabet Σ,

• an initial state q0 ∈ Q,

• a transition function δ : Q× Σ→ ℘(Q×Q),

• an infinitary acceptance condition W that specifies a subset of Qω; we
describe several types of acceptance conditions below.

The behaviour of an automaton on a Σ-labelled tree T = ({1, 2}∗, L) is captured
by the notion of a run. A run of an automaton A on T is a Q-labelled tree
({1, 2}∗, R), such that:
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• R(ε) = q0, and

• (
R(x · 1), R(x · 2)

) ∈ δ
(
R(x), L(x)

)
, for all x ∈ {1, 2}∗.

A run is accepting if all its infinite paths satisfy the acceptance conditionW . In
order to define it more precisely we need the following notation. Let ({1, 2}∗, R)
be a run; if P = 〈x1, x2, . . .〉 is an infinite path in a binary tree then we write
Inf(P ) for the set of states which appear infinitely often on path P in the run,
i.e., the set of states occurring infinitely often in 〈R(x1), R(x2), . . .〉. We consider
the following acceptance conditions.

• Muller conditions. A path P satisfies a Muller condition F ⊆ ℘(Q) if and
only if Inf(P ) ∈ F .

• Rabin conditions. A path P satisfies a Rabin condition

R =
{
(G1, R1), (G2, R2), . . . , (Gm, Rm)

}
,

where for i ∈ {1, 2, . . . , m}, we have Gi ⊆ Q and Ri ⊆ Q, if and only if
there is i ∈ {1, 2, . . . , m}, such that Inf(P )∩Gi �= ∅ and Inf(P ) ∩Ri = ∅.
• Streett conditions. A path P satisfies a Street condition

S =
{
(G1, R1), (G2, R2), . . . , (Gm, Rm)

}
,

where for i ∈ {1, 2, . . . , m}, we have Gi ⊆ Q and Ri ⊆ Q, if and only if for
all i ∈ {1, 2, . . . , m}, we have that Inf(P )∩Gi �= ∅ implies Inf(P )∩Ri �= ∅.
• Parity conditions. A path P satisfies a parity condition p : Q→ {0, 1, . . . , k}

if and only if max
{

p(q) : q ∈ Inf(P )
}

is even.

We say that a Σ-labelled tree T is accepted by an automaton A if there exists an
accepting run of A on T . We write L(A) for the set of Σ-labelled trees accepted
by A.

We say that a parity automaton A = (Q, Σ, q0, δ, p) has index (l, k) [NW98]
if the parity condition p is a function Q → {l, l + 1, . . . , k}. What matters is
the size of the range of p and whether the smallest number is even or odd, and
hence it suffices to consider indices of the form (0, k) and (1, k), for k ∈ N.

Complexity of non-emptiness problem

The key algorithmic problem for automata on infinite trees in the context of
applications to the modal μ-calculus and other program logics is the non-emp-
tiness problem. Non-emptiness problem is, given an automaton A, to decide
whether L(A) �= ∅.

Theorem 2.6
Non-emptiness problem for non-deterministic automata on trees is:

• NP-complete for Rabin and co-NP-complete for Streett automata [EJ99],



22 CHAPTER 2. MODAL μ-CALCULUS, MODEL CHECKING, GAMES

• in NP ∩ co-NP for parity automata [EJS93].

There is an algorithm for checking non-emptiness of Rabin/Streett automata
running in time O

(
(n ·m)3m), where n is the number of state of the automaton

and m is the number of Rabin/Streett pairs in the acceptance condition [EJ99,
PR89a].

2.3 Automata theoretic method

An intimate relationship between logic and automata has been discovered by
Büchi [Büc60] and Elgot [Elg61]. Büchi [Büc62] and Rabin [Rab69] have suc-
cessfully applied the “automata theoretic method” in order to prove decidabil-
ity of satisfiability for the monadic second order logic on the infinite words and
trees, respectively. They did it by developing the theory of automata on infinite
words and trees, respectively, establishing effective translations of monadic
second order formulas into automata on words and trees, thus reducing the
satisfiability problem for the logic to the non-emptiness problem for automata.
See the chapter by Thomas [Tho96] for a recent comprehensive survey on the
connection between logic and automata.

The automata theoretic method turned out to be fruitful in the later stud-
ies on program logics carried out in the ’80s and ’90s, often providing optimal
decision procedures for both satisfiability and model checking problems. It is
particularly valued for providing a clean separation of logical and algorithmic
aspects of program logics. Automata are seen as useful normal forms of logi-
cal formulas, abstracting away from syntactical and semantical peculiarities of
program logics. We mention selected results concerning the application of the
automata theoretic method to the modal μ-calculus.

Theorem 2.7 ([SE89])
A modal μ-calculus sentence α is satisfiable if and only if it holds in some n-
ary tree, where n = |α|. There is an exponential time algorithm which given
a modal μ-calculus sentence α, constructs a non-deterministic Rabin tree au-
tomaton Nα, such that L(Nα) is the set of n-ary trees in which α holds. The
automaton Nα is of size exponential in n, and has only O(n) pairs in the Rabin
acceptance condition.

Note that combining Theorems 2.6 and 2.7 we get an automata theoretic proce-
dure for checking satisfiability of modal μ-calculus of optimal complexity; see
Theorem 2.2.

The automata theoretic method has been also successfully applied to the
model checking problem for the modal μ-calculus.

Theorem 2.8 ([EJS93])
The modal μ-calculus model checking problem is polynomial time equivalent
to non-emptiness for non-deterministic parity tree automata.
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An alternative approach to get automata theoretic procedures for satisfiabil-
ity and model checking problems for the modal μ-calculus and other branching-
time logics was taken by Kupferman et al. [KVW00]. They provide a linear-
time translation of a modal μ-calculus sentence α into an equivalent alternat-
ing parity tree automaton Aα, following the ideas of Niwiński [Niw88, Niw97],
and Emerson and Jutla [EJ91]. Then they use the same automaton for satisfia-
bility and model checking in the following way. In order to check satisfiability
it suffices to test for non-emptiness of the automaton Aα. The non-emptiness
problem for alternating parity tree automata is in DEXPTIME. In order to do
model checking on a rooted Kripke structure (K, r) Kupferman et al. build a
product automaton Aα × A(K,r), where A(K,r) is a trivial automaton gener-
ating the unfolding of the Kripke structure K from the root r. The product
automaton is a 1-letter alternating parity automaton on infinite words of size
|K| · α. Kupferman et al. show that the emptiness problem for such automata
is linear-time equivalent to the emptiness problem of non-deterministic parity
tree automata.

2.4 Infinite games and modal µ-calculus

In the study of automata on infinite trees and the modal μ-calculus a technically
useful metaphor is that of playing infinite duration two-player games. Primary
examples are simplified proofs of Rabin’s complementation lemma [Rab69] for
automata on infinite trees due to Gurevich and Harrington [GH82], and Emer-
son and Jutla [EJ91]. See the chapter by Thomas [Tho96] for a streamlined ex-
position of a proof of Rabin’s complementation lemma based on memoryless
determinacy of parity games.

In the context of the modal μ-calculus both satisfiability [NW96b] and model
checking [Sti95] problems can be interpreted as determining whether a player
has a winning strategy in an infinite duration game. This point of view has
the following advantage. If a formula is satisfiable then a winning strategy
in a game defined by Niwiński and Walukiewicz [NW96b] gives a model in
which the formula holds. Similarly, a winning strategy in a game defined by
Stirling [Sti95] can be seen as a proof that a sentence holds in a given rooted
Kripke structure. Interestingly, if a formula is not satisfiable or it does not hold,
then by determinacy of games the other player has a winning strategy and this
strategy can serve as a witness that a formula is not satisfiable or it does not
hold, respectively.

In this thesis we adopt this game theoretic metaphor for the study of the
computational complexity of the modal μ-calculus model checking problem.

Infinite games on graphs

We consider infinite duration games played by two players (player 0 and player 1)
on finite directed graphs. A game G =

(
V, E, (M0, M1),W

)
consists of a finite

directed graph (V, E), a partition M0 ∪M1 = V of the set of vertices V , and
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an infinitary winning condition W that specifies a subset of V ω . We consider
the same ways for specifying a winning condition as for infinitary acceptance
conditions in automata: Muller, Rabin, Street, and parity. We say that a parity
game has index (	, k) if its parity condition p is a function V → {	, 	+1, . . . , k}.

A position in a game is a finite path in the game graph. We write Pos(G)
for the set of positions in game G. The initial position of a play starting from a
vertex v0 ∈ V is the path 〈v0〉 consisting only of vertex v0. Let 〈v0, v1, . . . , vi〉 be
the current position of a play. If vi ∈M0 then it is the turn of player 0 to make a
move, otherwise player 1 moves. A player makes a move by choosing a succes-
sor vi+1 of vi and the new position is 〈v0, v1, . . . , vi+1〉. A play is either an infi-
nite path π = 〈v0, v1, . . .〉 in the game graph, or a finite path π = 〈v0, v1, . . . , vk〉,
such that there is no edge going out of vk in the game graph, i.e., (vk, v) �∈ E,
for all v ∈ V .

A finite play π = 〈v0, v1, . . . , vk〉 is winning for player 0 if vk ∈ M1; other-
wise play π is winning for player 1. In other words, a finite play π is lost by the
player who is stuck in position π. An infinite play π is winning for player 0 if
π is in the winning condition specified by W . Otherwise an infinite play π is
winning for player 1.

A strategy for player 0 is a function ζ : Pos(G) → V , which given the cur-
rent position of a play specifies which move player 0 should make in this posi-
tion. A play π = 〈v0, v1, . . .〉 is consistent with a strategy ζ if ζ

(〈v0, v1, . . . , vi〉
)

=
vi+1, for all vi ∈ M0. A strategy for player 0 is a winning strategy from a ver-
tex v if every play staring from v and consistent with the strategy is winning for
player 0. The winning set of player 0 is the set of vertices from which there is a
winning strategy for player 0. Strategies, winning strategies, and the winning
set are defined similarly for player 1. A strategy ζ is memoryless if its value
depends only on the last vertex in a position of a game, i.e., if ζ

(〈v0, v1, . . . , vi〉
)

is uniquely determined by vi for every position 〈v0, v1, . . . , vi〉.

Theorem 2.9 (Memoryless determinacy [EJ91, Mos91])
Parity games are determined, i.e., from every vertex in a parity game one of
the players has a winning strategy. Moreover, both players have memoryless
winning strategies from their winning sets.

In Section 2.8 we discuss some results on bounded memory determinacy for
games with arbitrary Muller conditions [GH82, McN93, Zie98, DJW97].

Deciding the winner in infinite games

The problem of deciding the winner is, given a game G and an initial vertex v0,
to determine whether player 0 has a winning strategy in game G from ver-
tex v0. The following fact is easy to prove.

Proposition 2.10 Non-emptiness problem for non-deterministic parity (Muller,
Rabin, Streett) automata is linear-time equivalent to the problem of deciding
the winner in parity (Muller, Rabin, Streett) games.
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For the automata-to-games translation make player 0 choose letters labelling
nodes of a tree and transitions of the automaton, and make player 1 choose
directions in the tree in the game of constructing a tree and an accepting run of
the automaton on this tree. In this construction player 0 constructs a tree and
a run, and player 1 checks that the run is accepting. By Proposition 2.10 and
Theorem 2.8 we get the following.

Corollary 2.11 ([Sti95, EJS93]) The modal μ-calculus model checking problem
is polynomial time equivalent to deciding the winner in parity games.

Model checking games

In Chapters 4 and 5 of this thesis we develop two new algorithms for deciding
the winner in parity games and thus for the modal μ-calculus model checking.
In order to facilitate the analysis of performance of these model checking al-
gorithms and to be able to compare them with other algorithms we state the
details of the reduction to parity games.

Theorem 2.12 ([EJS93, Sti95])
There is an algorithm that given a rooted Kripke structure (K, r) with the set of
states S, and a modal μ-calculus sentence α of alternation depth d, constructs a
parity game G(K, r, α) of index (0, d), with s · f vertices and k · f edges, where
s = |S|, k = |K|, and f = |α|, and such that α holds in (K, r) if and only
if player 0 has a winning strategy from the initial vertex in G(K, r, α). The
running time of the algorithm is O

(
k · f)

.

2.5 Model checking algorithms

Modal μ-calculus model checking was first studied by Emerson and Lei [EL86].
They have observed how monotonicity of operations defined by modal μ-cal-
culus formulas can be used to speed up the successive approximation of fix-
point expressions without alternation of least and greatest fixpoint operators.

Theorem 2.13 ([EL86])
There is an algorithm for the modal μ-calculus model checking with running
time O

(
(k · f)d+1

)
, where k is the combined size of the Kripke structure, f is

the size of the modal μ-calculus sentence, and d is its alternation depth.

Arnold and Crubille [AC88], and Cleaveland and Steffen [CS91] gave linear-
time algorithms for model checking alternation-free formulas, i.e., formulas of
alternation depth 1. Andersen [And94] and Cleaveland et al. [CKS92] devel-
oped algorithms with slightly better complexity than Emerson and Lei’s al-
gorithm; their running times are O(s · kd−1 · fd), and O

(
k · f · (s · f/d)d−1

)
,

respectively, where s is the number of states of the Kripke structure.



26 CHAPTER 2. MODAL μ-CALCULUS, MODEL CHECKING, GAMES

A substantial improvement in the complexity has been obtained by Browne
et al. [BCJ+97], by a more refined monotonicity arguments than those of Emer-
son and Lei, obtaining running time that is roughly the square root of the run-
ning time of the previously known algorithms.

Theorem 2.14 ([BCJ+97])
There is an algorithm for the modal μ-calculus model checking with running
time O

(
k · (s · f)d/2

)
. In worst case the space requirements of the algorithm are

as big as the running time estimates.

Seidl [Sei96] gave a simplified algorithm achieving the running time bounds
of the algorithm of Browne et al. In fact, the analysis that Seidl does for his
elegant algorithm gives slightly better running time O

(
k · (s · f/d)d/2

)
and also

exponential space.

2.6 Complexity of solving parity games

McNaughton [McN93] proposed an elegant recursive algorithm for solving
games with Muller winning conditions; he also adapted it to the special case
of parity games. The following is not hard to prove; we omit a proof since it
would require describing the algorithm in detail which is out of the scope of
this thesis.

Theorem 2.15
Zielonka’s variant [Zie98] of McNaughton’s algorithm for parity games has

running time O
(
m · (n+d

d

)d), where n is the number of vertices and m is the
number of edges in the game graph, and (0, d) is the index of the parity game.

Note that combining it with Theorem 2.12 we get a model checking algorithm
with running time roughly O

(
k · f · (s · f/d

)d), which is comparable with the
algorithm of Cleaveland et al. [CKS92].

In Chapter 4 of this thesis we give a new algorithm for deciding the winner
in parity games with running time O

(
m · (n+d

d

)d/2) and using only O(d · n)
space. Therefore we get a modal μ-calculus model checking algorithm match-
ing the running time bound of Browne et al. and Seidl’s algorithms, and using
only small polynomial space instead of exponential space.

Theorem 2.16 ([Jur00])
There is an algorithm for the modal μ-calculus model checking with running
time O

(
k · (s · f/d)d/2

)
and working in O(d · s · f) space.

New insights into the problem of deciding the winner in parity games come
from a connection to discounted payoff and simple stochastic games [Con92,
ZP96] fist established by Puri [Pur95] and Jerrum [Sti95]. In 1966, Hoffman and
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Karp [HK66] proposed a strategy improvement algorithm for solving stochas-
tic games. The algorithm has gained a reputation of having a very fast conver-
gence rate in practice but very little is proved about its performance. In partic-
ular, it is an open problem whether it is a polynomial time algorithm [Con93].
Puri [Pur95] has adapted the algorithm of Hoffman and Karp to discounted
payoff games and advocated its use for solving parity games. The drawback of
Puri’s algorithm is that it requires solving linear programming instances and
manipulates real numbers which makes implementations slow and blurs un-
derstanding of the algorithm.

In chapter 5 we propose a purely discrete strategy improvement algorithm
for parity games [VJ00b]. We provide an efficient discrete algorithm for per-
forming a strategy improvement step. The algorithm has been recently imple-
mented [SV00]. The following remains an open question.

Problem 2.17 Does a strategy improvement algorithm for parity games termi-
nate in polynomial number of steps?

We hope that the discrete structure revealed in our work might help in resolv-
ing this question.

2.7 A UP ∩ co-UP upper bound for parity games

In the following two sections we briefly review our earlier contributions to the
study of the complexity of infinite games [Jur98, DJW97]. Some of these re-
sults were presented in the author’s M.Sc. thesis [Jur97]. The results surveyed
in the following two sections are included here only for completeness and do
not form a part of the original technical contributions of this Ph.D. thesis. The
result sketched in this section [Jur98] was published during the author’s grad-
uate studies at BRICS in Aarhus.

This section is devoted to a UP ∩ co-UP upper bound for the problem of de-
ciding the winner in parity games [Jur98]. First we sketch a simple polynomial
time reduction from parity games to mean payoff games. Then we mention
how a UP ∩ co-UP upper bound follows for discounted payoff games from the
results of Zwick and Paterson [ZP96].

Reduction of parity games to mean payoff games

A mean payoff game G = (V, E, (M0, M1), d, w) consists of a directed graph
(V, E), a partition M0 ∪M1 = V of the set of vertices V , a number d ∈ N, and
a weight function w : E → {−d, . . . ,−1, 0, 1, . . . , d}. The two players: player 0
and player 1 play in the same way as in the infinite games of Section 2.4. An
infinite play 〈v0, v1, v2, . . .〉 is winning for player 0 if

lim inf
n→∞

1
n

n∑
i=1

w(vi−1, vi) ≥ 0.
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Given a mean payoff game G = (V, E, (M0, M1), d, w) and a real number 0 <
λ < 1, we define the discounted payoff game Gλ to have the same game graph
as G, and the following winning condition: a play 〈v0, v1, v2, . . .〉 is winning for
player 0 if

(1− λ)
∞∑

i=1

λi · w(vi−1, vi) ≥ 0.

Below we sketch a simple reduction from parity games to mean payoff
games. Essentially the same reduction has been given by Puri [Pur95]. A
reduction of parity games to mean payoff games has been also obtained by
Jerrum [Sti95].

Our reduction relies on memoryless determinacy of both parity and mean
payoff games. Parity games have memoryless winning strategies by Theo-
rem 2.9. Memoryless determinacy for mean payoff games has been shown by
Ehrenfeucht and Mycielski [EM79] and independently by Gurvich et al. [GKK88].

Theorem 2.18 ([Pur95, Sti95, Jur98])
The problem of deciding the winner in parity games reduces in polynomial
time to the problem of deciding the winner in mean payoff games.

Let G = (V, E, (M0, M1), p) be a parity game. Given G and a starting vertex
v0 ∈ V we construct a mean payoff game H = (V, E, (M0, M1), d, w) with the
same game graph, such that player 0 has a winning strategy from v0 in G if and
only if she has a winning strategy from v0 in H . We give the reduction here;
see [Jur98] for a proof of its correctness. Let r = max{ p(v) : v ∈ V }, and
m = |V |. To define the mean payoff game H we set d = mr, and for every edge
e = (v, u) ∈ E we let w(e) = (−m)p(v).

Observe that in the above reduction the weight function w has values ex-
ponential with respect to the size of the parity game G, but their binary rep-
resetations are of polynomial size and can be computed in polynomial time.
Interestingly, having a reduction with polynomial values of the weight func-
tion would imply that solving parity games is in P, since a polynomial time
algorithm for mean payoff games with polynomial weights is given by Zwick
and Paterson [ZP96].

The UP ∩ co-UP upper bound

We argue now that deciding the winner in mean payoff games is in UP ∩ co-
UP. Let G = (V, E, (M0, M1), d, w) be a mean payoff game. Ehrenfeucht and
Mycielski [EM79] and independently Gurvich et al. [GKK88] have proved that
for every vertex v0 ∈ V , there is a number ν(v0), called the value of G at v0,
such that the following two conditions hold:

1. player 0 has a memoryless strategy, such that for every play 〈v0, v1, v2, . . .〉
consistent with this strategy, we have lim infn→∞ 1/n

∑n
i=1 w(vi−1, vi) ≥

ν(v0),
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2. player 1 has a memoryless strategy, such that for every play 〈v0, v1, v2, . . .〉
consistent with this strategy, we have lim supn→∞ 1/n

∑n
i=1 w(vi−1, vi) ≤

ν(v0).

We call strategies satisfying those conditions optimal. Clearly, given the values
of a game it is straightforward to decide the winner: it suffices to check whether
ν(v0) ≥ 0. Hence the values of a mean payoff game may seem to be a plausible
candidate for unique short certificates. Unfortunately, we have failed to de-
vise a polynomial time algorithm to check whether a vector 〈xv〉v∈V is indeed
the vector of the values of the game. Moreover, whereas it is straightforward
to extract a winning strategy in a parity game from the canonical signature as-
signment [Wal96], we do not know how to do it efficiently given just the values
of the mean payoff game.

In order to get the UP ∩ co-UP upper bound on the complexity of mean
payoff games we use the following result of Zwick and Paterson [ZP96].

Theorem 2.19 ([ZP96])
The problem of deciding the winner in a mean payoff game reduces in polyno-
mial time to the problem of deciding the winner in a discounted payoff game.

Hence it suffices to provide unique short certificates for winning strategies in
discounted payoff games. Zwick and Paterson [ZP96] have shown that optimal
memoryless strategies for both players exist also in discounted payoff games.
In the two conditions above one has to replace the term 1/n

∑n
i=1 w(vi−1, vi)

with (1− λ)
∑n

i=1 λi · w(vi−1, vi), and the number ν(v0) with νλ(v0), which we
call the value of the discounted payoff game Gλ at v0.

The vector of the values of a discounted payoff game is the unique cer-
tificate we are after. The crucial property which allows us to quickly check
whether some 〈xv〉v∈V is the vector of the values of a discounted payoff game
is the following characterisation due to Zwick and Paterson [ZP96].

Theorem 2.20 ([ZP96])
The vector ν = 〈νλ(v)〉v∈V of the values of the discounted payoff game Gλ is
the unique solution of the following system of equations

xv =
{

max(v,u)∈E

{
(1 − λ) · w(v, u) + λ · xu

}
if v ∈M0,

min(v,u)∈E

{
(1 − λ) · w(v, u) + λ · xu

}
if v ∈M1.

It only remains to show that the values of a discounted payoff games are short,
i.e., can be written using a number of bits polynomial in N = |Gλ|, the size
of the binary representation of the game Gλ. This can be done by standard
techniques (see [Jur98] for details).

This settles the UP upper bound for the problem of deciding the winner
in discounted payoff games. The co-UP upper bound follows easily, because
by the existence of optimal strategies [ZP96] player 0 does not have a winning
strategy from a vertex v0 in the game Gλ if and only if νλ(v0) < 0, so it can be
directly read from the vector of the values of the game.
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Putting the UP∩ co-UP upper bound for discounted payoff games, together
with the reductions of Theorems 2.18 and 2.19, we get the UP ∩ co-UP upper
bound.

Theorem 2.21 ([Jur98])
The problems of deciding the winner in parity, mean payoff and discounted
payoff games are in UP ∩ co-UP.

2.8 On memory needed to win infinite games

This section summarizes the results on the size of memory needed for winning
strategies in games with arbitrary Muller winning conditions [DJW97].

Already in the early ’60s there was some interest in verification and synthe-
sis of switching circuits [Chu63]. Büchi and Landweber [BL69] have pioneered
algorithmic solutions for the synthesis problem. Their result amounts to say-
ing that certain infinite games are determined, both players have finite state
winning strategies, and there is in fact an algorithm to synthesize a winning
finite state strategy. On the other hand there was a commonly shared opin-
ion that games provide an appealing and natural model for parallel, concur-
rent and reactive, computation [CKS81, RP80, NYY92, NRY96, AHK97], and
strategies in these games can be viewed as reactive programs. Among these,
papers [NYY92, NRY96] give examples how both the system and a specifica-
tion can be represented as a two player game, where synthesizing a reactive
program satisfying the specification amounts to finding a winning strategy for
one of the players.

Thomas [Tho95] in his survey article claims that whereas the verification
problem has been extensively studied, refined, and extended in past decades,
synthesis has been neglected. In fact, the complexity of the algorithm of Büchi
and Landweber seems to be very high, and other authors studying the synthe-
sis problem [ALW89, PR89a, PR89b] rejected the game theoretic approach be-
cause of this reason. McNaughton [McN93] has revived interest in it by giving
an elegant algorithm for solving finite state infinite games with Muller win-
ning conditions, and an estimate of its complexity. Variations of this algorithm
have been worked out by Thomas [Tho95] and Zielonka [Zie98]. The common
and remarkable feature of these algorithms is that the strategies constructed
by them use one version or another of the LAR (latest appearance record) data
structure, due to Büchi [Büc83] and Gurevich and Harrington [GH82]. An ob-
vious drawback of all these procedures is that LAR’s themselves are of expo-
nential size with respect to the size of the game. Note that the memory size of a
winning strategy corresponds to the size of the synthesized reactive program.
However, as observed by many authors [McN93, Kla94, Les95, NRY96, Zie98],
there are special cases when much less memory is needed.

Following a popular demand [McN93, Tho95, Les95, NRY96, Zie98] we
have been looking for a classification of winning conditions according to how
much memory is really needed for winning strategies. We have come up with
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a quite general criterion allowing to estimate the size of memory for winning
strategies, based only on the structure of the Muller winning condition, as
captured by the so called split tree [DJW97, Zie98]. By a careful analysis of
Zielonka’s version of McNaughton’s algorithm [Zie98] we have obtained a
non-trivial upper bound, for which a matching lower bound holds [DJW97].
The bound itself can be easily computed from the split tree [Zie98] of the win-
ning condition. In particular, we have shown that there are winning conditions
for which LAR’s are essentially optimal.

Let G = (V, E, (M0, M1), C, χ,F) be a game, where C is a finite set of colors,
χ : V → C is a coloring function, and F ⊆ ℘(C) is a Muller winning condition
expressed in terms of colors. An infinite play π = 〈v0, v1, v2, . . .〉 is winning for
player 0 if and only if Inf(π), i.e., the set of colors appearing infinitely often in
〈χ(v0), χ(v1), χ(v2), . . .〉, is in F .

A strategy has finite memory if its values depend only on the last vertex
in a position and a bounded information about the rest of the position. More
precisely, a strategy for player 0 with memory M is given by an element m0 ∈
M , and a pair of functions (ζM , ζV ): a memory update function ζM : M × V →
M , and a next move function ζV : M0 ×M → V . The first function is used to
determine the contents of the memory in a position of the game:

ζM (v0, . . . , vk) = ζM (vk, ζM (vk−1, · · · ζM (v1, ζM (v0, m0)) · · · )).

The second function defines the strategy ζ : Pos(G)→ V by

ζ(v0, . . . , vk) = ζV (vk, ζM (v0, . . . , vk)).

One may think of a strategy with memory as an input/output automaton com-
puting the strategy. This automaton inputs the moves taken by the opponent
(player 1), keeps track of the memory in its finite control using the memory up-
date function, and outputs the moves for the player (player 0) using the next
move function.

Observe that if we take for M the set of all positions (i.e., all finite paths
in the arena), and for ζM the identity function, then a strategy with memory
is just a strategy as defined before. The notion of a strategy with memory is
interesting in the case when the cardinality of M is smaller than the cardinality
of the set of positions of the game. In particular, if we take M to be a one
element set, then we obtain the notion of a memoryless strategy.

Gurevich and Harrington [GH82] have proved that bounded memory suf-
fices for winning strategies in games with arbitrary Muller winning conditions.

Theorem 2.22 (Forgetful determinacy [GH82, McN93])
Games with Muller (Rabin, Streett) winning conditions are determined. More-
over, both players have winning strategies from their winning sets with finite
memory of size |C|!, i.e., factorial in the number of colors.

Notation. Let F ⊆ ℘(C) be a winning condition. Define F � D ⊆ ℘(D) as the
set {D′ ∈ F : D′ ⊆ D }.
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Definition 2.23 (Split tree of a winning condition)
We define the split tree of F ⊆ ℘(C), denoted by ZF ,C , inductively.

1. If C �∈ F then ZF ,C = ZF ,C where F = ℘(C) \ F .

2. If C ∈ F then the root of ZF ,C is labelled with C. Let C0, C1, . . . , Ck−1 be
all the maximal sets in {X �∈ F : X ⊆ C }. Then we attach to the root, as
its subtrees, the split trees of F �Ci, i.e., ZF�Ci,Ci , for i = 0, 1, . . . , k − 1.

[Definition 2.23] �

For every F ⊆ ℘(C), we define a number mF , such that for every game with F
as the winning condition, a memory of size mF is sufficient for a winning strat-
egy for player 0 in the game. The number mF is determined by the structure
of a split tree of the winning condition F .

Definition 2.24 (The number mF )
Let F ⊆ ℘(C) be a winning condition and ZF0,C0 , . . . ,ZFk−1,Ck−1 be the sub-
trees attached to the root of the tree ZF ,C . By Fi we denote the condition
F �Ci ⊆ ℘(Ci) for i = 0, . . . , k − 1. We define the number mF as follows

mF =

⎧⎨⎩
1 if ZF ,C does not have any subtrees,
max{mF0 , . . . , mFk−1 } if C �∈ F ,∑k−1

i=0 mFi if C ∈ F .

It is not hard to see that for every F ⊆ ℘(C) we have that mF ≤ |C|!. By a
careful analysis of Zielonka’s version [Zie98] of McNaughton’s proof [McN93]
of forgetful determinacy for games with Muller winning conditions we get an
upper bound on the size of memory for winning strategies.

Theorem 2.25 ([DJW97])
In every game with a Muller winning condition F , player 0 has a winning
strategy with memory of size mF on her winning set.

Interestingly, this upper bound is tight.

Theorem 2.26 ([DJW97])
For every F ⊆ ℘(C), there is a game with Muller winning condition F , such
that every winning strategy for player 0 in this game requires memory of size
at least mF .

A drawback of this lower bound is that the sizes of game graphs we construct
are as big as mF , and hence they can be exponential in the number of colors.
Using different examples we have proved, however, that even on game graphs
of size linear in the number of colors the latest appearance records are optimal.

Theorem 2.27 ([DJW97])
There is a family of games 〈Gn〉n∈N, such that Gn is of size O(n) and every
winning strategy for player 0 in Gn has memory of size at least n!.



Chapter 3

Independence models and
bisimilarity

This chapter briefly surveys a selection of models with explicit representation
of concurrency and a number of behavioural equivalences for these models.
We recall two classical models: elementary net systems and asynchronous tran-
sition systems. Then we define a few bisimilarity notions, mention their logi-
cal and game theoretic characterizations, and discuss decidability of checking
bisimilarity for finite state asynchronous transition systems and elementary net
systems.

3.1 Models
Definition 3.1 (Asynchronous transition system)
A labelled asynchronous transition system [Shi85, Bed88, WN95]

A = (S, i, E,→, I, L, λ)

consists of:

• a set of states S, and an initial state i ∈ S,

• a set of events E,

• a transition relation→ ⊆ S × E × S,

• an independence relation I ⊆ E × E which is symmetric and irreflexive,

• a set of labels L, and a labelling function λ : E → L.

We often write s
e→ s′ instead of (s, e, s′) ∈→. An asynchronous transition

system must satisfy the following conditions:

1. if s
e→ s′ and s

e→ s′′ then s′ = s′′,

33
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2. if (e, e′) ∈ I , s
e→ s′, and s′ e′→ t, then s

e′→ s′′, and s′′ e→ t for some s′′ ∈ S.

An asynchronous transition system is coherent if it satisfies the following extra
condition:

3. if (e, e′) ∈ I , s
e→ s′, and s

e′→ s′′, then s′ e′→ t, and s′′ e→ t for some t ∈ S.

An asynchronous transition system is prime if it is acyclic and satisfies the fol-
lowing extra condition:

4. if s
e→ t and s′ e′→ t then (e, e′) ∈ I . [Definition 3.1] �

Condition 1. states that an occurrence of an event in a state least to a unique
state. Conditions 2. and 3. express properties of independence which is meant
to model concurrency. Condition 2. demands that if two independent events
can occur immediately one after another then they should be able to occur in
the other order as well, i.e., all interleavings of concurrent events are possible.
Condition 3. requires that if two independent events can occur at a state then
they should be able to occur together in any order and thus reach a common
state. Condition 4. demands that if occurrences of two events result in a com-
mon state then the events must be independent.

Definition 3.2 (Elementary net system)
A labelled elementary net system [Thi87]

N = (C, E, pre, post, M0, L, λ)

consists of:

• a set C of conditions,

• a set E of events,

• functions pre : E → ℘(E) and post : E → ℘(E) specifying pre-conditions
and post-conditions of events, respectively,

• an initial marking M0 ⊆ C,

• a set of labels L, and a labelling function λ : E → L. [Definition 3.2] �

For e ∈ E we sometimes write •e for the set pre(e) of pre-conditions of event
e, and we write e• for the set post(e) of post-conditions of e. We write •e• for
the set •e ∪ e•, called the neighbourhood of e.

Conditions can be thought of as local states of an elementary net system (or,
for short, a net). Markings of a net are sets of conditions and can be thought of
as global states of the net. Independence of events is a derived notion in nets:
events e, f ∈ E are independent if and only if •e• ∩ •f• = ∅, i.e., neighbour-
hoods of events e and f are disjoint.

The dynamics of a net is formalized by the notion of firing an event. An
event e ∈ E can be fired in a marking M ⊆ C if •e ⊆ M , and e• ∩M = ∅.
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The result of firing an event e ∈ E in a marking M ⊆ C is the marking M ′ =
(M \•e)∪e•, we denote it by M

e→N M ′. Note that a firing of an event e changes
the global state (i.e., the marking) by changing local states (i.e., conditions) only
in the neighbourhood of e, i.e., we have that M ∩ (C \ •e•) = M ′ ∩ (C \ •e•)

Relating the models

A thorough survey of models for concurrency can be found in a chapter by
Winskel and Nielsen [WN95]. They show in detail, using notions of category
theory, formal relationships between several established models for concur-
rency such as trace languages, event structures, Petri nets, and asynchronous
transition systems.

For our purposes it suffices to recall the obvious translation of an elemen-
tary net system into an asynchronous transition system. Given an elementary
net system N = (C, E, pre, post, M0) we define a labelled asynchronous tran-
sition system na(N) = (S, i, E,→, I, L, λ), where:

• the set of states S is the set of markings ℘(C),

• the initial state i is the initial marking M0,

• the set of events E and the labelling are inherited from the net N ,

• transition relation→ is the relation→N of firing an event in the net,

• we define (e, f) ∈ E to hold if and only if •e• ∩ •f• = ∅.

Proposition 3.3 If N is a labelled elementary net system then na(N) is a la-
belled asynchronous transition system.

Behaviours of asynchronous transition systems

Let A = (S, sini, E,→, I, L, λ) be a labelled asynchronous transition system. A
sequence of events e = 〈e1, e2, . . . , en〉 ∈ E∗ is a run of A if there are states
s1, s2, . . . , sn+1 ∈ S, such that s1 = sini, and for all i ∈ {1, 2, . . . , n}, we have
si

ei→ si+1. We write Runs(A) to denote the set of runs of A. We extend the
labelling function λ to runs in the standard way.

Let e = 〈e1, e2, . . . , en〉 ∈ Runs(A). We say that the k-th event, 1 ≤ k < n, is
swappable in e if (ek, ek+1) ∈ I . We define Swap(e) to be the set of numbers of
swappable events in e. We write e⊗ k to denote the result of swapping the k-th
event of e with the (k + 1)-st, i.e., the sequence 〈e1, . . . , ek−1, ek+1, ek, . . . , en〉.
Note that if k ∈ Swap(e) then e ⊗ k ∈ Runs(A); it follows from condition 2. of
definition of an asynchronous transition system.

A run of a transition system models a finite sequential behaviour of a system:
a sequence of occurrences of events. In order to model concurrent behaviours
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of a system we define an equivalence relation on the set of runs of an asyn-
chronous transition system. We define the equivalence relation∼=A on Runs(A)
to be the reflexive, symmetric, and transitive closure of{

(e, e⊗ k) : e ∈ Runs(A) and k ∈ Swap(e)
}
.

In other words, we have that e1
∼=A e2, for e1, e2 ∈ Runs(A), if and only if

e2 can be obtained from e1 by a finite number of swaps of swappable events.
A run is a linear order of occurrences of events. An equivalence class of the
relation ∼=A can be seen as a partial order of occurrences of events. A run e =
〈e1 · e2 · · · en〉 determines a partial order on {1, 2, . . . , n} which is the reflexive
and transitive closure of the relation �, where i � j is defined to hold if i < j
and (ei, ej) �∈ I . It can be shown that the ∼=A-equivalence class of a run is the
set of all linearizations of this partial order.

We define an unfolding operation of asynchronous transition systems into
prime asynchronous transition systems. The states of the unfolding of an asyn-
chronous transition system A are meant to represent all concurrent behaviours
of a system, just like the states of a synchronization tree represent all sequential
behaviours of a system.

Definition 3.4 (Unfolding)
Let A = (S, i, E,→, I, L, λ) be an asynchronous transition system. The un-
folding Unf(A) of A is an asynchronous transition system with the same set
of events, the labelling function, and the independence relation as A. The set
of states, the initial state, and the transition relation of Unf(A) are defined as
follows:

• the set of states SUnf(A) of Unf(A) is defined to be Runs(A)/∼=A
, i.e., the set

of concurrent behaviours of A,

• the initial state iUnf(A) of Unf(A) is [ε]∼=A
, i.e., the ∼=A-equivalence class of

the empty run,

• the set of transitions→Unf(A) of Unf(A) consists of transitions of the form(
[e]∼=A , e, [e · e]∼=A

)
, for all e ∈ E∗, and e ∈ E, such that e · e ∈ Runs(A).

[Definition 3.4] �

The following proposition follows easily from definition of Unf(A).

Proposition 3.5 If A is an asynchronous transition system then its unfolding
Unf(A) is a prime asynchronous transition system.

3.2 Behavioural equivalences

The notion of behavioural equivalence which has attracted most attention in
concurrency theory is bisimilarity, introduced by Park [Par81] and Milner [Mil80].
A notion of equivalence is meant to provide semantics for concurrent systems:
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two systems are considered to have the same meaning if and only their un-
foldings (representing all possible behaviours of systems) are equivalent, e.g.,
bisimilar.

Definition 3.6 (Bisimulation)
Let A1 = (S1, i1, E1,→1, I1, L, λ1) and A2 = (S2, i2, E2,→2, I2, L, λ2) be la-
belled asynchronous transition systems. A relation B ⊆ Runs(A1) × Runs(A2)
is a bisimulation relating A1 and A2 if the following conditions are satisfied:

1. (ε, ε) ∈ B,

and if (e1, e2) ∈ B then λ1(e1) = λ2(e2), and:

2. for all e1 ∈ E1, if e1 · e1 ∈ Runs(A1), then there exists e2 ∈ E2, such that
e2 · e2 ∈ Runs(A2), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B,

3. for all e2 ∈ E2, if e2 · e2 ∈ Runs(A2), then there exists e1 ∈ E1, such that
e1 · e1 ∈ Runs(A1), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B.

A bisimulation B is a back-and-forth bisimulation if the following extra condi-
tion is satisfied:

4. if (e1 · e1, e2 · e2) ∈ B for e1 ∈ E1 and e2 ∈ E2, then (e1, e2) ∈ B.
[Definition 3.6] �

Two asynchronous transition systems A1, and A2 are bisimilar, if there is a
bisimulation relating them. They are back-and-forth bisimilar if there is a back-
and-forth bisimulation relating them.

Theorem 3.7 ([HS85])
Transition systems A1 and A2 are bisimilar if and only if they are back-and-
forth bisimilar.

Note that the above notions of bisimilarity do not refer to the independence
relation and hence capture only sequential behaviour of transition systems.

Definition 3.8 ((Hereditary) history preserving bisimulation)
A bisimulation relation B ⊆ Runs(A1)×Runs(A2) is a history preserving bisim-
ulation (hp-bisimulation) if apart from conditions 1.–3. above the following ex-
tra condition holds:

5. if (e1, e2) ∈ B then Swap(e1) = Swap(e2), and for all k ∈ Swap(e1), we
have (e1 ⊗ k, e2 ⊗ k) ∈ B.

A relation B ⊆ Runs(A1) × Runs(A2) is a hereditary history preserving bisim-
ulation (hhp-bisimulation) if it satisfies conditions 1.–5. In other words, an hp-
bisimulation is hereditary if it is a back-and-forth bisimulation. [Definition 3.8] �
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We say that asynchronous transition systems A1 and A2 are history preserv-
ing bisimilar (hp-bisimilar) if there is an hp-bisimulation relating them. They
are hereditary history preserving bisimilar (hhp-bisimilar) if there is a hhp-
bisimulation relating them.

Hp-bisimilarity has been introduced by Rabinovich and Trakhtenbrot [RT88]
and van Glabbeek and Goltz [GG89]. Hhp-bisimilarity has been proposed by
Bednarczyk [Bed91] and independently by Joyal et al. [JNW96].

Unlike in the sequential case, by adding the back-and-forth property to the
definition of hp-bisimulation we get a stronger notion of bisimilarity.

Proposition 3.9 ([Bed91, JNW96]) There are asynchronous transition systems
which are hp-bisimilar but not hhp-bisimilar.

Bisimilarity, logic and games

Hennessy and Milner [HM85] have established that bisimilarity captures in-
distinguishability with respect to modal logic (often called Hennessy-Milner
logic.)

Theorem 3.10 ([HM85])
Two labelled (finitely branching) transition systems satisfy the same modal
logic formulas if and only if they are bisimilar.

Another related characterization of bisimilarity is the game theoretic one. Stir-
ling [Sti97] has popularized the view of bisimilarity checking as a game played
on a pair of transition systems by two players, one of them challenging bisimi-
larity of the transition systems and the other trying to prove that they are bisim-
ilar. This game can be also seen as a version of Ehrenfeucht-Fraı̈ssé games for
modal logic [Tho93].

Logical and game theoretic characterizations have been generalized to hhp-
bisimilarity by Nielsen and Clausen [NC95]. They introduce a modal logic
with backwards modalities and interpret it over unfoldings of asynchronous
transition systems.

Theorem 3.11 ([NC95])
(Unfoldings) of two labelled (finitely branching) asynchronous transition sys-
tems satisfy the same formulas of the modal logic with backwards modalities
if and only if they are hhp-bisimilar.

Nielsen and Clausen [NC95] also introduced a natural bisimilarity checking
games with backwards moves played on unfoldings of asynchronous transi-
tion systems.

Bisimilarity from open maps

The essence of bisimilarity, quoting [HM85], “is that the behaviour of a pro-
gram is determined by how it communicates with an observer.” Therefore, the
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notion of what can be observed of a behaviour of a system affects the notion
of bisimilarity. An abstract definition of bisimilarity for arbitrary categories of
models due to Joyal et al. [JNW96] formalizes this idea.

Given a category of models where objects are behaviours and morphisms
represent a form of simulation, and given a subcategory of observable be-
haviours, the abstract definition yields a notion of bisimilarity for all behaviours
with respect to observable behaviours. More concretely, Joyal et al. define open
maps which are morphisms that, roughly speaking, reflect as well as preserve
behaviour. Then two systems are (open maps) bisimilar if and only if there is a
span of open maps between their behaviours. For example, for rooted labelled
transition systems, taking synchronization trees [Mil80] into which they unfold
as their behaviours, and sequences of actions as the observable behaviours, we
recover the standard strong bisimilarity of Park and Milner [JNW96].

Theorem 3.12 ([JNW96])
Two labelled transition systems are (back-and-forth) bisimilar if and only if
they are open maps bisimilar with sequences of labels as the observable be-
haviours.

Taking sequences, i.e., linear orders as observable behaviours results in not
distinguishing between non-deterministic choices and concurrency. For mod-
els where concurrency is represented explicitly a natural choice is to replace
sequences, i.e., linear orders as the observable behaviours, by labelled partial
orders of occurrences of events with causality as the ordering relation. For
example, taking unfoldings of labelled asynchronous transition systems into
prime asynchronous transition systems (or event structures) as the behaviours,
and labelled partial orders as the observations, Joyal et al. [JNW96] obtained
hhp-bisimilarity from their abstract definition of open maps bisimilarity.

Theorem 3.13 ([JNW96])
Two labelled asynchronous transition systems are hhp-bisimilar if and only
if they are open maps bisimilar with labelled partial orders as the observable
behaviours.

Decidability issues

The problem of checking bisimilarity of transition systems is, given two transi-
tion systems, to decide whether they are bisimilar.

Theorem 3.14 ([PT87])
Checking bisimilarity can be done in time O(m · log n), where n is the sum of
numbers of states and m is the sum of sizes of transition relations of the input
transition systems.

The problem of checking (h)hp-bisimilarity of asynchronous transition sys-
tems is, given two asynchronous transition systems, to decide whether they are
(h)hp-bisimilar. The problem of checking (h)hp-bisimilarity of elementary net
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systems is, given two elementary net systems N1 and N2, to decide whether
asynchronous transition systems na(N1) and na(N2) are (h)hp-bisimilar.

Theorem 3.15 ([Vog91])
The problem of checking hp-bisimilarity for elementary net systems is decid-
able.

By applying a technique similar to that used by Jategaonkar and Meyer [JM96]
it can be shown that checking hp-bisimilarity of arbitrary asynchronous tran-
sition systems can be done in deterministic exponential time.

Hhp-bisimilarity, the back-and-forth version of hp-bisimilarity, seems to be
only a slight strengthening of hp-bisimilarity [JNW96], and hence many at-
tempts have been made to extend the above mentioned algorithms to the case
of hhp-bisimilarity. However, decidability of hhp-bisimilarity has remained
open, despite several attempts over the years [NC95, NW96a, CS96, FH99].

Fröschle and Hildebrandt [FH99] have discovered an infinite hierarchy of
bisimilarity notions refining hp-bisimilarity, and coarser than hhp-bisimilarity,
such that hhp-bisimilarity is the intersection of all the bisimilarities in the hier-
archy. They have shown all these bisimilarities to be decidable for 1-safe Petri
nets. Fröschle [Frö00] has shown hhp-bisimilarity to be decidable for BPP-
processes, a class of infinite state systems.

In chapter 6 of this dissertation we finally settle the question of decidability
of hhp-bisimilarity by showing it to be undecidable for finite elementary net
systems.

Theorem 3.16 ([JN00])
The problem of checking hhp-bisimilarity for elementary net systems is unde-
cidable.

In order to make the proof more transparent we first introduce an intermediate
problem of domino bisimilarity and show its undecidability by a direct reduc-
tion from the halting problem of 2-counter machines. Domino bisimilarity and
domino bisimulation games we introduce are a novel variation of the classical
domino problems [Har85], and different from domino games of Grädel [Grä90]
and domino snakes [EHM94].
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Chapter 4

Small progress measures for
PG’s

This chapter contains a revised version of [Jur00].

Abstract. In this paper we develop a new algorithm for deciding the win-
ner in parity games, and hence also for the modal μ-calculus model check-
ing. The design and analysis of the algorithm is based on a notion of game
progress measures: they are witnesses for winning strategies in parity games.
We characterize game progress measures as pre-fixed points of certain mono-
tone operators on a complete lattice. As a result we get the existence of the least
game progress measures and a straightforward way to compute them. The
worst-case running time of our algorithm matches the best worst-case running
time bounds known so far for the problem, achieved by the algorithms due to
Browne et al., and Seidl. Our algorithm has better space complexity: it works
in small polynomial space; the other two algorithms have exponential worst-
case space complexity.

4.1 Introduction

A parity game is an infinite path-forming game played by two players, player �

and player �, on a graph with integer priorities assigned to vertices. In order
to determine the winner in an infinite play we check the parity of the lowest
priority occurring infinitely often in the play: if it is even then player � wins,
otherwise player � is the winner. The problem of deciding the winner in parity
games is, given a parity game and an initial vertex, to decide whether player �

has a winning strategy from the vertex.
There are at least two motivations for the study of the complexity of decid-

ing the winner in parity games. One is that the problem is polynomial time
equivalent to the modal μ-calculus model checking [EJS93, Sti95], hence devel-
oping better algorithms for parity games may lead to better model checking
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tools, which is a major objective in computer aided verification. The other
is that the problem has an interesting status from the point of view of struc-
tural complexity theory. It is known to be in NP ∩ co-NP [EJS93] (and even
in UP ∩ co-UP [Jur98]), and hence it is very unlikely to be NP-complete, but
at the same time it is not known to be in P, despite substantial effort of the
community (see [EJS93, BCJ+97, Sei96, ZP96] and references therein).

Progress measures [KK91] are decorations of graphs whose local consis-
tency guarantees some global, often infinitary, properties of graphs. Progress
measures have been used successfully for complementation of automata on
infinite words and trees [Kla91, Kla94]; they also underlie a translation of alter-
nating parity automata on infinite words to weak alternating automata [KV98].
A similar notion, a signature, occurs in the study of the modal μ-calculus [SE89].
Signatures were used to prove memoryless determinacy of parity games [EJ91,
Wal96].

Our algorithm for parity games is based on the notion of game parity prog-
ress measures; Walukiewicz [Wal96] calls them consistent signature assign-
ments. Game parity progress measures are witnesses for winning strategies
in parity games. We provide an upper bound on co-domains of progress mea-
sures; this reduces the search space of potential witnesses. Then we provide a
characterization of game parity progress measures as pre-fixed points of cer-
tain monotone operators on a finite complete lattice. This characterization im-
plies that the least game parity progress measures exist, and it also suggests an
easy way to compute them.

The modal μ-calculus model checking problems is, given a formula ϕ of
the modal μ-calculus and a Kripke structure K with a set of states S, to decide
whether the formula is satisfied in the initial state of the Kripke structure. The
problem has been studied by many researchers; see for example [EL86, EJS93,
BCJ+97, Sei96, LRS98] and references therein. The algorithms with the best
proven worst-case running time bounds so far are due to Browne et al. [BCJ+97],
and Seidl [Sei96]. Their worst-case running time bounds are roughly O

(
d2 ·m ·

n	d/2
) and O
(
d ·m · ((n + d)/d

)	d/2
), respectively, where n and m are some
numbers depending on ϕ and K , such that n ≤ |S| · |ϕ|, m ≤ |K| · |ϕ|, and d is
the alternation depth of the formula ϕ.

In fact, number n above is the number of vertices in the parity game ob-
tained from the formula and the Kripke structure via the standard reduction
of the modal μ-calculus model checking to parity games, and m is the number
of edges in the game graph; see for example [EJS93, Sti95]. Moreover, the re-
duction can be done in such a way that the number of different priorities in the
parity game is equal to the alternation depth d of the formula. Our algorithm
has worst-case running time O

(
d ·m · (n/�d/2�)�d/2�), and it can be made to

work in time O
(
d · m · ((n + d)/d

)	d/2
), hence it matches the bounds of the
other two algorithms. Moreover, it works in space O(d · n) while the other
two algorithms have exponential worst-case space complexity. Our algorithm
can be seen as a generic algorithm allowing many different evaluation policies;
good heuristics can potentially improve performance of the algorithm. How-



4.2. PARITY GAMES 45

ever, we show a family of examples for which worst-case running time occurs
for all evaluation policies.

Among algorithms for parity games it is worthwhile to mention the algo-
rithm of McNaughton [McN93] and its slight modification by Zielonka [Zie98].
In the extended version of this paper we show that McNaughton/Zielonka’s
algorithm can be implemented to work in time roughly O

(
m · (n/d)d

)
, and

we also provide a family of examples for which the algorithm needs this time.
Zielonka’s algorithm works in fact for games with more general Muller win-
ning conditions. By a careful analysis of the algorithm for games with Rabin
(Streett) winning conditions we get a running time bound O

(
m · n2k

)
, where

k is the number of pairs in the Rabin (Streett) condition. The algorithm also
works in small polynomial space. This compares favourably with other al-
gorithms for the linear-time equivalent problem of checking non-emptiness
of non-deterministic Rabin (Streett) tree automata [EJ88, PR89a, KV98], and
makes it the best algorithm known for this NP-complete (co-NP-complete) [EJ88]
problem.

4.2 Parity games

Notation: For all n ∈ N, by [n] we denote the set {0, 1, 2, . . . , n − 1}. If (V, E)
is a directed graph and W ⊆ V , then by (V, E) � W we denote the subgraph
(W, F ) of (V, E), where F = E ∩W 2. [Notation] �

A parity graph G = (V, E, p) consists of a directed graph (V, E) and a priority
function p : V → [d], where d ∈ N. A parity game Γ =

(
V, E, p, (V�, V�)

)
consists

of a parity graph G = (V, E, p), called the game graph of Γ, and of a partition
(V�, V�) of the set of vertices V . For technical convenience we assume that all
game graphs have the property that every vertex has at least one out-going
edge. We also restrict ourselves throughout this paper to games with finite
game graphs.

A parity game is played by two players: player � and player �, who form
an infinite path in the game graph by moving a token along edges. They start
by placing the token on an initial vertex and then they take moves indefinitely
in the following way. If the token is on a vertex in V� then player � moves the
token along one of the edges going out of the vertex. If the token is on a vertex
in V� then player � takes a move. In the result players form an infinite path
π = 〈v1, v2, v3, . . .〉 in the game graph; for brevity we refer to such infinite paths
as plays. The winner in a play is determined by referring to priorities of vertices
in the play. Let Inf(π) denote the set of priorities occurring infinitely often in〈
p(v1), p(v2), p(v3), . . .

〉
. A play π is a winning play for player � if min

(
Inf(π)

)
is even, otherwise π is a winning play for player �.

A function σ : V� → V is a strategy for player � if
(
v, σ(v)

) ∈ E for all
v ∈ V�. A play π = 〈v1, v2, v3, . . .〉 is consistent with a strategy σ for player � if
v�+1 = σ(v�), for all 	 ∈ N, such that v� ∈ V�. A strategy σ is a winning strategy
for player � from set W ⊆ V , if every play starting from a vertex in W and
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consistent with σ is winning for player �. Strategies and winning strategies
are defined similarly for player �.

Theorem 4.1 (Memoryless Determinacy [EJ91, Mos91])
For every parity game, there is a unique partition (W�, W�) of the set of ver-
tices of its game graph, such that there is a winning strategy for player � from
W�, and a winning strategy for player � from W�.

We call the sets W� and W� the winning sets of player � and player �, respec-
tively. The problem of deciding the winner in parity games is, given a parity
game and a vertex in the game graph, to determine whether the vertex is in the
winning set of player �.

Before we proceed we mention a simple characterization of winning strate-
gies for player � in terms of simple cycles in a subgraph of the game graph
associated with the strategy. We say that a strategy σ for player � is closed on a
set W ⊆ V if for all v ∈W , we have:

• if v ∈ V� then σ(v) ∈W , and

• if v ∈ V� then (v, w) ∈ E implies w ∈W .

Note that if a strategy σ for player � is closed on W then every play starting
from a vertex in W and consistent with σ stays within W .

If σ is a strategy for player � then by Gσ we denote the parity graph (V, Eσ, p)
obtained from game graph G = (V, E, p) by removing from E all edges (v, w)
such that v ∈ V� and σ(v) �= w.

We say that a cycle in a parity graph is an i-cycle if i is the smallest priority
of a vertex occurring in the cycle. A cycle is an even cycle if it is an i-cycle for
some even i, otherwise it is an odd cycle. The following proposition is not hard
to prove.

Proposition 4.2 Let σ be a strategy for player � closed on W . Then σ is a
winning strategy for player � from W if and only if all simple cycles in Gσ �W
are even.

4.3 Small progress measures

In this section we study a notion of progress measures. Progress measures play
a key role in the design and analysis of our algorithm for solving parity games.

First we define parity progress measures for parity graphs, and we show
that there is a parity progress measure for a parity graph if and only if all cycles
in the graph are even. In other words, parity progress measures are witnesses
for the property of parity graphs having only even cycles. The proof of the
‘if’ part also provides an upper bound on the size of the co-domain of a parity
progress measure. Then we define game parity progress measures for parity
games, we argue that they are witnesses for winning strategies for player �,
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and we show that the above-mentioned upper bound holds also for game par-
ity progress measures.

Notation: If α ∈ Nd is a d-tuple of non-negative integers then we number its
components from 0 to d−1, i.e., we have α = (α0, α1, . . . , αd−1). When applied
to tuples of natural numbers, the comparison symbols <,≤, =, �=,≥, and >
denote the lexicographic ordering. When subscripted with a number i ∈ N

(e.g., <i, =i,≥i), they denote the lexicographic ordering on Ni applied to the
arguments truncated to their first i components. For example, (2, 3, 0, 0) >2

(2, 2, 4, 1), but (2, 3, 0, 0) =0 (2, 2, 4, 1). [Notation] �

Definition 4.3 (Parity progress measure)
Let G =

(
V, E, p : V → [d]

)
be a parity graph. A function � : V → Nd is a parity

progress measure for G if for all (v, w) ∈ E, we have �(v) ≥p(v) �(w), and the
inequality is strict if p(v) is odd. [Definition 4.3] �

Proposition 4.4 If there is a parity progress measure for a parity graph G then
all cycles in G are even.

Proof: Let � : V → Nd be a parity progress measure for G. For the sake of
contradiction suppose that there is an odd cycle v1, v2, . . . , v� in G, and let i =
p(v1) be the smallest priority on this cycle. Then by the definition of a progress
measure we have �(v1) >i �(v2) ≥i �(v2) ≥i · · · ≥i �(v�) ≥i �(v1), and hence
�(v1) >i �(v1), a contradiction. [Proposition 4.4]

If G =
(
V, E, p : V → [d]

)
is a parity graph then for every i ∈ [d], we write Vi to

denote the set p−1(i) of vertices with priority i in parity graph G. Let ni = |Vi|,
for all i ∈ [d]. Define MG to be the following finite subset of Nd: if d is even
then

MG = [1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−1 + 1];

for odd d we have · · ·×[nd−2+1]×[1] at the end. In other words, MG is the finite
set of d-tuples of integers with only zeros on even positions, and non-negative
integers bounded by |Vi| on every odd position i.

Theorem 4.5 (Small parity progress measure)
If all cycles in a parity graph G are even then there is a parity progress measure
� : V →MG for G.

Proof: The proof goes by induction on the number of vertices in G =
(
V, E, p :

V → [d]
)
. For the induction to go through we slightly strengthen the state-

ment of the theorem: we additionally claim, that if p(v) is odd then �(v) >p(v)

(0, . . . , 0). The statement of the theorem holds trivially if G has only one vertex.
Without loss of generality we may assume that V0 ∪ V1 �= ∅; otherwise

we can scale down the priority function of G by two, i.e., replace the priority
function p by the function p− 2 defined by

(
p− 2

)
(v) = p(v)− 2, for all v ∈ V .

Suppose first that V0 �= ∅. By induction hypothesis there is a parity progress
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measure � :
(
V \ V0

) → MG for the subgraph G �
(
V \ V0

)
. Setting �(v) =

(0, . . . , 0) ∈MG, for all v ∈ V0, we get a parity progress measure for G.
Suppose that V0 = ∅ then V1 �= ∅. We claim that there is a non-trivial

partition (W1, W2) of the set of vertices V , such that there is no edge from W1

to W2 in G.
Let u ∈ V1; define U ⊆ V to be the set of vertices to which there is a non-

trivial path from u in G. If U = ∅ then W1 = {u} and W2 = V \ {u} is a desired
partition of V . If U �= ∅ then W1 = U and W2 = V \U is a desired partition. The
partition is non-trivial (i.e., V \U �= ∅) since u �∈ U : otherwise a non-trivial path
from u to itself gives a 1-cycle because V0 = ∅, contradicting the assumption
that all cycles in G are even.

Let G1 = G � W1, and G2 = G � W2 be subgraphs of G. By induction
hypothesis there are parity progress measures �1 : W1 → MG1 for G1, and
�2 : W2 → MG2 for G2. Let n′

i =
∣∣Vi ∩W1

∣∣, and let n′′
i =

∣∣Vi ∩W2

∣∣, for i ∈ [d].
Clearly ni = n′

i + n′′
i , for all i ∈ [d]. Recall that there are no edges from W1

to W2 in G. From this and our additional claim applied to �2 it follows that
the function � = �1 ∪

(
�2 + (0, n′

1, 0, n′
3, . . . )

)
: V → MG is a parity progress

measure for G. [Theorem 4.5]

Let Γ =
(
V, E, p, (V�, V�)

)
be a parity game and let G = (V, E, p) be its game

graph. We define M
G to be the set MG ∪ {�}, where� is an extra element. We

use the standard comparison symbols (e.g., <, =,≥, etc.) to denote the order on
M

G which extends the lexicographic order on MG by taking � as the biggest
element, i.e., we have m < �, for all m ∈ MG. Moreover, for all m ∈ MG and
i ∈ [d], we set m <i �, and � =i �. If � : V →M

G and (v, w) ∈ E then

by Prog(�, v, w) we denote the least m ∈ M
G , such that m ≥p(v)

�(w), and if p(v) is odd then either the inequality is strict, or m =
�(w) = �.

Definition 4.6 (Game parity progress measure)
A function � : V → M

G is a game parity progress measure if for all v ∈ V , we
have:

• if v ∈ V� then �(v) ≥p(v) Prog(�, v, w) for some (v, w) ∈ E, and

• if v ∈ V� then �(v) ≥p(v) Prog(�, v, w) for all (v, w) ∈ E;

by ‖�‖we denote the set
{

v ∈ V : �(v) �= � }
. [Definition 4.6] �

For every game parity progress measure � we define a strategy �̃ : V� → V for
player �, by setting �̃(v) to be a successor w of v, which minimizes �(w).

Corollary 4.7 If � is a game parity progress measure then �̃ is a winning strat-
egy for player � from ‖�‖.
Proof: Note first that � restricted to ‖�‖ is a parity progress measure on G�̃ �‖�‖.
Hence by Proposition 4.4 all simple cycles in G�̃ �‖�‖ are even.
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It also follows easily from definition of a game parity progress measure
that strategy �̃ is closed on ‖�‖. Therefore, by Proposition 4.2 we get that �̃ is a
winning strategy for player � from ‖�‖. [Corollary 4.7]

Corollary 4.8 (Small game parity progress measure)
There is a game progress measure � : V →M

G such that ‖�‖ is the winning set
of player �.

Proof: It follows from Theorem 4.1 that there is a winning strategy σ for player �

from her winning set W�, which is closed on W�. Therefore by Proposition 4.2
all cycles in parity graph Gσ �W� are even, hence by Theorem 4.5 there is a par-
ity progress measure � : W� →MG for Gσ �W�. It follows that setting �(v) = �
for all v ∈ V \W�, makes � a game parity progress measure. [Corollary 4.8]

4.4 The algorithm

In this section we present a simple algorithm for solving parity games based
on the notion of a game parity progress measure. We characterize game par-
ity progress measures as (pre-)fixed points of certain monotone operators in
a finite complete lattice. By Knaster-Tarski theorem it implies existence of the
least game progress measure μ, and a simple way to compute it. It then follows
from Corollaries 4.8 and 4.7 that ‖μ‖ is the winning set of player �.

Before we present the algorithm we define an ordering, and a family of
Lift(·, v) operators for all v ∈ V , on the set of functions V → M

G . Given two
functions μ, � : V → M

G , we define μ � � to hold if μ(v) ≤ �(v) for all v ∈ V .
The ordering relation� gives a complete lattice structure on the set of functions
V → M

G . We write μ � � if μ � �, and μ �= �. Define Lift(�, v) for v ∈ V as
follows:

Lift
(
�, v

)
(u) =

⎧⎪⎨⎪⎩
�(u) if u �= v,

max
{
�(v), min(v,w)∈E Prog(�, v, w)

}
if u = v ∈ V�,

max
{
�(v), max(v,w)∈E Prog(�, v, w)

}
if u = v ∈ V�.

The following propositions follow immediately from definitions of a game par-
ity progress measure, and of the Lift(·, v) operators.

Proposition 4.9 For every v ∈ V, the operator Lift(·, v) is �-monotone.

Proposition 4.10 A function � : V →M
G is a game parity progress measure, if

and only if is it is a simultaneous pre-fixed point of all Lift(·, v) operators, i.e.,
if Lift(�, v) � � for all v ∈ V .

From Knaster-Tarski theorem it follows that the �-least game parity progress
measure exists, and it can be obtained by running the following simple proce-
dure computing the least simultaneous (pre-)fixed point of operators Lift(·, v),
for all v ∈ V .
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ProgressMeasureLifting
μ := λv ∈ V.(0, . . . , 0)
while μ � Lift(μ, v) for some v ∈ V do μ := Lift(μ, v)

Theorem 4.11 (The algorithm)
Given a parity game, procedure ProgressMeasureLifting computes win-
ning sets for both players and a winning strategy for player � from her win-
ning set; it works in space O(d · n), and its running time is

O
(
dm ·

( n

�d/2�
)�d/2�)

,

where n is the number of vertices, m is the number of edges, and d is the max-
imum priority in the parity game.

Proof: The result of running ProgressMeasureLifting on a parity game is
the �-least game progress measure μ. Let W� be the winning set of player �.
By minimality of μ and by Corollary 4.8 it follows that W� ⊆ ‖μ‖. Moreover,
Corollary 4.7 implies that μ̃ is a winning strategy for player � from ‖μ‖, and
hence by Theorem 4.1 we get that ‖μ‖ ⊆W�, i.e., ‖μ‖ = W�.

Procedure ProgressMeasureLifting algorithm works in space O(d · n)
because it only needs to maintain a d-tuple of integers for every vertex in the
game graph. The Lift(·, v) operator, for every v ∈ V , can be implemented to
work in time O

(
d · out-deg(v)

)
, where out-deg(v) is the out-degree of v. Ev-

ery vertex can be “lifted” only |MG| many times, hence the running time of
procedure ProgressMeasureLifting is bounded by

O
( ∑

v∈V

d · out-deg(v) · |MG|
)

= O
(
d ·m · |MG|

)
.

To get the claimed time bound it suffices to notice that

|MG| =
�d/2�∏
i=1

(n2i−1 + 1) ≤
( n

�d/2�
)�d/2�

,

because
∑�d/2�

i=1 (n2i−1 + 1) ≤ n if ni �= 0 for all i ∈ [d], which we can assume
without loss of generality; if ni = 0 for some i ∈ [d] then we can scale down the
priorities bigger than i by two. [Theorem 4.11]

Remark: Our algorithm for solving parity games can be made to have

O
(
d ·m ·

(n + d

d

)	d/2
)
as its worst-case running time bound, which is better than O

(
d·m·(n/�d/2�)�d/2�)

for even d, and for odd d if 2 log1/(1−ε) n ≤ d ≤ (1− ε)n, for some 0 < ε < 1.
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If
∑

0≤2i−1<d(n2i−1 + 1) ≤ (n + d)/2 then we have

|MG| =
∏

0≤2i−1<d

(n2i−1 + 1) ≤
( (n + d)/2
�d/2�

)�d/2�
≤

(n + d

d− 1

)�d/2�
.

Otherwise, we have
∑

0≤2i<d(n2i +1) ≤ (n+d)/2. In this case it suffices to run
procedure ProgressMeasureLifting on the dual game G, i.e., the game
obtained by scaling all priorities in game G up by one, and swapping sets in
the (V�, V�) partition. The winning set of player � in the original game is the
winning set of player � in the dual game. Note that

|MG| =
∏

0≤2i<d

(n2i + 1) ≤
( (n + d)/2
�d/2�

)	d/2

≤

(n + d

d

)	d/2

.

To conclude it suffices to verify that
(
(n + d)/(d − 1)

)�d/2� ≤ (
(n + d)/d

)	d/2
,
for 1 ≤ d ≤ n. [Remark] �

Note that in order to make ProgressMeasureLifting a fully determin-
istic algorithm one has to fix a policy of choosing vertices at which the function
μ is being “lifted”. Hence it can be considered as a generic algorithm whose
performance might possibly depend on supplying heuristics for choosing the
vertices to lift. Unfortunately, as we show in the next section, there is a family
of examples on which the worst case performance of the algorithm occurs for
all vertex lifting policies.

4.5 Worst-case behaviour
Theorem 4.12 (Worst-case behaviour)
For all d, n ∈ N such that d ≤ n, there is a game of size O(n) with priorities not
bigger than d, on which procedure ProgressMeasureLifting performs at
least

(�n/d�)	d/2
 many lifts, for all lifting policies.

Proof: We define the family of games H�,b, for all 	, b ∈ N. The game graph of
H�,b consists of 	 “levels”, each level contains b “blocks”. There is one “odd”
level, and 	− 1 “even” levels.

The basic building block of the odd level is the following subgraph.

2	
��
2	− 1��

��
2	��

The numbers in vertices are their priorities. The odd level of H�,b consists of b
copies of the above block assembled together by identifying the left-hand ver-
tex with priority 2	 of the a-th block, for every a ∈ {1, 2, . . . , b − 1}, with the
right-hand vertex with priority 2	 of the (a + 1)-st block. For example the odd
level of H4,3 is the following.
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Figure 4.1: The game H4,3.

8 

 7		
��
8 

�� 7		

��
8 

�� 7		

��
8��

In all our pictures vertices with a diamond-shaped frame are meant to be-
long to V�, i.e., they are vertices where player � moves; vertices with a box-
shaped frame belong to V�. Some vertices have no frame; for concreteness let
us assume that they belong to V�, but including them to V� would not change
our reasoning, because they all have only one successor in the game graph of
H�,b.

The basic building block of the k-th even level, for k ∈ {1, 2, . . . , 	 − 1}, is
the following subgraph.

2k − 1
���

���

2k
��

�������
2k

��
2k��

Every even level is built by putting b copies of the above block together in a
similar way as for the odd level.

To assemble the game graph of H�,b we connect all 	 − 1 even levels to the
odd level, by introducing edges in the following way. For every even level
k ∈ {1, 2, . . . , 	 − 1}, and for every block a ∈ {1, 2, . . . , b}, we introduce edges
in both directions between the box vertex with priority 2	 − 1 from the a-th
block of the odd level, and the diamond vertex with priority 2k from the a-th
block of the k-th even level. See Figure 4.1 for an example: the game H4,3.

Claim 4.13 Every vertex with priority 2	−1 in game H�,b is lifted (b+1)� many
times by procedure ProgressMeasureLifting.

Proof: Note that in game H�,b player � has a winning strategy from all vertices
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in even levels, and player � has a winning strategy from all vertices in the odd
level; see Figure 4.1. Therefore, the value of the least progress measure in all
vertices with priority 2	− 1 is � ∈ M

H�,b
. Hence it suffices to show that every

vertex with priority 2	− 1 can be lifted only to its immediate successor in the
order on M

H�,b
. Then it is lifted

∣∣MH�,b

∣∣ = (b + 1)� many times, because

MH�,b
= [1]× [b + 1]× [1]× [b + 1]× · · · × [b + 1]× [1]︸ ︷︷ ︸

2�+1 components

.

Let v be a vertex with priority 2	− 1 in the odd level of H�,b, and let w be a
vertex, such that there is an edge from v to w in the game graph of H�,b. Then
there is also an edge from w to v in the game graph of H�,b; see Figure 4.1.
Therefore, function μ maintained by the algorithm satisfies μ(w) ≤ μ(v), be-
cause w is a diamond vertex with even priority, so Prog(μ, w, v) =p(w) μ(v),
and

(
Prog(μ, w, v)

)
i

= 0 for all i > p(w). It follows that Lift(·, v) operator can
only lift μ(v) to the immediate successor of μ(v) in the order on MH�,b

, because
the priority of v is 2	− 1. [Claim 4.13]

Theorem 4.12 follows from the above claim by taking the game H�d/2�,	n/d
.
[Theorem 4.12]

4.6 Optimizations

Even though procedure ProgressMeasureLifting as presented above ad-
mits the worst-case performance, there is some room for improvements in its
running time. Let us just mention here two proposals for optimizations, which
should be considered when implementing the algorithm.

One way is to get better upper bounds on the values of the least game parity
progress measure than the one provided by Corollary 4.8, taking into account
the structure of the game graph. This would allow to further reduce the “search
space” where the algorithm is looking for game progress measures. For exam-
ple, let G≥i be the parity graph obtained from the game graph G by removing
all vertices with priorities smaller than i. One can show that if v ∈ ‖μ‖ for
the least game progress measure μ then for odd i’s the i-th component of μ(v)
is bounded by the number of vertices of priority i reachable from v in graph
G≥i. It requires further study to see whether one can get considerable improve-
ments by pre-computing better bounds for the values of the least game parity
progress measure.

Another simple but important optmization is to decompose game graphs
into maximal strongly connected components. Note that every infinite play
eventually stays within a strongly connected component, so it suffices to apply
expensive procedure for solving parity games to the maximal strongly con-
nected components separately. In fact, we need to proceed bottom up in the
partial order of maximal strongly connected components. Each time one of the
bottom components has been solved, we can also remove from the rest of the
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game the sets of vertices from which respective players have a strategy to force
in a finite number of moves to their so far computed winning sets.

The above optimizations should considerably improve performance of our
algorithm in practice, but they do not, as such, give any asymptotic worst-case
improvement: see the examples H�,b from Section 4.5.



Chapter 5

Discrete strategy
improvement for PG’s

This chapter contains a revised and extended version of [VJ00b]. It is joint work
with Jens Vöge. Other accounts of these results can be found in the RTWH
technical report [VJ00a] and in Jens Vöge’s Ph.D. dissertation [Vög00].

Abstract. A discrete strategy improvement algorithm is given for construct-
ing winning strategies in parity games, thereby providing also a new solution
of the model-checking problem for the modal μ-calculus. Known strategy im-
provement algorithms, as proposed for stochastic games by Hoffman and Karp
in 1966, and for discounted payoff games and parity games by Puri in 1995,
work with real numbers and require solving linear programming instances in-
volving high precision arithmetic. In the present algorithm for parity games
these difficulties are avoided by the use of discrete vertex valuations in which
information about the relevance of vertices and certain distances is coded. An
efficient implementation is given for a strategy improvement step. Another
advantage of the present approach is that it provides a better conceptual un-
derstanding and easier analysis of strategy improvement algorithms for parity
games. However, so far it is not known whether the present algorithm works
in polynomial time. The long standing problem whether parity games can be
solved in polynomial time remains open.

5.1 Introduction

The study of the computational complexity of solving parity games has two
main motivations. One is that the problem is polynomial time equivalent to the
modal μ-calculus model checking [EJS93, Sti95], and hence better algorithms
for parity games may lead to better model checkers, which is a major objective
in computer aided verification.

55
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The other motivation is the intriguing status of the problem from the point
of view of structural complexity theory. It is one of the few natural problems
which is in NP ∩ co-NP [EJS93] (and even in UP ∩ co-UP [Jur98]), and is
not known to have a polynomial time algorithm, despite substantial effort of
the community (see [EJS93, BCJ+97, Sei96, Jur00] and references there). Other
notable examples of such problems include simple stochastic games [Con92,
Con93], mean payoff games [EM79, ZP96], and discounted payoff games [ZP96].
There are polynomial time reductions of parity to mean payoff games [Pur95,
Jur98], mean payoff to discounted payoff games [ZP96], and discounted payoff
to simple stochastic games [ZP96]. Parity games, as the simplest of them all,
seem to be the most plausible candidate for trying to find a polynomial time
algorithm.

A strategy improvement algorithm has been proposed for solving stochas-
tic games by Hoffman and Karp [HK66] in 1966. Puri in his PhD thesis [Pur95]
has adapted the algorithm for discounted payoff games. Puri also provided
a polynomial time reduction of parity games to mean payoff games, and ad-
vocated the use of the algorithm for solving parity games, and hence for the
modal μ-calculus model checking.

In our opinion Puri’s strategy improvement algorithm for parity games has
two drawbacks.

• The algorithm uses high precision arithmetic, and needs to solve linear
programming instances: both are typically costly operations. An imple-
mentation (by the first author) of Puri’s algorithm, using a linear pro-
gramming algorithm of Meggido [Meg83], proved to be prohibitively
slow.

• Solving parity games is a discrete, graph theoretic problem, but the crux
of the algorithm is manipulation of real numbers, and its analysis is cru-
cially based on continuous methods, such as Banach’s fixed point theo-
rem.

The first one makes the algorithm inefficient in practice, the other one obscures
understanding of the algorithm.

Our discrete strategy improvement algorithm remedies both shortcomings
of Puri’s algorithm mentioned above, while preserving the overall structure
of the generic strategy improvement algorithm. We introduce discrete val-
ues (such as tuples of: vertices, sets of vertices and natural numbers denoting
lengths of paths in the game graph) which are being manipulated by the algo-
rithm, instead of their encodings into real numbers. (One can show a precise
relationship between behaviour of Puri’s and our algorithms; we will treat this
issue elsewhere.)

The first advantage of our approach is that we avoid solving linear pro-
gramming instances involving high precision arithmetic. Instead, a shortest
paths instance needs to be solved in every strategy improvement step of the
algorithm. The shortest paths instances occurring in this context have discrete
weights recording relevance of vertices and distances in the game graph. We
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develop an algorithm exploiting the special structure of these instances instead
of using standard shortest paths algorithms. Our algorithm gives an efficient
implementation of a single improvement step of the strategy improvement al-
gorithm. Its running time is O(n ·m), where n is the number of vertices, and m
is the number of edges in the game graph. In comparison, a naive application
of Bellman-Ford algorithm [CLR90] gives O(n2 ·m) running time.

The other advantage is more subjective: we believe that it is easier to ana-
lyze the discrete data maintained by our algorithm, rather than its subtle en-
codings into real numbers involving infinite geometric series [Pur95]. The clas-
sical continuous reasoning involving Banach fixed point theorem gives an ele-
gant proof of correctness of the algorithm in a more general case of discounted
payoff games [Pur95], but we think that in the case of parity games it blurs
an intuitive understanding of the underlying discrete structure. However, the
long standing open question whether a strategy improvement algorithm works
in polynomial time [Con93] remains unanswered. Nevertheless, we hope that
our discrete analysis of the algorithm may help either to find a proof of polyno-
mial time termination, or to come up with a family of examples on which the
algorithm requires exponential number of steps. Any of those results would
mark a substantial progress in understanding the computational complexity of
parity games.

So far, for all families of examples we have considered the strategy improve-
ment algorithm needs only linear number of strategy improvement steps. No-
tably, a linear number of strategy improvements suffices for several families of
difficult examples for which other known algorithms need exponential time.

The rest of this chapter is organized as follows. In section 5.2 we define
the infinite parity games and we establish their equivalence to finite cycle-
domination games. In section 5.3 we sketch the idea of a generic strategy
improvement algorithm and we state general postulates which guarantee cor-
rectness of the algorithm. Then in section 5.4 we give a specific proposal for
the ingredients of a generic strategy improvement algorithm. In section 5.5 we
prove that these ingredients satisfy the postulates of section 5.3. In this way
we get a purely discrete strategy improvement algorithm for solving parity
games. In section 5.6 we give a specialized shortest paths algorithm for the
shortest paths instances occurring in our strategy improvement algorithm. In
this way we obtain an efficient O(n ·m) implementation of a strategy improve-
ment step, where n is the number of vertices, and m is the number of edges
in the game graph. Finally, in section 5.7 we discuss partial results and open
questions concerning the time complexity of strategy improvement algorithms.

5.2 Parity games

5.2.1 Infinite parity games

A game graph G =
(
V, E, (MEven, MOdd), p

)
of a parity game consists of a di-

rected graph (V, E), a partition (MEven, MOdd) of the set of vertices V , and a
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priority function p : V → {0, 1, . . . , k} for some k ∈ N. We restrict ourselves to
finite parity game graphs and for technical convenience we assume that every
vertex has at least one out-going edge.

An infinite parity game G∞ is a two-person infinite duration path-forming
game played on graph G. The two players, Even and Odd, keep moving a to-
ken along edges of the game graph: player Even moves the token from vertices
in MEven, and player Odd moves the token from vertices in MOdd. A play of
G∞ is an infinite path 〈v0, v1, v2, . . .〉 in the game graph G arising in this way.
A play P = 〈v0, v1, v2, . . .〉 is winning for player Even if the biggest priority oc-
curring infinitely often in P (i.e., the biggest number occurring infinitely often
in 〈p(v0), p(v1), p(v2), . . .〉) is even; otherwise P is winning for player Odd.

A memoryless strategy for player Even is a function σ : MEven → V such
that

(
v, σ(v)

) ∈ E for all v ∈ MEven. (We consider only memoryless strategies
here so for brevity we just write strategies to denote memoryless strategies
throughout the paper.) A play 〈v0, v1, v2, . . .〉 is consistent with a strategy σ for
player Even if v�+1 = σ(v�) for all 	 ∈ N, such that v� ∈ MEven. Strategies for
player Odd are defined analogously. If σ is a strategy for player Even (Odd)
then we write Gσ to denote the game graph obtained from G by removing all
the edges (v, w), such that v ∈ MEven (v ∈ MOdd) and σ(v) �= w; we write Eσ

for the set of edges of Gσ . If σ is a strategy for player Even and τ is a strategy
for player Odd then we write Gστ for (Gσ)τ ; we write Eστ for its set of edges.

Note that if σ is a strategy for player Even and τ is a strategy for player
Odd then for every vertex v, there is a unique play Pστ (v) starting from v and
consistent with both σ and τ . We say that a strategy σ for player Even is a
winning strategy from a vertex v if for every strategy τ for player Odd, the
unique play Pστ (v) starting from v and consistent with both σ and τ is winning
for player Even. A strategy σ is a winning strategy from a set of vertices W if
it is winning from every vertex in W . Winning strategies for player Odd are
defined analogously.

Remark. In literature on parity games (see for example [Tho95, Zie98, Jur98])
a different definition of a winning strategy is used; here we call it “a strategy
winning against arbitrary strategies.” We say that a strategy σ for player Even
(Odd) is a strategy winning against arbitrary strategies from a vertex v if every
play starting from v and consistent with σ is winning for player Even (Odd).
We argue that the two definitions are equivalent for parity games.

Proposition 5.1 A strategy σ for player Even (Odd) is a winning strategy from
a vertex v if and only if σ is a strategy winning against arbitrary strategies
from v.

Proof. The “if” part is obvious.
We prove the “only if” part for player Even; the proof for player Odd is

analogous. Suppose that σ is a winning strategy for player Even from v. Then
the biggest priority on every cycle in Gσ reachable from v in Gσ is even. Let P
be an infinite play consistent with σ. We argue that the biggest priority occur-
ring infinitely often on P is even. Using a simple stacking technique (see for
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example [ZP96], page 347, or [Jur98], page 122) we can decompose play P into
a finite path and an infinite number of simple cycles in Gσ . (The decomposi-
tion may be different if the game graph is infinite, but the proposition can be
proved in a very similar way also for parity games with infinite game graphs.)
Note that biggest priorities in all simple cycles in the decomposition are even
because all the cycles are cycles in Gσ reachable from v in Gσ . Hence the maxi-
mal priority occurring infinitely often in P is even, i.e., P is a winning play for
player Even. [Proposition 5.1] [Remark] �

Theorem 5.2 (Memoryless Determinacy [EJ91, Mos91])
For every parity game graph G, there is a unique partition (WEven, WOdd) of
the set of vertices of G, such that there is a winning strategy for player Even
from WEven in G∞ and a winning strategy for player Odd from WOdd in G∞.

We call sets WEven and WOdd the winning sets of player Even and player Odd,
respectively. The problem of deciding the winner in parity games is, given a par-
ity game graph and a vertex of the graph, to determine whose winning set
the vertex belongs to. By solving a parity game we mean finding the partition
(WEven, WOdd).

5.2.2 Finite cycle-domination games

For the purpose of development and reasoning about our discrete strategy im-
provement algorithm for solving parity games it is technically convenient to
reformulate a bit the standard definition of parity games outlined above. Be-
low we define finite cycle-domination games and we give a simple translation
of every parity game into an equivalent cycle-domination game.

A game graph G =
(
V, E, (M⊕, M�), (R+, R−)

)
of a cycle-domination game

consists of a directed graph (V, E), where V = {1, 2, . . . , n} for some n ∈ N, and
of two partitions (R+, R−) and (M⊕, M�) of the set of vertices V . We some-
times refer to the numbers identifying vertices as their priorities, and we use
the standard ≤ order on natural numbers to compare them.

A finite cycle-domination game Gω is a two-person finite path-forming game
played on graph G. The two players, player ⊕ and player �, play similarly
to players Even and Odd in infinite parity games by moving a token along
edges of the game graph G: player ⊕ moves the token from vertices in M⊕,
and player � moves the token from vertices in M�. The difference from infi-
nite parity games is that a play is finished as soon as the path constructed so
far by the players contains a cycle. In other words, a play in Gω is a finite path
P = 〈v0, v1, . . . , v�〉 in the game graph G, such that vi �= vj for all 1 ≤ i < j < 	,
and there is a k < 	, such that vk = v�. It follows that 〈vk, vk+1, . . . , v�〉 is the
only cycle in play P ; we write Cycle(P ) to denote this unique cycle, and we
call it the cycle of P . We define the cycle dominating value λ(P ) of play P to be
max≤

(
Cycle(P )

)
= max≤{vk, vk+1, . . . , v�}, i.e., the vertex with biggest prior-

ity in the cycle of P . We say that a play P in Gω is winning for player ⊕ if
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λ(P ) ∈ R+, otherwise λ(P ) ∈ R− and play P is winning for player �. Strate-
gies and winning strategies for both players in Gω are defined similarly as in
infinite parity games.

Given a parity game graph G =
(
V, E, p, (MEven, MOdd)

)
we construct a

cycle-domination game graph G = (V, E, (R+, R−), (M⊕, M�)
)
, such that the

games G∞ and G
ω

are equivalent in the following sense.

Proposition 5.3 A strategy σ is a winning strategy for player Even (player
Odd) from a vertex v in G∞ if and only if σ is a winning strategy for player ⊕
(player �) from v in G

ω
.

Construction of G: Let M⊕ = MEven, M� = MOdd, and

R+ =
{

v ∈ V : p(v) is even
}
, and R− =

{
v ∈ V : p(v) is odd

}
.

We introduce a total order relation ≤ on V called the relevance order. Let the
relevance order ≤ be an arbitrary total order extending the pre-order induced
by priorities, i.e., such that p(v) ≤ p(w) implies v ≤ w for all v, w ∈ V . Note
that we use the same symbol “≤” for the standard order on natural numbers
and for the relevance order; in fact we identify vertices in V with integers in the
set

{
1, 2, . . . , |V |} via the unique order-isomorphism between the total orders

(V,≤) and
({

1, 2, . . . , |V |},≤ )
.

Proof (of Proposition 5.3). The first condition, i.e., that σ is a winning strategy
for player Even (player Odd) in G∞ is equivalent to saying that for every cycle
in Gσ reachable from v in Gσ , the biggest priority occurring on the cycle is
even (odd). The other condition, i.e., that σ is a winning strategy for player ⊕
(player �) in G

ω
is equivalent to saying that for every cycle in Gσ , the most

relevant vertex in the cycle belongs to R+ (R−). It follows immediately from
the construction of G that the biggest priority occurring on a cycle in Gσ is even
(odd), if and only if the most relevant vertex in the same cycle in Gσ belongs to
R+ (R−), and so we are done. [Proposition 5.3]

5.3 Generic strategy improvement algorithm

In order to develop a strategy improvement algorithm for cycle-domination
games we define the problem of solving cycle-domination games as an “opti-
mization problem.” Suppose we have a pre-order� on the set Strategies⊕ ⊆
(M⊕ → V ) of strategies for player ⊕, satisfying the following two postulates.

P1. There is a maximum element in the pre-order (Strategies⊕,�), i.e., there
is a strategy σ ∈ Strategies⊕, such that κ � σ for all κ ∈ Strategies⊕.

P2. If σ is a maximum element in the pre-order (Strategies⊕,�) then σ is a
winning strategy for player ⊕ from every vertex of her winning set.
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The problem of solving a cycle-domination game with respect to� is, given a cycle-
domination game, to find a strategy for player⊕which is a maximum element
in the pre-order (Strategies⊕,�).

Suppose we also have an operator Improve : Strategies⊕ → Strategies⊕,
satisfying the following two postulates:

I1. If σ is not a maximum element in the pre-order (Strategies⊕,�) then
σ � Improve(σ) and Improve(σ) �� σ.

I2. If σ is a maximum element in the pre-order (Strategies⊕,�) then we
have Improve(σ) = σ.

A generic strategy improvement algorithm is the following procedure.

Strategy improvement algorithm
pick a strategy σ for player ⊕
while σ �= Improve(σ) do σ := Improve(σ)

Note that postulate I1. guarantees that the algorithm terminates, because there
are only finitely many strategies for player ⊕. Postulate I2. implies that when
the algorithm terminates then the strategy σ is a maximum element in the pre-
order (Strategies⊕,�). Altogether, we get the following.

Theorem 5.4
If a pre-order (Strategies⊕,�) satisfies postulates P1. and P2., and an Improve
operator satisfies postulates I1. and I2. then strategy improvement algorithm is
a correct algorithm for solving cycle-domination games with respect to �.

5.4 Discrete strategy improvement algorithm

In what follows we give a particular proposal for a pre-order (Strategies⊕,�)
satisfying postulates P1. and P2., and an Improveoperator satisfying postulates
I1. and I2. These definitions are based on discrete valuations assigned to strate-
gies and hence give rise to a purely discrete strategy improvement algorithm
for solving cycle-domination games.

5.4.1 Play values

For every w ∈ V , we define V>w = { v ∈ V : v > w }, and V<w = { v ∈ V :
v < w }.

Let P = 〈v1, v2, . . . , v�〉 be a play, and let vk = λ(P ), i.e., the cycle value of P
is the k-th element of P . Let Prefix(P ) = {v1, v2, . . . , vk−1}, i.e., Prefix(P ) is
the set of vertices in play P occurring before the loop value of P . We define the
primary path value π(P ) of play P to be Prefix(P ) ∩ V>λ(P ), i.e., the set of ver-
tices occurring in P with priorities bigger than λ(P ). We define the secondary
path value #(P ) of play P to be

∣∣Prefix(P )|, i.e., the length of the path from the
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initial vertex of P to λ(P ). The path value of play P is defined to be the ordered
pair

(
π(P ), #(P )

) ∈ ℘(V ) × N. The play value Θ(P ) of play P is defined to be

the ordered pair
(
λ(P ),

(
π(P ), #(P )

)) ∈ V ×(
℘(V )×N

)
. We write PlayValues

to denote the image of the function Θ : Plays→ V × (
℘(V )× N

)
. Note that

PlayValues ⊆ { (
v, (B, k)

)
: B ⊆ V>v

}
. (5.1)

5.4.2 Linear order � on PlayValues

For all v ∈ V , we define

Reward(v) =

{
−v if v ∈ R−,
v if v ∈ R+.

For all v, w ∈ V , we define v � w to hold if and only if Reward(v) ≤ Reward(w).
We write v ≺ w if v � w and v �= w. Note that � is a linear order on V , and
m ≺ p for all m ∈ R− and p ∈ R+.

For B, C ∈ ℘(V ), such that B �= C, we define

MaxDiff(B, C) = max≤(
(B \ C) ∪ (C \B)

)
.

We define B ≺ C to hold if and only if either

• MaxDiff(B, C) ∈ (B \ C) ∩R−, or

• MaxDiff(B, C) ∈ (C \B) ∩R+.

We write B � C if B ≺ C or B = C. For 	 ∈ V , we write B �� C if B ∩ V>� �
C ∩ V>�. We write B =� C if B �� C and C �� B. We write B ≺� C if B �� C
and C ��� B.

For all 	 ∈ V , and (B, k), (B′, k′) ∈ ℘(V )×N, we define (B, k) �� (B′, k′) to
hold if and only if either

• B ≺� B′, or

• B =� B′ and either

– 	 ∈ R− and k ≤ k′, or

– 	 ∈ R+ and k′ ≤ k.

We write (B, k) �� (B′, k′) if (B, k) �� (B′, k′) and (B′, k′) ��� (B, k).
For all

(
	, (B, k)

)
,
(
	′, (B′, k′)

) ∈ V × (
℘(V ) × N

)
, we define

(
	, (B, k)

)
�(

	′, (B′, k′)
)

to hold if and only if either

• 	 ≺ 	′, or

• 	 = 	′ and (B, k) �� (B′, k′).
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For ξ, ξ′ ∈ V × (
℘(V )× N

)
, we write ξ � ξ′ if ξ � ξ′ and ξ′ �� ξ.

Note that (5.1) guarantees that � is a linear order on PlayValues. It is a
linear pre-order on V × (

℘(V )× N
)
.

Example. Note that ξ1 =
(
3, {1}, 2)

and ξ2 = (3, {2}, 2) are not play values,
because {1} �⊆ V>3 and {2} �⊆ V>3, respectively. We have ξ1 � ξ2 and ξ2 � ξ1,
even though ξ1 �= ξ2. [Example] �

5.4.3 Pre-order � on Strategies⊕
We write Valuations to denote the set (V → PlayValues) of functions as-
signing a play value to every vertex of the game graph. We extend the � or-
der to a partial order on Valuations by defining it point-wise, i.e., for Ξ, Ξ′ ∈
Valuations we define Ξ � Ξ′ to hold if Ξ(v) � Ξ′(v) for all v ∈ V . We write
Ξ � Ξ′ if Ξ � Ξ′ and Ξ �= Ξ′.

Valuation Ωσ . For every strategy σ ∈ Strategies⊕ we define Ωσ ∈ Valuations
in the following way:

Ωσ(v) = min�{
Θ(P ) : P ∈ Playsσ(v)

}
,

where Playsσ(v) is the set of plays starting from vertex v and consistent with σ.
Finally, for σ, σ′ ∈ Strategies⊕ we define σ � σ′ to hold if and only if
Ωσ � Ωσ′ . We write σ � σ′ if Ωσ � Ωσ′ .

5.4.4 An Improve operator

We say that a set I ⊆ E is unambiguous if (v, w) ∈ I and (v, u) ∈ I imply
that w = u. For every unambiguous set of edges I , we define an operator
SwitchI : Strategies⊕ → Strategies⊕ as follows:

[
SwitchI(σ)

]
(v) =

{
w if (v, w) ∈ I for some w ∈ V,

σ(v) otherwise.

We say that an edge (v, w) ∈ E is an improvement for a strategy σ if

Ωσ

(
σ(v)

)
� Ωσ(w). (5.2)

We define a (non-deterministic) operator Improve : Strategies⊕ → Strategies⊕
as follows:

Improve(σ) =

{
SwitchI(σ) for some set I �= ∅ of improvements for σ,

σ if there are no improvements for σ.

Let I1, I2, . . . , It ⊆ E, and let σ be a strategy for player ⊕. Define σ0 = σ, and
σk = SwitchIk

(σk−1) for k > 0. We say that P = 〈I1, I2, . . . , It〉 is a strategy
improvement policy for σ if:
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• for all k ≤ t, we have that Ik �= ∅ is an unambiguous set of improvements
for σk−1, and

• there are no improvements for σt.

5.4.5 A few technical definitions

Pre-orders �� onM(V ) × N. For technical reasons, for every 	 ∈ V , we extend
the pre-order �� on ℘(V )×N toM(V )×N, whereM(V ) is the set of multi-sets
of elements of V . The definitions of ��, and �� are the same as for ℘(V ) × N;
the only difference is that MaxDiff for B, C ∈ M(V ) is defined by

MaxDiff(B, C) = max≤(
(B \M C) ∪ (C \M B)

)
,

where \M is the multiset difference, and B ≺ C is defined to holds if and only
if either

• MaxDiff(B, C) ∈ (B \M C) ∩R−, or

• MaxDiff(B, C) ∈ (C \M B) ∩R+.

Example. If 3 ∈ R− then we have {1, 3, 3} � {1, 2, 3} because

MaxDiff
({1, 3, 3}, {1, 2, 3}) = 3

and 3 ∈ ({1, 3, 3} \M {1, 2, 3})∩R−. [Example] �

Pre-orders �̃� onM(V ) × N. We define the following weakening of the �� pre-
order. For 	 ∈ V and (B, k), (B′, k′) ∈M(V )× N, we define (B, k)�̃�(B′, k′) to
hold if and only if B �� B′. We write (B, k) ∼=� (B′, k′) if (B, k)�̃�(B′, k′) and
(B′, k′)�̃�(B, k). Note that �̃� is a pre-order onM(V )×N, and that �̃� is coarser
than ��, i.e., (B, k) �� (B′, k′) implies (B, k)�̃�(B′, k′). Note, for example, that
if 2 ∈ R+ then we have

({2, 3}, 1) ∼=2

({1, 3}, 2)
, but

({2, 3}, 1) ��2

({1, 3}, 2)
.

Operation � onM(V )×N. For (B, k), (B′, k′) ∈M(V )×N, we define (B, k) �
(B′, k′) =

(
B ∪M B′, k + k′), where ∪M is the multi-set union. We also use

the following shorthand: if C ∈ ℘(V ) then (B, k) � C is defined to be equal to
(B, k) �

(
C, |C|), i.e., we have that (B, k) � C =

(
B ∪M C, k + |C|). Moreover,

if v ∈ V then we often write (B, k) � v instead of (B, k) � {v}. In other words,
we have that (B, k) � v = (B ∪M {v}, k + 1).

5.5 Correctness of the algorithm

In order to prove correctness of our discrete strategy improvement algorithm,
i.e., to establish Theorem 5.4, it suffices to argue that the definitions of subsec-
tion 5.4 satisfy postulates P1., P2., I1., and I2.
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5.5.1 Valuation Ωσ and shortest paths

Let Ωσ = (Λσ, Πσ) : V → V × (
℘(V ) × N). We establish the following charac-

terization of Ωσ.

1. Let Tσ = { t ∈ V : there is a cycle C in Gσ , such that max≤(C) = t }.
Then for all v ∈ V , we have that

Λσ(v) = min�{ t ∈ Tσ : there is a path from v to t in Gσ }. (5.3)

2. For v, t ∈ V , we define Pathσ(v, t) to be the set of sets of vertices S ∈
℘(V ), such that S ∪ {t} is the set of vertices occurring on a (simple) path
from v to t in Gσ . Let v ∈ V and let 	 = Λσ(v). Then we have

Πσ(v) = min��

{ (
S ∩ V>�, |S|

)
: S ∈ Pathσ(v, 	)

}
. (5.4)

Clause 1. is straightforward. Note that for all (v, w) ∈ Eσ we have

Λσ(v) � Λσ(w). (5.5)

We argue that clause 2. holds. Let P ∈ Playsσ(v), such that Θ(P ) = Ωσ(v).
Let R = Prefix(P ) and let C = Cycle(P ). Then Λσ(v) = λ(P ) and

Πσ(v) =
(
π(P ), #(P )

)
=

(
(R ∪ C) ∩ V>�, |R|

)
,

i.e., Πσ(v) =
(
R ∩ V>�, |R|

)
; the last equality holds because max≤(C) = λ(P ).

Therefore, we have that

Πσ(v) = min��

{ (
π(P ), #(P )

)
: P ∈ Playsσ(v) and λ(P ) = 	

}
= min��

{ (
S ∩ V>�, |S|

)
: S ∈ Pathσ(v, 	)

}
.

As a result of the above we get a characterization of Πσ(v) as a solution of
the following shortest paths problem instance. For 	 ∈ Tσ consider the sub-
graph G�

σ = (V �, E�
σ) of Gσ induced by V � = { v ∈ V : Λσ(v) = 	 }. With every

edge (v, w) ∈ E�
σ we associate the weight

({v}∩V>�, 1
) ∈M(V )×N. The set of

weights of paths in G�
σ isM(V )×N with � as the operation of adding weights.

Shortest paths are taken with respect to the �� pre-order onM(V )× N.

Remark. Section 26.4 of the book by Cormen et al. [CLR90] describes an alge-
braic structure called a closed semi-ring that allows to define a shortest paths
problem and devise algorithms for finding shortest paths. We leave it as an
exercise to the reader to verify that for every 	 ∈ V , the setM(V )× N with the
extension operator � and the summation operator max�� forms a closed semi-ring.

[Remark] �

Note that from Λσ(v) = 	 for all v ∈ V �, it follows that all cycles in G�
σ have

“non-negative” weight, i.e., they have weight ��-bigger than (∅, 0) if 	 ∈ R−,
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and ��-bigger than (∅, +∞) if 	 ∈ R+. Therefore, shortest paths to 	 exist
from each vertex v ∈ V �, they are simple paths, and Πσ(v) is the weight of the
shortest path from v to 	 in G�

σ .
Observe, that for v �= 	, the characterization of Πσ(v) as the weight of a

shortest path from v to 	 implies, that if w ∈ V � is a successor of v on a shortest
path from v to 	 in G�

σ then

Πσ(v) =� Πσ(w) � v, (5.6)

and for all (v, u) ∈ E�
σ we have

Πσ(v) �� Πσ(u) � v. (5.7)

Note that we have
Πσ(	) = (∅, 0). (5.8)

Moreover, observe that by definition of 	 ∈ Tσ , there is a cycle C in G�
σ , such

that max≤(C) = 	, and there are no cycles with “negative” weight. Therefore,
if w is the successor of 	 with a shortest path to 	 then Πσ(w) = (∅, k) for some
k ∈ N, and hence we have

Πσ(	) ∼=� Πσ(w) � 	, (5.9)

and for all (	, u) ∈ E�
σ we have

Πσ(	) �̃� Πσ(u) � 	. (5.10)

5.5.2 Locally progressive valuations

Strategy σ for player �. Let σ be a strategy for player ⊕. We define a strategy σ
for player � in the following way. For every v ∈M�, we set:

σ(v) = w, such that Ωσ(w) � Ωσ(u) for all u ∈ succ(v),

i.e., σ(v) is defined to be a successor of v which minimizes the value of Ωσ

with respect to �. Note that from the characterization of Ωσ from the previous
subsection it follows that for all (v, w) ∈ Eσσ , we have Λσ(v) = Λσ(w). More-
over, claims (5.6) and (5.9) hold, respectively, for all (v, w) ∈ Eσσ , depending
on whether Λσ(v) �= v or Λσ(v) = v, respectively. These observations together
with claim (5.8) motivate the following notion of a locally progressive valua-
tion.

Locally progressive valuation. Let Ξ = (Λ, Π) : V → V ×(
℘(V )×N

)
be a valuation.

We define Prog(Ξ, e) to hold for e = (v, w) ∈ E, if and only if:

1. Λ(v) = Λ(w), and

2. if Λ(v) �= v then Π(v) =Λ(v) Π(w) � v, and

3. if Λ(v) = v then Π(v) ∼=Λ(v) Π(w) � v and Π(v) = (∅, 0).
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We say that Ξ is a locally progressive valuation for strategies σ and τ if and only
if Prog(Ξ, e) holds, for all e ∈ Eστ .

The following fact follows immediately from the definition of strategy σ
and from (5.3), (5.6), (5.8), and (5.9).

Proposition 5.5 Valuation Ωσ is a locally progressive valuation for σ and σ.

Valuation Θστ . Note that if σ and τ are strategies for player⊕ and for player�,
respectively, then for every vertex v ∈ V , there is a unique play Pστ (v) starting
from v and consistent with σ and τ . We write Θστ for a valuation defined by
Θστ (v) = Θ

(
Pστ (v)

)
.

In the following lemma we establish that a locally progressive valuation
for σ and τ is a local characterization of the valuation Θστ .

Lemma 5.6 A valuation Ξ is a locally progressive valuation for σ and τ if and
only if Ξ = Θστ .

Proof. Let v ∈ V and let Pστ (v) = 〈v1, v2, . . . , v�〉 be the unique play starting
from v and consistent with σ and τ . It is easy to verify that Θστ is a locally
progressive valuation for σ and τ . We show that if Ξ is a locally progressive
valuation for σ and τ then Ξ(v) = Θ

(
Pστ (v)

)
.

Let C = {vk, vk+1, . . . , v�−1} be the cycle of Pστ (v), i.e., let vk = v� and k < 	.
Let Ξ = (Λ, Π), where Λ : V → V and Π : V → (M(V ) × N

)
. By definition of

a locally progressive valuation we get that Λ(v1) = Λ(v2) = · · · = Λ(v�). Let
	 = Λ(v). We claim that λ

(
Pστ (v)

)
= Λ(v), i.e., that max≤(C) = 	.

By definition of a locally progressive valuation we get that Π(vi) ∼=� Π(vi+1)�
vi for all i ∈ {k, k + 1, . . . , 	− 1}. This implies that

Π(vk) ∼=� Π(v�) � {vk, vk+1, . . . , v�−1} = Π(vk) � C.

It follows that max≤(C) ≤ 	. Note that max≤(C) < 	 implies that Π(vi) =�

Π(vi+1) � vi for all i ∈ {k, k + 1, . . . , 	 − 1}, i.e., that Π(vk) =� Π(vk) � C
holds. This, however, is impossible because |C| > 0. Therefore, we get that
max≤(C) = 	.

Now we argue that Π(v) is equal to the path value of Pστ (v). By definition
of a locally progressive valuation we get that Π(vi) =� Π(vi+1) � vi for all
i ∈ {1, 2, . . . , k − 1}, and that Π(vk) = (∅, 0). Therefore, we get that

Π(v) =� (∅, 0) � Prefix
(
Pστ (v)

)
=�

(
π
(
Pστ (v)

)
, #

(
Pστ (v)

))
.

[Lemma 5.6]

A best counter-strategy against σ. Note that by Proposition 5.5, an immediate
corollary of Lemma 5.6 is that

Ωσ = Θσσ. (5.11)

Hence by definition of Ωσ we get that Θσσ � Θστ , for all strategies τ for
player �. In other words, σ is a best counter-strategy against σ.
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5.5.3 Locally under-progressive valuations

Motivated by conditions (5.5), (5.7), (5.8), and (5.10) satisfied by Ωσ , we intro-
duce a relaxation of the notion of a locally progressive valuation called a locally
under-progressive valuation.

Locally under-progressive valuation. Let Ξ = (Λ, Π) : V → V × (
℘(V ) × N

)
be a

valuation. We define UnderProg(Ξ, e) to hold for e = (v, w) ∈ E, if and only if:

1. Λ(v) � Λ(w), and

if Λ(v) = Λ(w) then:

2. if Λ(v) �= v then Π(v) �Λ(v) Π(w) � v, and

3. if Λ(v) = v then Π(v) �̃Λ(v) Π(w) � v and Π(v) = (∅, 0).

We say that Ξ is a locally under-progressive valuation for strategy σ if and only if
UnderProg(Ξ, e) holds, for all e ∈ Eσ .

The following fact follows immediately from (5.5), (5.7), (5.8), and (5.10).

Proposition 5.7 Valuation Ωσ is a locally under-progressive valuation for strat-
egy σ.

In the following proposition we collect a couple of simple facts about locally
under-progressive valuations and relations � and �̃�.

Proposition 5.8 Let Ξ = (Λ, Π) : V → V × (
℘(V )× N

)
be a valuation.

1. If UnderProg
(
Ξ, (v, w)

)
holds and Λ(v) = Λ(w) then Π(v) �̃Λ(v) Π(w) � v.

2. If UnderProg
(
Ξ, (v, w)

)
holds and Ξ(w) � Ξ(u) then UnderProg

(
Ξ, (v, u)

)
holds.

In the next lemma we establish that a locally under-progressive valuation Ξ
for a strategy σ is a witness that all plays starting from a vertex v and consistent
with σ, have value at least as big as Ξ(v) with respect to the � order.

Lemma 5.9 If Ξ is a locally under-progressive valuation for a strategy σ then
Ξ � Ωσ .

Before we prove Lemma 5.9 we collect the following important properties of
relations �� and �̃�.

Proposition 5.10 Let 	 ∈ V , and B, C ∈M(V ), and k ∈ N.

1. If max≤(C) ≥ 	 then

max≤(C) � 	 if and only if (B, k) �̃� (B, k) � C.
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2. If max≤(C) �= 	 then

max≤(C) � 	 if and only if (B, k) �� (B, k) � C.

Proof. Assume first that max≤(C) > 	. Then (B, k) �̃� (B, k) � C holds if and
only if B ≺� B ∪M C holds, if and only if max≤(C) ∈ R+ holds, if and only if
max≤(C) � 	 holds. Observe also, that (B, k) �� (B, k) � C holds if and only
if B ≺� B ∪M C holds, if and only if (B, k) �̃� (B, k) � C holds.

Assume that max≤(C) = 	. Then (B, k) �̃� (B, k) � C holds because B =�

B ∪M C; and max≤(C) � 	 obviously holds.
Assume finally that max≤(C) < 	. Then B =� B ∪M C and therefore by

definition of �� we have that (B, k) �� (B, k) � C holds if and only if 	 ∈ R−,
if and only if max≤(C) � 	. [Proposition 5.10]

Proof (of Lemma 5.9). Let v ∈ V , and let P be a play starting from v and
consistent with σ. It suffices to show that Ξ(v) � Θ(P ).

Let Ξ = (Λ, Π) : V → V × (M(V ) × N
)
. First we show that Λ(v) � λ(P ).

From definition of a locally under-progressive valuation it follows that the val-
ues of Λ on vertices in play P are non-decreasing with respect to � order, so
they are all equal on the cycle Cycle(P ) of P . Hence, if we define 	 to be the
value of Λ on vertices in Cycle(P ) then we have Λ(v) � 	. Therefore, it suffices
to prove that 	 � λ(P ).

If 	 �∈ Cycle(P ) then applying the definition of a locally under-progressive
valuation around the cycle of P we get that

Π(w) �� Π(w) � Cycle(P ),

for some vertex w ∈ Cycle(P ). Note that from 	 �∈ Cycle(P ) it follows that
λ(P ) �= 	, and therefore clause 2. of Proposition 5.10, with C = Cycle(P ),
implies that λ(P ) = max≤ (

Cycle(P )
) � 	.

If 	 ∈ Cycle(P ) then applying the definition of a locally under-progressive
valuation around the cycle of P , together with clause 1. of Proposition 5.8, we
get that

Π(w) �̃� Π(w) � Cycle(P ),

for some vertex w ∈ Cycle(P ). Note that from 	 ∈ Cycle(P ) it follows that
λ(P ) ≥ 	, and therefore clause 1. of Proposition 5.10 implies that λ(P ) =
max≤

(
Cycle(P )

) � 	.
If Λ(v) ≺ λ(P ) then we have Ξ(v) � Θ(P ) and we are done. Assume then

that 	 = Λ(v) = λ(P ). We show that in this case Π(v) ��

(
π(P ), #(P )

)
, which

immediately implies that Ξ(v) � Θ(P ). By applying the definition of a locally
under-progressive valuation along Prefix(P ) we get

Π(v) �� Π(	) � Prefix(P ),

and we also have Π(	) = (∅, 0) because Λ(	) = 	, and hence

Π(v) ��

(
Prefix(P ),

∣∣Prefix(P )
∣∣) =�

(
π(P ), #(P )

)
.

[Lemma 5.9]
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5.5.4 Strategy improvement

Lemma 5.11 For every strategy σ for player ⊕, we have that σ � Improve(σ).

Proof. It suffices to show that Ωσ is a locally under-progressive valuation for
Improve(σ). Then by Lemma 5.9 we get that Ωσ � ΩImprove(σ), i.e., that σ �
Improve(σ).

We argue that Ωσ is a locally under-progressive valuation for Improve(σ).
By Proposition 5.7 we have that Ωσ is a locally under-progressive valuation
for σ. Therefore, it suffices to check that for all v ∈M⊕, the predicate UnderProg
holds for Ωσ along the edge

(
v, [Improve(σ)](v)

)
. Note that by definition of the

Improve operator we have

Ωσ

(
[Improve(σ)](v)

)
� Ωσ

(
σ(v)

)
,

for all v ∈M⊕. Note that the UnderProg predicate holds for Ωσ along the edges(
v, σ(v)

)
, for all v ∈ M⊕, because Ωσ is a locally progressive valuation for σ. It

then follows from clause 2. of Proposition 5.8 that the UnderProg predicate for
Ωσ holds along every edge

(
v, [Improve(σ)](v)

)
, for all v ∈M⊕. [Lemma 5.11]

5.5.5 Maximum strategies

Lemma 5.12 For every strategy σ for player ⊕, the following are equivalent:

1. strategy σ is not a maximum element in (Strategies⊕,�),

2. Improve(σ) �= σ,

3. Improve(σ) �� σ.

Locally over-progressive valuation. Let Ξ = (Λ, Π) : V → V × (
℘(V ) × N

)
be a

valuation. We define OverProg(Ξ, e) to hold for e = (v, w) ∈ E if and only if:

1. Λ(v) � Λ(w), and

if Λ(v) = Λ(w) then:

2. if Λ(v) �= v then Π(v) �Λ(v) Π(w) � v, and

3. if Λ(v) = v then Π(v) �̃Λ(v) Π(w) � v and Π(v) = (∅, 0).

We say that Ξ is a locally over-progressive valuation for strategy τ for player � if
and only if OverProg(Ξ, e) holds for all e ∈ Eτ .

Valuation �σ. For every strategy τ ∈ Strategies� we define �τ ∈ Valuations
in the following way:

�τ (v) = max�{
Θ(P ) : P ∈ Playsτ (v)

}
,

where Playsτ (v) is the set of plays starting from vertex v and consistent with τ .
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In the following lemma we show that a locally over-progressive valuation
Ξ for a strategy τ is a witness that all plays starting from vertex v and consis-
tent with τ have value at most as big as Ξ(v) with respect to the � order on
valuations.

Lemma 5.13 If Ξ is a locally over-progressive valuation for a strategy τ then
�τ � Ξ.

The above lemma is proved similarly to Lemma 5.9, using the following simple
facts instead of Proposition 5.8.

Proposition 5.14 Let Ξ = (Λ, Π) : V → V × (
℘(V )× N

)
be a valuation.

1. If OverProg
(
Ξ, (v, w)

)
holds and Λ(v) = Λ(w) then Π(v) �̃Λ(v) Π(w) � v.

2. If OverProg
(
Ξ, (v, w)

)
holds and Ξ(w) � Ξ(u) then OverProg

(
Ξ, (v, u)

)
holds.

Proof (of Lemma 5.12).
1 ⇒ 2. We claim that it suffices to argue that if Improve(σ) = σ then Ωσ is a
locally over-progressive valuation for σ. By Lemma 5.13 we then have

�σ � Ωσ. (5.12)

This, however, implies that κ � σ for all strategies κ for player ⊕. It is so
because Ωκ � �τ holds for all strategies κ and τ , hence in particular Ωκ � �σ

holds, so altogether we get Ωκ � �σ � Ωσ .
We argue that Ωσ is a locally over-progressive valuation for σ. By Proposi-

tion 5.5 we know that Prog predicate for Ωσ holds along all edges (v, w) ∈ E,
such that σ(v) = w or σ(v) = w. Therefore, it suffices to check that the OverProg
predicate for Ωσ holds along all edges (v, w) ∈ E, such that v ∈ M⊕. Note that
from Improve(σ) = σ it follows that

Ωσ

(
σ(v)

)
� Ωσ(w),

for all v ∈ M⊕ and w ∈ succ(v), and hence by clause 2. of Proposition 5.14 we
get that OverProg

(
Ωσ, (v, w)

)
holds.

2 ⇒ 3. Note that if Improve(σ) �= σ then for some v ∈ M⊕, the predicate
Prog does not hold for Ωσ along the edge

(
v, [Improve(σ)](v)

)
. Therefore, by

Lemma 5.6 we have that Ωσ �= Θ
Improve(σ)Improve(σ), i.e., by (5.11) we have that

Ωσ �= ΩImprove(σ). Recall that � is a partial order on the set of valuations, hence
it must be the case that ΩImprove(σ) �� Ωσ because by Lemma 5.11 we have Ωσ �
ΩImprove(σ).

3⇒ 1. Straightforward. [Lemma 5.12]
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5.5.6 Proving the postulates P1., P2., I1., and I2.

P1. Lemmas 5.11 and 5.12 imply that after a finite number of iterations of the
strategy improvement algorithm it must be the case that Improve(σ) = σ.
By Lemma 5.12 such a strategy σ is a maximum element in the pre-order
(Strategies⊕,�).

P2. Let σ be a maximum element in (Strategies⊕,�). Then from Lemma 5.12
it follows that Improve(σ) = σ. By definition of Ωσ, strategy σ is a win-
ning strategy for player ⊕ from the set

W σ
⊕ =

{
v ∈ V : Ωσ(v) =

(
	, (B, k)

)
and 	 ∈ R+

}
.

We claim that W σ
⊕ is the winning set for player⊕. It suffices to argue that

player � has a winning strategy from the set V \Wσ⊕. Note that

V \W σ
⊕ =

{
v ∈ V : Ωσ(v) =

(
	, (B, k)

)
and 	 ∈ R−

}
,

and by (5.12) we have �σ � Ωσ . This means, however, that σ is a winning
strategy for player � from V \W σ

⊕.

I1. Immediate from Lemmas 5.11 and 5.12.

I2. Immediate from Lemma 5.12.

5.6 Efficient implementation

We are given a graph G = (V, E) with a linear order≤ on vertices, and a vertex
t ∈ V , such that:

for every v ∈ V , there is a path from v to t in G, (5.13)

and

for every cycle C in G, we have that max≤(C) � t. (5.14)

Every edge (v, w) ∈ E has the weight
({v}∩V>t, 1

) ∈ ℘(V>t)×N. The weights
are ordered by �t and added to each other with �. The task is for all vertices
v ∈ V , to determine (the weight of) a shortest path from v to t in G. For all
v ∈ V , let Σ(v) ⊆ ℘(V>t) be the set of vertices with priority bigger than t
occurring in a shortest path from v to t in G.

We use the following algorithm to compute the shortest paths.



5.6. EFFICIENT IMPLEMENTATION 73

Shortest paths
1. E := E \ ({t} × V

)

2. for all r ∈ V>t in ≤-descending order
3. if r ∈ R+ then
4. W :=

{
w ∈ V : there is a path from w to t in (V \ r, E)

}

5. E := E \ ((W ∪ {r}) × (V \ W )
)

6. if r ∈ R− then
7. U :=

{
u ∈ V : there is a path from u to r in (V, E)

}

8. E := E \ ((U \ {r}) × (V \ U)
)

9. if t ∈ R+ then find longest distances from every vertex to t
10.if t ∈ R− then find shortest distances from every vertex to t

The algorithm works as follows. First we remove edges going out of t since
we are only interested in paths from all vertices to t (line 1.). Then in every
iteration of the for all loop (lines 2.–8.) we remove edges that cannot possibly
belong to a shortest path from a vertex v to t. After the for all loop has been
executed, from every vertex there are only paths to t containing the same set
of vertices in V>t as a shortest path. Therefore, in order to find shortest paths
from every vertex to t it suffices to find longest distances to t if t ∈ R+, and
shortest distances to t if r ∈ R− (lines 9. or 10.). Finding longest distances in
the case when t ∈ R+ can be done efficiently because in this case the graph is
acyclic.

Let us analyze the first iteration of the for all loop, i.e., let r = max≤(V ) and
let r > t. There are two cases to consider: r ∈ R+ and r ∈ R−.

Suppose that r ∈ R+. Then for all v ∈ V , by the definition of �t and by
the maximality of r with respect to ≤, a shortest path from v to t should avoid
visiting r if possible. More formally, for every v ∈ V , we have that:

r �∈ Σ(v) if and only if there is a path from v to t in G in which
r does not occur.

(5.15)

Therefore, the set W computed in line 4. contains all vertices v ∈ V , such that r
does not occur on a shortest path from v to t. On the other hand, the set V \W
consists of vertices from which a visit to r is “unavoidable” on a shortest path
to t. It is then not hard to see that by removing in line 5. all the edges leading
from W to V \W we only disconnect paths which cannot be shortest paths to t.
Let G′ be the graph after removing edges in line 5. Therefore, for every v ∈ V ,
we have that:

G′ contains a shortest path from v to t in G. (5.16)

Moreover, after performing the deletion of edges in line 5., no path from W to t
contains r, and all the paths from V \W to t contain r. In other words, we have
that:

if r ∈ Σ(v) then r occurs on every path from v to t in G′, (5.17)

and

if r �∈ Σ(v) then r does not occur on any path from v to t in G′. (5.18)
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Observe also, that by performing the deletion in line 5. we disconnect all cycles
containing r, because then r can only be reached from vertices in V \W , and
only vertices in W are reachable form r, i.e., we have:

there is no cycle in G′ containing r. (5.19)

We omit considering the other case, i.e., r = max≤(V>t) ∈ R−. Instead,
motivated by claims (5.16), (5.17), (5.18), and (5.19), established above for r =
max≤(V>t) ∈ R+, we argue that the following invariant is maintained by all
iterations of the for all loop.

For x ∈ V>t, let G(x) be the graph after the body of for all loop has been
performed for all r ∈ V>t, such that r > x.

Proposition 5.15 Let r ∈ V>t. For all s ∈ V>t, such that s > r, and for all v ∈ V ,
we have:

1. G(r) contains a shortest path from v to t in G,

2. if s ∈ Σ(v) then s occurs on every path from v to t in G(r),

3. if s �∈ Σ(v) then s does not occur on any path from v to t in G(r),

4. there is no cycle in G(r) containing s.

Proof. We prove the proposition by induction on r. Claims 1.–4. hold trivially
for r = max≤(V ). Assume as the induction hypothesis that clauses 1.–4. hold
for some r ∈ V>t. We show then, that clauses 1.–4. hold for r′ = max≤(V<r), by
analyzing what happens when the body of the for all loop is performed. We
consider two cases.

• r ∈ R+.

Note that by clauses 1.-3. of the induction hypothesis, and by definition
of �t, we have:

r ∈ Σ(v) if and only if r occurs on every path from v to t in G(r).

With this analogue of claim (5.15), the arguments needed to prove clauses
1.–4. for r′ are the same as the ones we have used to establish claims (5.16)–
(5.19).

• r ∈ R−.

Note that by clauses 1.-3. of the induction hypothesis, and by definition
of �t, we have:

r ∈ Σ(v) if and only if r occurs on some path from v to t in G(r).
(5.20)

We argue that:

there is no cycle in G(r) containing r. (5.21)
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Suppose the contrary is the case, i.e., that there is a cycle C containing
r in G(r). Then by clause 4. of the induction hypothesis we have that
max≤(C) = r, which together with r ∈ R− implies that max≤(C) ≺ t, a
contradiction with (5.14). Note that (5.21) establishes clause 4. for r ′.

A corollary of (5.21) is that if r ∈ Σ(v) then all paths from v to t and
containing r are simple paths. Moreover, by clause 1. of the induction
hypothesis there is a path from r to t in G(r), and hence, claim (5.20)
implies the following:

r ∈ Σ(v) if and only if there is a path from v to r in G(r). (5.22)

Therefore, the set U computed in line 7. contains all vertices v ∈ V , such
that r occurs on a shortest path from v to t, and the set V \ U contains
all vertices from which a visit to r is not possible on a shortest path to t.
Observe, that by removing edges leading from U \ {r} to V \ U we only
disconnect paths which cannot be shortest paths to t. This establishes
clause 1. for r′.

Note also, that by definition of U no path from V \ U to t contains r,
and after deletions of edges in line 8. we have that all paths from U to t
contain r. This establishes clauses 3. and 2. for r′. [Proposition 5.15]

Theorem 5.16
An improvement step of our discrete strategy improvement algorithm can be
performed in time O(n ·m).

5.7 Time complexity

In the analysis of the running time of a strategy improvement algorithm there
are two parameters of major interest:

1. the time needed to perform a single strategy improvement step,

2. the number of strategy improvement steps needed.

By Theorem 5.16 our discrete strategy improvement algorithm achieves a sat-
isfactory bound on the former parameter.

A satisfactory analysis of the latter parameter is missing in our work. De-
spite the long history of strategy improvement algorithms for stochastic and
payoff games [HK66, Con93, Pur95] very little is known about the number
of strategy improvement steps needed. The best upper bounds are exponen-
tial [Con93, Pur95] but to our best knowledge no examples are known which
require more than linear number of improvement steps. We believe that our
purely discrete description of strategy improvement gives new insights into
the behaviour of the algorithm in the special case of parity games. The two long
standing questions: whether there is a polynomial time algorithm for solving
parity games [EJS93], and, more concretely, whether a strategy improvement
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algorithm for parity games terminates in polynomial time [Con93, Pur95], re-
main open. Below we discuss some disjoint observations we have come up
with so far, and some questions which we believe are worth pursuing.

Proposition 5.17 For every initial strategy, there is a strategy improvement
policy of length at most n. Moreover, there is such a policy switching exactly
one edge in every improvement step.

Proof. Let us fix a strategy κ which is a maximum element in the partial or-
der (Strategies⊕,�). Note that it suffices to show that for every strategy σ
which is not a maximum element in (Strategies⊕,�), there is an improve-
ment (v, w) ∈ E for σ, such that w = κ(v).

Claim 5.18 If I ⊆ E contains no improvement for σ then SwitchI(σ) � σ.

We argue how the proposition follows from the claim. Suppose for the sake of
contradiction that for all v ∈ M⊕, such that σ(v) �= κ(v), we have Ωσ

(
κ(v)

)
�

Ωσ

(
σ(v)

)
. Let I =

{ (
v, κ(v)

)
: v ∈ M⊕ and σ(v) �= κ(v)

}
. Note that

SwitchI(σ) = κ. Hence by Claim 5.18 we get that κ � σ which contradicts
the assumption that κ is a maximum element in (Strategies⊕,�) and that σ
is not.

Proof (of Claim 5.18). Note that for all (v, w) ∈ I we have that

Ωσ(w) � Ωσ

(
σ(v)

)
. (5.23)

By Proposition 5.5 we have that Prog(Ωσ, e) holds for all edges e in the graph of
strategies σ and σ. From (5.23) and from clause 2. of Proposition 5.14 it follows
that OverProg(Ωσ, e) holds for all edges e in the graph of strategies SwitchI(σ)
and σ. Let σ′ = SwitchI(σ). Note that in the (one-player) game Gσ′ we have
�σ = Θσ′σ . Therefore, by applying Lemma 5.13 to Gσ′ we get that Θσ′σ � Ωσ.
Note that by definition of Ωσ′ we have that Ωσ′ � Θσ′σ , and hence we get
Ωσ′ � Ωσ which concludes the proof. [Claim 5.18] [Proposition 5.17]

This contrasts with an algorithm for solving parity games based on progress
measures [Jur00], for which there are families of examples on which every pol-
icy requires an exponential number of steps.

Melekopoglou and Condon [MC94] exhibit families of examples of sim-
ple stochastic games for which several natural strategy improvement policies
switching only one switchable vertex in every strategy improvement step have
exponential length.

Problem 5.19 Are there families of examples of parity games for which there
exist strategy improvement policies of super-polynomial length?

Examples of Melekopoglou and Condon [MC94] are Markov decision pro-
cesses, i.e., one-player simple stochastic games [Con92]. It is an open question
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whether the strategy improvement algorithm using the standard policy, i.e.,
switching all switchable vertices in every strategy improvement step, works in
polynomial time for one-player simple stochastic games [MC94]. In contrast,
our discrete strategy improvement algorithm terminates in polynomial time
for one-player parity games.

Proposition 5.20 The discrete strategy improvement algorithm terminates af-
ter O(n3) strategy improvement steps for one-player parity games.

Most algorithms for solving parity games studied in literature have roughly
O

(
(n/d)d

)
or O

(
(n/d)d/2

)
worst-case running time bounds, where d is the

number of different priorities assigned to vertices. The best upper bound we
can give at the moment for the number of strategy improvement steps needed
by our discrete strategy improvement algorithm is the trivial one, i.e., the num-
ber of different strategies for player 0, which can be 2Ω(n).

Proposition 5.21 The discrete strategy improvement algorithm terminates af-
ter

∏
v∈V0

out-deg(v) many strategy improvement steps.

There is, however, a variation of the strategy improvement algorithm for parity
games, for which the number of strategy improvement steps is bounded by
O

(
(n/d)d

)
.

Proposition 5.22 There is a strategy improvement algorithm for parity games
for which all policies have length O

(
(n/d)d

)
, and every strategy improvement

step can be performed in nO(1) time.

Note that in every strategy improvement step the current valuation Ωσ

strictly improves with respect to � in at least one vertex. We say that a strategy
improvement step is substantial if in the current valuation the loop value for
some vertex strictly improves. Observe that there can be at most O(n2) sub-
stantial strategy improvement steps. It follows that in search for superpoly-
nomial examples one has to manufacture gadgets allowing long sequences of
non-substantial strategy improvement steps.

We have collected a little experimental evidence that in practice most im-
provement steps are non-substantial. There are few interesting scalable fam-
ilies of hard examples of parity games known in literature. Using an imple-
mentation of our discrete strategy improvement algorithm by Schmitz and
Vöge [SV00] we have run some experiments on families of examples taken
from [BLV96] and from [Jur00], and on a family of examples mentioned in [Jur00]
which make Zielonka’s version [Zie98] of the McNaughton’s algorithm [McN93]
work in exponential time. For all these families only linear number of strat-
egy improvement steps were needed and, interestingly, the number of non-
substantial strategy improvement steps was in all cases constant, i.e., not de-
pendent of the size of the game graph.

We conclude with a number of questions to pursue.
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Problem 5.23 Does our discrete algorithm, with a policy switching in every
strategy improvement step a maximal set of improvements (i.e., switching all
switchable vertices), terminate in polynomial time? If not, exhibit families of
examples for which there are policies of exponential length.

Problem 5.24 Are there polynomial time computable heuristics for construct-
ing policies of polynomial length?

Problem 5.25 Define and study other partial orders on the set of strategies and
other strategy improvement operators.

Problem 5.26 Develop other algorithms than a strategy improvement algo-
rithm for solving the optimization problem of solving cycle-domination games
with respect to a partial order on the set of strategies.



Chapter 6

Hhp-bisimilarity is
undecidable

This chapter contains a revised version of [JN00]. It is joint work with Mogens
Nielsen.

Abstract. History preserving bisimilarity (hp-bisimilarity) and hereditary his-
tory preserving bisimilarity (hhp-bisimilarity) are behavioural equivalences
taking into account causal relationships between events of concurrent systems.
Their prominent feature is being preserved under action refinement, an opera-
tion important for the top-down design of concurrent systems. We show that—
unlike hp-bisimilarity—checking hhp-bisimilarity for finite labelled asynchro-
nous transition systems is not decidable, by a reduction from the halting prob-
lem of 2-counter machines. To make the proof more transparent we intro-
duce an intermediate problem of checking domino bisimilarity for origin con-
strained tiling systems, whose undecidability is interesting in its own right. We
also argue that the undecidability of hhp-bisimilarity holds for finite labelled
elementary net systems.

6.1 Introduction

The notion of behavioural equivalence that has attracted most attention in con-
currency theory is bisimilarity, originally introduced by Park [Par81] and Mil-
ner [Mil80]; concurrent programs are considered to have the same meaning if
they are bisimilar. The prominent role of bisimilarity is due to many pleasant
properties it enjoys; we mention a few of them here.

A process of checking whether two transition systems are bisimilar can be
seen as a two player game which is in fact an Ehrenfeucht-Fraı̈ssé type of game
for modal logic. More precisely, there is a winning strategy for a player who
wants to show that the systems are bisimilar if and only if the systems cannot

79
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be distinguished by the formulas of the logic; the result due to Hennessy and
Milner [HM85].

Another notable property of bisimilarity is its computational feasibility; see
for example the overview note [MS95]. Let us illustrate this on the examples
of finite transition systems and a class of infinite-state transition systems gen-
erated by context free grammars. For finite transition systems there are very
efficient polynomial time algorithms for checking bisimilarity [KS90, PT87],
in sharp contrast to PSPACE-completeness of the classical language equiva-
lence. For transition systems generated by context free grammars, while lan-
guage equivalence is undecidable, bisimilarity is decidable [CHS95], and if the
grammar has no redundant nonterminals, even in polynomial time [HJM96].
Furthermore, as the results of [GH94] indicate, bisimilarity has a very rare sta-
tus of being a decidable equivalence for context free grammars: all the other
equivalences in the linear/branching time hierarchy [Gla90] are indeed unde-
cidable. The algorithmic tractability makes bisimilarity especially attractive for
automatic verification of concurrent systems.

The essence of bisimilarity, quoting [HM85], “is that the behaviour of a pro-
gram is determined by how it communicates with an observer.” Therefore, the
notion of what can be observed of a behaviour of a system affects the notion
of bisimilarity. An abstract definition of bisimilarity for arbitrary categories of
models due to Joyal et al. [JNW96] formalizes this idea. Given a category of
models where objects are behaviours and morphisms correspond to extension
of behaviours, and given a subcategory of observable behaviours, the abstract
definition yields a notion of bisimilarity for all behaviours with respect to ob-
servable behaviours. For example, for rooted labelled transition systems, tak-
ing synchronization trees [Mil80] into which they unfold as their behaviours,
and sequences of actions as the observable behaviours, we recover the standard
strong bisimilarity of Park and Milner [JNW96].

In order to model concurrency more faithfully several models have been in-
troduced (see [WN95] for a survey) that make explicit the distinction between
events that can occur concurrently, and those that are causally related. Then
a natural choice is to replace sequences, i.e., linear orders as the observable
behaviours, by partial orders of occurrences of events with causality as the
ordering relation. For example, taking unfoldings of labelled asynchronous
transition systems into event structures as the behaviours, and labelled partial
orders as the observations, Joyal et al. [JNW96] obtained from their abstract
definition the hereditary history preserving bisimilarity (hhp-bisimilarity), in-
dependently introduced and studied by Bednarczyk [Bed91].

A similar notion of bisimilarity has been studied before, namely history pre-
serving bisimilarity (hp-bisimilarity), introduced by Rabinovich and Trakhten-
brot [RT88] and van Glabbeek and Goltz [GG89]. For the relationship between
hp- and hhp-bisimilarity see for example [Bed91, JNW96, FH99].

One of the important motivations to study partial order based equivalences
was the discovery that hp-bisimilarity has a rare status of being preserved un-
der action refinement [GG89], an operation important for the top-down design
of concurrent systems. Bednarczyk [Bed91] has extended this result to hhp-
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bisimilarity.
There is a natural logical characterization of hhp-bisimilarity checking games

as shown by Nielsen and Clausen [NC95]: they are characteristic games for an
extension of modal logic with backwards modalities, interpreted over event
structures.

Hp-bisimilarity has been shown to be decidable for 1-safe Petri nets by
Vogler [Vog91], and to be DEXP-complete by Jategaonkar, and Meyer [JM96];
let us just mention here that 1-safe Petri nets can be regarded as a proper sub-
class of finite asynchronous transition systems (see [WN95] for details), and
that decidability of hp-bisimilarity can be easily extended to all finite asyn-
chronous transition systems using the methods of [JM96].

Hhp-bisimilarity appears to be only a slight strengthening of hp-bisimilari-
ty [JNW96], and hence many attempts have been made to extend the above
mentioned algorithms to the case of hhp-bisimilarity. However, decidabil-
ity of hhp-bisimilarity has remained open, despite several attempts over the
years [NC95, NW96a, CS96, FH99]. Fröschle and Hildebrandt [FH99] have
discovered an infinite hierarchy of bisimilarity notions refining hp-bisimilarity,
and coarser than hhp-bisimilarity, such that hhp-bisimilarity is the intersection
of all the bisimilarities in the hierarchy. They have shown all these bisimi-
larities to be decidable for 1-safe Petri nets. Fröschle [Frö00] has shown hhp-
bisimilarity to be decidable for BPP-processes, a class of infinite state systems.

In this paper, we finally settle the question of decidability of hhp-bisimilarity
by showing it to be undecidable for finite labelled elementary net systems. In
order to make the proof more transparent we first introduce an intermediate
problem of domino bisimilarity and show its undecidability by a direct reduc-
tion from the halting problem of 2-counter machines.

6.2 Hereditary history preserving bisimilarity

Definition 6.1 (Labelled asynchronous transition system)
A labelled asynchronous transition system is a tuple A = (S, sini, E,→, L, λ, I),
where S is its set of states, sini ∈ S is the initial state, E is the set of events,
→ ⊆ S × E × S is the set of transitions, L is the set of labels, and λ : E → L is
the labelling function, and I ⊆ E2 is the independence relation which is irreflexive
and symmetric. We often write s

e→ s′, instead of (s, e, s′) ∈ →. Moreover, the
following conditions have to be satisfied:

1. if s
e→ s′ and s

e→ s′′ then s′ = s′′,

2. if (e, e′) ∈ I , s
e→ s′, and s′ e′

→ t, then s
e′
→ s′′, and s′′ e→ t for some s′′ ∈ S.

An asynchronous transition system is coherent if it satisfies the following con-
dition:

3. if (e, e′) ∈ I , s
e→ s′, and s

e′→ s′′, then s′ e′→ t, and s′′ e→ t for some t ∈ S.
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An asynchronous transition system is prime if it is acyclic and satisfies the fol-
lowing condition:

4. if s
e→ t and s′ e′→ t then (e, e′) ∈ I . [Definition 6.1] �

Winskel and Nielsen [WN95, NW96a] give a thorough survey and establish
formal relationships between asynchronous transition systems and other mod-
els for concurrency, such as Petri nets, and event structures. The independence
relation is meant to model concurrency: independent events can occur concur-
rently, while those that are not independent are causally related or in conflict.

Let A = (S, sini, E,→, L, λ, I) be a labelled asynchronous transition system.
A sequence of events e = 〈e1, e2, . . . , en〉 ∈ E∗ is a run of A if there are states
s1, s2, . . . , sn+1 ∈ S, such that s1 = sini, and for all i ∈ {1, 2, . . . , n}, we have
si

ei→ si+1. We write Runs(A) to denote the set of runs of A. We extend the
labelling function λ to runs in the standard way.

Let e = 〈e1, e2, . . . , en〉 ∈ Runs(A). We say that the k-th event, 1 ≤ k < n, is
swappable in e if (ek, ek+1) ∈ I . We define Swap(e) to be the set of numbers of
swappable events in e. We write e⊗ k to denote the result of swapping the k-th
event of e with the (k + 1)-st, i.e., the sequence 〈e1, . . . , ek−1, ek+1, ek, . . . , en〉.
Note that if k ∈ Swap(e) then e ⊗ k ∈ Runs(A); it follows from condition 2. of
definition of an asynchronous transition system.

A run of a transition system models a finite sequential behaviour of a system:
a sequence of occurrences of events. In order to model concurrent behaviours
of a system we define an equivalence relation on the set of runs of an asyn-
chronous transition system. We define the equivalence relation∼=A on Runs(A)
to be the reflexive, symmetric, and transitive closure of{

(e, e⊗ k) : e ∈ Runs(A) and k ∈ Swap(e)
}
.

In other words, we have that e1
∼=A e2, for e1, e2 ∈ Runs(A), if and only if e2

can be obtained from e1 by a finite number of swaps of swappable events.
We define an unfolding operation on asynchronous transition systems into

prime asynchronous transition systems. The states of the unfolding of an asyn-
chronous transition system A are meant to represent all concurrent behaviours
of a system, just like the states of a synchronization tree represent all sequential
behaviours of a system.

Definition 6.2 (Unfolding)
Let A = (S, sini, E,→, L, λ, I) be an asynchronous transition system. The un-
folding Unf(A) of A is an asynchronous transition system with the same set
of events, the labelling function, and the independence relation as A. The set
of states, the initial state, and the transition relation of Unf(A) are defined as
follows:

• the set of states SUnf(A) of Unf(A) is defined to be Runs(A)/∼=A
, i.e., the set

of concurrent behaviours of A,
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• the initial state sini
Unf(A) of Unf(A) is [ε]∼=A

, i.e., the ∼=A-equivalence class of
the empty run,

• the set of transitions→Unf(A) of Unf(A) consists of transitions of the form(
[e]∼=A , e, [e · e]∼=A

)
, for all e ∈ E∗, and e ∈ E, such that e · e ∈ Runs(A).

[Definition 6.2] �

The following proposition follows easily from definition of Unf(A).

Proposition 6.3 If A is an asynchronous transition system then its unfolding
Unf(A) is a prime asynchronous transition system.

Let e = 〈e1, e2, . . . , en〉 ∈ Runs(A). We say that the k-th event, 1 ≤ k ≤ n,
is most recent in e if and only if (ek, e�) ∈ I , for all 	, such that k < 	 ≤ n. We
define MR(e) to be the set of numbers of most recent events in e. We write
e � k to denote the result of removing the k-th event from e, i.e., the sequence
〈e1, . . . , ek−1, ek+1, . . . , en〉. Note that if k ∈ MR(e) then e � k ∈ Runs(A); it
follows from condition 2. of definition of an asynchronous transition system.

Definition 6.4 (Hereditary history preserving bisimulation)
Let Ai = (Si, s

ini
i , Ei,→i, L, λi, Ii) for i ∈ {1, 2} be labelled asynchronous tran-

sition systems. A relation B ⊆ Runs(A1) × Runs(A2) is a hereditary history pre-
serving (hhp-) bisimulation relating A1 and A2 if the following conditions are
satisfied:

1. (ε, ε) ∈ B,

and if (e1, e2) ∈ B then λ1(e1) = λ2(e2), and:

2. for all i ∈ {1, 2} and ei ∈ Ei, if ei · ei ∈ Runs(Ai), then there exists
e3−i ∈ E3−i, such that e3−i · e3−i ∈ Runs(A3−i), and λ1(e1) = λ2(e2), and
(e1 · e1, e2 · e2) ∈ B,

3. MR(e1) = MR(e2),

4. if k ∈MR(e1) = MR(e2) then (e1 � k, e2 � k) ∈ B. [Definition 6.4] �

Two asynchronous transition systems A1, and A2 are hereditary history pre-
serving (hhp-) bisimilar, if there is an hhp-bisimulation relating them.

The following proposition is straightforward since every asynchronous tran-
sition system A and its unfolding Unf(A) have the same set of runs and the
same independence relation.

Proposition 6.5 Asynchronous transition systems A1 and A2 are hhp-bisimilar
if and only if their unfoldings Unf(A1) and Unf(A2) are hhp-bisimilar.

The main result of this paper is the following theorem proved in section 6.4.

Theorem 6.6 (Undecidability of hhp-bisimilarity)
Hhp-bisimilarity is undecidable for finite labelled asynchronous transition sys-
tems.
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The process of checking hhp-bisimilarity of asynchronous transition sys-
tems is conveniently viewed as a game played on runs of the systems by two
players: Challenger and Duplicator. Duplicator aims to prove the systems to be
bisimilar while Challenger intends otherwise [Sti97, Tho93, NC95].

Definition 6.7 (Hhp-bisimilarity checking game)
Let Ai = (Si, s

ini
i , Ei,→i, L, λi, Ii) for i ∈ {1, 2} be labelled asynchronous tran-

sition systems. Configurations of the hhp-bisimilarity checking game Bhhp(A1, A2)
are elements of the set Runs(A1) × Runs(A2). Game Bhhp(A1, A2) is played by
two players: Challenger and Duplicator. The initial configuration is the pair of
empty runs (ε, ε). In each move the players change the current configuration
(e1, e2) of Bhhp(A1, A2) in one of the following ways chosen by Challenger.

• Forward move:

1. Challenger chooses an i ∈ {1, 2} and an event ei ∈ Ei, such that
ei · ei ∈ Runs(Ai);

2. Duplicator responds by choosing an event e3−i ∈ E3−i, such that
e3−i · e3−i ∈ Runs(A3−i), and λ1(e1) = λ2(e2);

the pair (e1 · e1, e2 · e2) becomes the current configuration.

• Backward move:

1. Challenger chooses an i ∈ {1, 2} and a k ∈ MR(ei);

2. Duplicator can only respond if k ∈ MR(e3−i); otherwise Duplicator
gets stuck;

if k ∈ MR(e1), and k ∈ MR(e2) then (e1 � k, e2 � k) becomes the current
configuration.

A play of Bhhp(A1, A2) if a maximal sequence of configurations formed by play-
ers making moves in the fashion described above. Duplicator is the winner in
every infinite play; a finite play is lost by the player who is stuck. Note that
Challenger gets stuck only if both transition systems have no transitions going
out from their initial states. [Definition 6.7] �

We avoid tedious details of formalizing notions of strategies and winning strate-
gies for either of the players. The following standard fact is proved by arguing
that an hhp-bisimulation is a good formalization of the notion of a winning
strategy for Duplicator in an hhp-bisimilarity checking game [NC95].

Proposition 6.8 Asynchronous transition systems A1 and A2 are hhp-bisimilar
if and only if there is a winning strategy for Duplicator in hhp-bisimilarity
checking game Bhhp(A1, A2).

It is particularly easy to see how an hhp-bisimulation B ⊆ Runs(A1)×Runs(A2)
can serve as a winning strategy for Duplicator in Bhhp(A1, A2). Intuitively,
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the hhp-bisimulation B contains all configurations of Bhhp(A1, A2) which can
be become current configurations when Duplicator is following the strategy
determined by B. The strategy is defined as follows. Let (e1, e2) be the current
configuration of Bhhp(A1, A2). If Challenger chooses event ei of Ai in a forward
move, then Duplicator responds by choosing an event e3−i of A3−i, such that
(e1 · e1, e2 · e2) ∈ B. If Challenger makes a backward move then response
of Duplicator is unique. This strategy contains the initial configuration (ε, ε)
by condition 1. of definition of an hhp-bisimulation, and it is well defined by
conditions 2.–4.

6.3 Domino bisimilarity is undecidable

6.3.1 Domino bisimilarity

Definition 6.9 (Origin constrained tiling system)
An origin constrained tiling system T =

(
D, Dori, (H, H0), (V, V 0), L, λ

)
consists

of a set D of dominoes, its subset Dori ⊆ D called the origin constraint, two
horizontal compatibility relations H, H0 ⊆ D2, two vertical compatibility relations
V, V 0 ⊆ D2, a set L of labels, and a labelling function λ : D → L.

[Definition 6.9] �

A configuration of T is a triple (d, x, y) ∈ D × N × N, such that if x = y = 0
then d ∈ Dori. In other words, in the “origin” position (x, y) = (0, 0) of the
non-negative integer grid only dominoes from the origin constraint Dori are
allowed.

Let (d, x, y), and (d′, x′, y′) be configurations of T such that |x′ − x| + |y′ −
y| = 1, i.e., the positions (x, y), and (x′, y′) are neighbours in the non-negative
integer grid. Without loss of generality we may assume that x + y < x′ + y′.
We say that configurations (d, x, y), and (d′, x′, y′) are compatible if either of the
two conditions below holds:

• x′ = x, and y′ = y + 1, and
if y = 0, then (d, d′) ∈ V 0, and if y > 0, then (d, d′) ∈ V , or

• x′ = x + 1, and y′ = y, and
if x = 0, then (d, d′) ∈ H0, and if x > 0, then (d, d′) ∈ H .

Definition 6.10 (Domino bisimulation)
Let Ti =

(
Di, D

ori
i , (Hi, H

0
i ), (Vi, V

0
i ), Li, λi

)
for i ∈ {1, 2} be origin constrained

tiling systems. A relation B ⊆ D1×D2×N×N is a domino bisimulation relating
T1 and T2, if (d1, d2, x, y) ∈ B implies that λ1(d1) = λ2(d2), and the following
conditions are satisfied for all i ∈ {1, 2}:

1. for all di ∈ Dori
i , there is d3−i ∈ Dori

3−i, so that λ1(d1) = λ2(d2), and
(d1, d2, 0, 0) ∈ B,

2. for all x, y ∈ N, such that (x, y) �= (0, 0), and di ∈ Di, there is d3−i ∈ D3−i,
such that λ1(d1) = λ2(d2), and (d1, d2, x, y) ∈ B,
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3. if (d1, d2, x, y) ∈ B, then for all neighbours (x′, y′) ∈ N × N of (x, y),
and d′

i ∈ Di, if configurations (di, x, y), and (d′
i, x

′, y′) of Ti are com-
patible, then there exists d′

3−i ∈ D3−i, such that λ1(d′1) = λ2(d′2), and
configurations (d3−i, x, y), and (d′

3−i, x
′, y′) of T3−i are compatible, and

(d′1, d′2, x′, y′) ∈ B. [Definition 6.10] �

We say that two tiling systems are domino bisimilar if and only if there is a
domino bisimulation relating them.

The main result of this section is the following theorem proved in subsec-
tion 6.3.3.

Theorem 6.11 (Undecidability of domino bisimilarity)
Domino bisimilarity is undecidable for origin constrained tiling systems.

The proof is a reduction from the halting problem for deterministic 2-counter
machines. For a deterministic 2-counter machine M we define in section 6.3.3
two origin constrained tiling systems T1, and T2, enjoying the following prop-
erty.

Proposition 6.12 Machine M does not halt, if and only if there is a domino
bisimulation relating T1 and T2.

The process of checking domino bisimilarity of origin constrained tiling
systems is conveniently viewed as a game played on an infinite grid by two
players: Challenger and Duplicator. As in the case of hhp-bisimilarity check-
ing games Duplicator aims to prove the tiling systems to be bisimilar while
Challenger intends otherwise.

Definition 6.13 (Origin constrained domino bisimilarity checking game)
Let T1, and T2 be origin constrained tiling systems. Configurations of the origin
constrained domino bisimilarity checking game Bd(T1, T2) are elements of the set
D1 × D2 × N × N. Game Bd(T1, T2) is played by two players Challenger and
Duplicator.

• First the players fix an initial configuration:

1. Challenger chooses an i ∈ {1, 2}, and a configuration (di, x, y) of Ti,

2. Duplicator responds by choosing a domino d3−i ∈ D3−i, such that
(d3−i, x, y) is a configuration of T3−i, and λ1(d1) = λ2(d2);

if both players were able to make their choices then the tuple (d1, d2, x, y)
becomes the current configuration of Bd(T1, T2).

• In each move of the game the players change the current configuration
(d1, d2, x, y):

1. Challenger chooses an i ∈ {1, 2}, and a configuration (d′i, x
′, y′) of Ti

compatible with configuration (di, x, y),
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2. Duplicator responds by choosing a domino d′3−i ∈ D3−i such that
(d′3−i, x

′, y′) is a configuration of T3−i, and λ1(d1) = λ2(d2), and
configurations (d3−i, x, y) and (d′

3−i, x
′, y′) of T3−i are compatible;

if both players were able to make their choices then the tuple (d′1, d
′
2, x

′, y′)
becomes the current configuration of Bd(T1, T2).

A play of Bd(T1, T2) is a maximal sequence of configurations formed by players
making moves in the fashion described above. Duplicator is the winner in ev-
ery infinite play; a finite play is lost by the player who is stuck. [Definition 6.13] �

We avoid tedious details of formalizing notions of strategies and winning strate-
gies for either of the players. The following simple fact is proved by arguing
that a domino bisimulation is a good formalization of a winning strategy for
Duplicator in a domino bisimulation checking game.

Proposition 6.14 Origin constrained tiling systems T1 and T2 are domino bisim-
ilar if and only if Duplicator has a winning strategy in the domino bisimulation
game Bd(T1, T2).

6.3.2 Counter machines

A 2-counter machine M consists of a finite program with the set L of instruction
labels, and instructions of the form:

• 	: ci := ci + 1; goto m

• 	: if ci = 0 then ci := ci + 1; goto m
else ci := ci - 1; goto n

• halt:

where i = 1, 2; 	, m, n ∈ L, and {start,halt} ⊆ L. A configuration of M is a
triple (	, x, y) ∈ L×N×N, where 	 is the label of the current instruction, and x,
and y are the values stored in counters c1, and c2, respectively; we denote the
set of configurations of M by Confs(M). The semantics of 2-counter machines
is standard: let !M ⊆ Confs(M)× Confs(M) be the usual one-step derivation
relation on configurations of M ; by !+

M we denote the reachability (in at least
one step) relation for configurations, i.e., the transitive closure of !M .

Before we give a reduction from the halting problem of 2-counter machines
to origin constrained domino bisimilarity let us take a look at the directed
graph (Confs(M), !M ), with configurations of M as vertices, and edges de-
noting derivation in one step. Since machine M is deterministic, for each con-
figuration there is at most one outgoing edge; moreover only halting configu-
rations have no outgoing edges. It follows that connected components of the
graph (Confs(M), !M ) are either trees with edges going to the root which is
the unique halting configuration in the component, or have no halting config-
uration at all. This observation is formalized in the following proposition.
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Proposition 6.15 Let M be a 2-counter machine. The following conditions are
equivalent:

1. machine M halts on input (0, 0), i.e., (start, 0, 0) !+
M (halt, x, y) for

some x, y ∈ N,

2. (start, 0, 0) ∼M (halt, x, y) for some x, y ∈ N, where the relation ∼M

⊆ Confs(M)× Confs(M) is the symmetric and transitive closure of !M .

6.3.3 The reduction

Now we go for a proof of Proposition 6.12. The idea is to design a tiling system
which “simulates” behaviour of a 2-counter machine.

Let M be a 2-counter machine. We construct a tiling system TM with the set
L of instruction labels of M as the set of dominoes, and the identity function
on L as the labelling function. Note that this implies that all tuples belonging
to a domino bisimulation relating copies of TM are of the form (	, 	, x, y), so we
can identify them with configurations of M , i.e., sometimes we will make no
distinction between (	, 	, x, y) and (	, x, y) ∈ Confs(M) for 	 ∈ L.

We define the horizontal compatibility relations HM , H0
M ⊆ L × L of the

tiling system TM as follows:

• (	, m) ∈ HM if and only if either of the instructions below is an instruction
of machine M :

– 	: c1 := c1 + 1; goto m

– m: if c1 = 0 then c1 := c1 + 1; goto n
else c1 := c1 - 1; goto 	

• (	, m) ∈ H0
M if and only if (	, m) ∈ HM , or the instruction below is an

instruction of machine M :

– 	: if c1 = 0 then c1 := c1 + 1; goto m
else c1 := c1 - 1; goto n

Vertical compatibility relations VM , and V 0
M are defined in the same way, with

c1 instructions replaced with c2 instructions. We also take Dori
M = L, i.e., all

dominoes are allowed in position (0, 0). Note that the identity function is a 1-1
correspondence between configurations of M , and configurations of the tiling
system TM ; from now on we will hence identify configurations of M and TM .
It follows immediately from the construction of TM , that two configurations
c, c′ ∈ Confs(M) are compatible as configurations of TM , if and only if c !M

c′, or c′ !M c, i.e., compatibility relation of TM coincides with the symmetric
closure of !M . By ≈M we denote the symmetric and transitive closure of the
compatibility relation of configurations of TM . The following proposition is
then straightforward.

Proposition 6.16 The two relations ∼M and ≈M coincide.
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Now we are ready to define the two origin constrained tiling systems T1,
and T2, postulated in Proposition 6.12. The idea is to have two independent
and slightly pruned copies of TM in T2: one without the initial configuration
(start, 0, 0), and the other without any halting configurations (halt, x, y).
The other tiling system T1 is going to have three independent copies of TM :
the two of T2, and moreover, another full copy of TM .

More formally we define D2 =
(
L× {1, 2}) \ {

(halt, 2)
}

, and Dori
2 = D2 \{

(start, 1)
}

, and V2 =
(
(VM ⊗ 1) ∪ (VM ⊗ 2)

) ∩ (D2 ×D2), where for a binary
relation R we define R ⊗ i to be the relation

{ (
(a, i), (b, i)

)
: (a, b) ∈ R

}
. The

other compatibility relations V 0
2 , H2, and H0

2 are defined analogously from the
respective compatibility relations of TM .

The tiling system T1 is obtained from T2 by adding yet another independent
copy of TM , this time a complete one: D1 = D2 ∪ (L× {3}), and Dori

1 = Dori
2 ∪

(L × {3}), and V1 = V2 ∪ (VM ⊗ 3), etc.. The labelling functions of T1, and T2

are defined as λi

(
(	, i)

)
= 	.

In order to show Proposition 6.12, and hence conclude the proof of Theo-
rem 6.11, it suffices to establish the following two claims.

Claim 6.17 If machine M halts on input (0, 0) then origin constrained tiling
systems T1 and T2 are not domino bisimilar.

Proof: By Proposition 6.14 it suffices to show that if machine M halts on input
(0, 0) then Challenger has a winning strategy in the game Bd(T1, T2). Chal-
lenger starts by choosing the configuration

(
(start, 3), 0, 0

)
of T1. Duplicator

has to respond with domino (start, 2) of T2 since (start, 1) �∈ Dori
2 . Then

Challenger “simulates” the finite computation of M on input (0, 0) in the fol-
lowing way. If

(
(	, 3), (	, 2), x, y

)
is the current configuration of the game then

Challenger chooses the configuration
(
(	′, 3), x′, y′) of T1, such that

(
	, x, y) !M

(	′, x′, y′). This move is allowed thanks to Proposition 6.16. Then Duplica-
tor can only respond with domino (	′, 2) of T2, and

(
(	′, 3), (	′, 2), x′, y′) be-

comes the current configuration of the game. In the last step of the simulation
Challenger chooses a configuration

(
(halt, 3), x′, y′) for some x′, y′ ∈ N which

makes Duplicator stuck because (halt, 2) �∈ D2. [Claim 6.17]

Claim 6.18 If machine M does not halt on input (0, 0) then origin constrained
tiling systems T1 and T2 are domino bisimilar.

Proof: By Proposition 6.14 it suffices to show that if machine M does not halt
on input (0, 0) then Duplicator has a winning strategy in the game Bd(T1, T2).
We claim that the following is a winning strategy for Duplicator.

If in the first step Challenger chooses a configuration
(
(	, j), x, y

)
of T1 or

T2 for j ∈ {1, 2}, then Duplicator responds with the domino (	, j) of the other
tiling system. It is obvious that then Duplicator can respond to all moves of
Challenger because both players play on identical pruned copies of TM .

If instead Duplicator chooses a configuration
(
(	, 3), x, y

)
of T1 in the first

step then Duplicator responds with:
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• domino (	, 1) of T2 if (	, x, y) ∼M (halt, x′, y′) for some x′, y′ ∈ N, and

• domino (	, 2) of T2 if (	, x, y) �∼M (halt, x′, y′) for all x′, y′ ∈ N.

In the first case the only way Challenger can make Duplicator stuck is to be
able to choose configuration

(
(start, 3), 0, 0) of T1 since the only difference be-

tween copy 3 of TM in T1 and copy 1 of TM in T2 is that the latter does not have
the triple (start, 0, 0) as a configuration. Hence in order to prove that Dupli-
cator has a winning strategy from the initial configuration

(
(	, 3), (	, 1), x, y

)
,

it suffices to show that (	, x, y) �≈M (start, 0, 0). Assume for the sake of con-
tradiction that (	, x, y) ≈M (start, 0, 0). By Proposition 6.16 we then have
(	, x, y) ∼M (start, 0, 0). This, by our assumption that (	, x, y) ∼M (halt, x′, y′)
for some x′, y′ ∈ N, implies that (start, 0, 0) ∼M (halt, x′, y′) for some x′, y′ ∈
N. Then Proposition 6.15 implies that (start, 0, 0) !+

M (halt, x′, y′), which
contradicts the assumption of the claim that machine M does not halt on input
(0, 0).

The argument in the other case is similar. It suffices to show that (	, x, y) �≈M

(halt, x′, y′) for all x′, y′ ∈ N, because the only difference between copy 3 of TM

in T1 and copy 2 of TM in T2 is that the latter has no triple (halt, x′, y′) as a con-
figuration. By applying Proposition 6.16 to our assumption that (	, x, y) �∼M

(halt, x′, y′) for all x′, y′ ∈ N, we immediately get that (	, x, y) �≈M (halt, x′, y′)
for all x′, y′ ∈ N. [Claim 6.18]

6.4 Hhp-bisimilarity is undecidable

The proof of Theorem 6.6 is a reduction from the problem of deciding domino
bisimilarity for origin constrained tiling systems. A method of encoding a
tiling system on an infinite grid in the unfolding of a finite asynchronous tran-
sition system is due to Madhusudan and Thiagarajan [MT98]. For each origin
constrained tiling system T , we define a finite asynchronous transition system
A(T ), such that the following proposition holds.

Proposition 6.19 Origin constrained tiling systems T1 and T2 are domino bisim-
ilar if and only if asynchronous transition systems A(T1) and A(T2) are hhp-
bisimilar.

6.4.1 Asynchronous transition system A(T )

Let T =
(
D, Dori, (H, H0), (V, V 0), L, λ

)
be an origin constrained tiling system.

The infinite grid structure is modelled by the unfolding of the asynchronous
transition system shown in Figure 6.1. The set of events of this asynchronous
transition system is E = {x0, x1, x2, x3, x4, y0, y1, y2, y3, y4}. The independence
relation I is the symmetric closure of

{
(xi, yj) : i, j ∈ {0, 1, 2, 3, 4}}

.
We identify the states of the asynchronous transition system in Figure 6.1

with pairs of numbers (i, j) ∈ {0, 1, 2, 3, 4}2, where i is the horizontal coordi-
nate and j is the vertical coordinate. The state in the one in the bottom-left
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Figure 6.1: Modelling the infinite grid.

corner in Figure 6.1 is (0, 0). For all n ∈ N, define:

n̂ =

{
n if n ≤ 4,

2 +
(
(n− 2) mod 3

)
if n > 4.

A position (n, m) ∈ N2 of the infinite grid is represented by state (n̂, m̂) in the
asynchronous transition system.

Configurations of the tiling system T are modelled by extra transitions go-
ing out of states of the grid structure in Figure 6.1, and labelled by events of
the form dij , for d ∈ D and i, j ∈ {0, 1, 2, 3}. We define a set of events ED as
follows:

ED = { dij : d ∈ D; and i, j ∈ {0, 1, 2, 3}; and i = j = 0 implies d ∈ Dori }.

The idea is, for every d ∈ D, to have a transition going out of each state (i, j) ∈
{0, 1, 2, 3, 4}2 labelled with dij , provided that (d, i, j) is a configuration of T . In
fact, for a technical reason we need to use events di1 and d1j at states (i, 4) and
(4, j), respectively, instead of di4 and d4j . In order to avoid special treatment of
this case throughout the rest of the paper we adopt the following notation, for
all n ∈ N:

ñ =

{
n if n ≤ 3,

1 +
(
(n− 1) mod 3

)
if n > 3.

Horizontal and vertical compatibility of configurations of the tiling system
T are modelled by an independence relation ID on ED, according to which
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events dij and ek� corresponding to “neighbouring” configurations are inde-
pendent if and only if the configurations are compatible. More precisely, we
define ID to be the symmetric closure of the following set:{

(d0j , e1j) : j ∈ {0, 1, 2, 3} and (d, e) ∈ H0

} ∪{
(dij , e(̃i+1)j

) : i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}, and (d, e) ∈ H
} ∪{

(di0, ei1) : i ∈ {0, 1, 2, 3} and (d, e) ∈ V0

} ∪{
(dij , ei(̃j+1)

) : i ∈ {0, 1, 2, 3}, j ∈ {1, 2, 3}, and (d, e) ∈ V
}
.

For all i, j ∈ {0, 1, 2, 3, 4} and d ∈ D, we have up to four transitions going
out of state (i, j) and labelled by the following events in ED : d̃i ˜j , d(i−1)˜j , if
i > 0, d̃i(j−1) if j > 0, and d(i−1)(j−1) if i, j > 0. We write (i, j, {di′j′}) to
denote the state reached by the transition labelled by the event di′j′ going out
of state (i, j). In other words, for all i, j ∈ {0, 1, 2, 3, 4} we have the following
transitions:

• (i, j)
d
˜i ˜j−→ (

i, j, {d̃i ˜j}
)
,

• (i, j)
d(i−1)˜j−→ (

i, j, {d(i−1)˜j}
)

if i > 0,

• (i, j)
d
˜i(j−1)−→ (

i, j, {d̃i(j−1)}
)

if j > 0,

• (i, j)
d(i−1)(j−1)−→ (

i, j, {d(i−1)(j−1)}
)

if i, j > 0.

Moreover, if there are transitions:

• (i, j) dk�−→ (
i, j, {dk�}

)
, and

• (i, j)
ek′�′−→ (

i, j, {ek′�′}
)
,

and (dk�, ek′�′) ∈ ID , then there is also a state
(
i, j, {dk�, ek′�′}

)
and transitions:

• (
i, j, {dk�}

) ek′�′−→ (
i, j, {dk�, ek′�′}

)
, and

• (
i, j, {ek′�′}

) dk�−→ (
i, j, {dk�, ek′�′}

)
.

Finally, there are transitions:

• (
i, j, {d̃i˜j}

) xi−→ (
î + 1, j, {d̃i ˜j}

)
, if

(
i, j, {d̃i˜j}

)
is a state, and

• (
i, j, {d̃i(j−1)}

) xi−→ (
î + 1, j, {d̃i(j−1)}

)
, if

(
i, j, {d̃i(j−1)}

)
is a state,

and transitions:

• (
i, j, {d̃i˜j}

) yj−→ (
i, ĵ + 1, {d̃i ˜j}

)
, if

(
i, j, {d̃i ˜j}

)
is a state, and

• (
i, j, {d(i−1)˜j}

) yj−→ (
i, ĵ + 1, {d(i−1)˜j}

)
, if

(
i, j, {d(i−1)˜j}

)
is a state.
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The sets of states SA(T ) and transitions →A(T ) of the asynchronous transi-
tion system A(T ) = (SA(T ), s

ini
A(T )EA(T ),→A(T ), λA(T ), IA(T )) are as described

above. The set of events is defined by EA(T ) = E ∪ ED. The initial state is
sini

A(T ) = (0, 0). The independence relation IA(T ) is defined as the symmetric
closure of the set:

I ∪ ID ∪
{

(xi, d̃i ˜j), (yj , d̃i ˜j) : i, j ∈ {0, 1, 2, 3, 4} and d̃i ˜j ∈ ED

}
.

Finally, the labelling function λA(T ) is an identity on E, and for elements of ED

it replaces the dominoes with their labels in the tiling system T , i.e.,

λA(T )(e) =

{
e if e ∈ E,(
λ(d)

)
ij

if e ∈ ED and e = dij .

Proposition 6.20 The labelled transition systems A(T ) is a labelled asynchro-
nous transition system.

6.4.2 The unfolding of A(T )

In this subsection we sketch the structure of the unfolding Unf
(
A(T )

)
of asyn-

chronous transition system A(T ) defined in the previous subsection.
For notational convenience we will write (i, j, ∅) for a state (i, j) of A(T ).

In order to avoid a heavy use of notations n̂ and m̃ we adopt the following
conventions:

• we write xn and ym, for all n, m ∈ N, to denote events xn̂, ym̂ ∈ E, respec-
tively.

• we write dnm to denote an event dñm̃ ∈ ED, for all n, m ∈ N.

Proposition 6.21 The set of states of Unf
(
A(T )

)
reachable from the initial state

(0, 0, ∅) consists of triples (n, m, C) ∈ N× N× ℘(ED), such that either:

• C = ∅; or

• C = {dn′m′} such that dn′m′ ∈ ED, and n′ ∈ {n − 1, n}, and m′ ∈ {m −
1, m}; or

• C = {d(n−1)m′ , enm′} such that d(n−1)m′ , enm′ ∈ ED, and m′ ∈ {m−1, m},
and configurations (d, n− 1m′) and (e, n, m′) of T are compatible; or

• C = {dn′(m−1), en′m} such that dn′(m−1), en′m ∈ ED , and n′ ∈ {n− 1, n},
and configurations (d, n′, m− 1) and (e, n′, m) of T are compatible.

States of the first category above represent positions on the infinite grid; in
particular the state (n, m, ∅) represents the position (n, m) ∈ N × N. States
of the second category above represent configurations of the tiling system T ;
in particular configuration (d, n, m) ∈ D × N × N is represented by states
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(
n′, m′, {dnm}

)
for n′ ∈ {n, n + 1} and m′ ∈ {m, m + 1}. States of the third

and forth categories above are used to “check compatibility” of neighbouring
configurations of tiling system T .

Proposition 6.22 The set of transitions of Unf
(
A(T )

)
consists of the following:

• (n, m, C) xn−→Unf(A(T )) (n + 1, m, C)
for C = ∅, or C = {dnm′} for m′ ∈ {m− 1, m},

• (n, m, C)
ym−→Unf(A(T )) (n, m + 1, C)

for C = ∅, or C = {dn′m} for n′ ∈ {n− 1, n},

• (n, m, ∅) dn′m′−→ Unf(A(T ))

(
n, m, {dn′m′})

for n′ ∈ {n− 1, n}, and m′ ∈ {m− 1, m}, and dn′m′ ∈ ED,

• (
n, m, {d(n−1)m′}) enm′−→Unf(A(T ))

(
n, m, {d(n−1)m′ , enm′}) and(

n, m, {enm′}) d(n−1)m′−→ Unf(A(T ))

(
n, m, {d(n−1)m′ , enm′}),

for m′ ∈ {m− 1, m} if configurations (d, n− 1, m′) and (e, n, m′) of T are
compatible,

• (
n, m, {dn′(m−1)}

) en′m−→Unf(A(T ))

(
n, m, {dn′(m−1), en′m}

)
and(

n, m, {en′m}
) dn′(m−1)−→ Unf(A(T ))

(
n, m, {dn′(m−1), en′m}

)
for n′ ∈ {n − 1, n}, if configurations (d, n′, m − 1) and (e, n′, m) of T are
compatible.

6.4.3 Translations between hhp- and domino bisimulations

By Proposition 6.5 it follows that in order to prove Proposition 6.19 it suffices
to demonstrate that a domino bisimulation relating T1 and T2 gives rise to an
hhp-bisimulation relating Unf

(
A(T1)

)
and Unf

(
A(T2)

)
, and vice versa. In other

words, it suffices to argue that a winning strategy for Duplicator in Bd(T1, T2)
can be translated to a winning strategy for her in Bhhp

(
Unf(A(T1)), Unf(A(T2))

)
,

and vice versa. In what follows, in order to keep the arguments from becom-
ing too dull or cumbersome, we are mixing freely at our convenience the two
ways of talking about bisimulations: as relations, and as winning strategies in
bisimilarity checking games.

For notational convenience we introduce the following convention for writ-
ing elements of an hhp-bisimulation relating Unf

(
A(T1)

)
and Unf

(
A(T2)

)
, or

equivalently, for configurations of game Bhhp

(
Unf(A(T1)), Unf(A(T2))

)
. Note

that if a pair of runs (e1, e2) ∈ Runs
(
Unf(A(T1))

) × Runs
(
Unf(A(T2))

)
belongs

to an hhp-bisimulation then the states reached by these runs are of the forms
(n, m, C1) and (n, m, C2) for some n, m ∈ N, respectively. In what follows we
write (n, m, C1, C2) to denote such a pair (e1, e2). This notation is a bit sloppy
because it is not 1-1. For example, (1, 1, ∅) is used to denote both (x0y0, x0y0)
and (y0x0, y0x0). It is not hard to see that this sloppiness is not a problem here.
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From domino to hhp-bisimulation. Let B ⊆ D1 × D2 × N × N be a domino
bisimulation relating T1 and T2. We define a winning strategy for Duplicator
in game Bhhp

(
Unf(A(T1)), Unf(A(T2))

)
in the following way.

If Challenger makes a backward move then the response of Duplicator is
determined uniquely. Moreover, this response can always be performed be-
cause asynchronous transition systems Unf

(
A(T1)

)
and Unf

(
A(T2)

)
have the

property that every pair of runs with equal labelling sequences has equal sets
of most recent events. If Challenger makes a forward move by choosing an
event xn or ym, for n, m ∈ N, then Duplicator responds with the same event in
the other transition system.

The only non-trivial responses of Duplicator are the ones to be made when
Challenger makes a forward move by choosing an event of the form dnm,
where d is a domino and n, m ∈ N. We define these responses by referring
to the domino bisimulation B. The strategy for Duplicator we define below
has the following property.

Property 6.23 Suppose that a configuration (n, m, C1, C2) of an hhp-bisimilarity
checking game Bhhp

(
Unf

(
A(T1)

)
, Unf

(
A(T2)

))
can be reached from the initial

configuration while Duplicator is playing according to the strategy. Then dn′m′ ∈
C1 and en′m′ ∈ C2 for n′ ∈ {n − 1, n} and m′ ∈ {m − 1, m} imply that
(d, e, n′, m′) ∈ B

Suppose without loss of generality that Challenger makes a move in Unf
(
A(T1)

)
;

the other case is symmetric. We consider several cases depending on the cur-
rent configuration of Bhhp

(
Unf

(
A(T1)

)
, Unf

(
A(T2)

))
.

• The current configuration of the game Bhhp

(
Unf(A(T1)), Unf(A(T2))

)
is

(n, m, ∅, ∅) for some n, m ∈ N. Challenger can choose an event dn′m′ ,
such that n′ ∈ {n− 1, n} and m′ ∈ {m− 1, m}. Then Duplicator responds
with an event en′m′ in Unf

(
A(T2)

)
, such that (d, e, n′, m′) ∈ B.

• The current configuration of the game Bhhp

(
Unf(A(T1)), Unf(A(T2))

)
is(

n, m, {dn′m′}, {en′m′}), such that n′ ∈ {n − 1, n} and m′ ∈ {m − 1, m}.
Challenger can choose an event d′k�, such that either k = n′ and {m′, 	} =
{m − 1, m}, or 	 = m′ and {n′, k} = {n − 1, n}. In both cases Duplica-
tor responds with an event e′k�, such that configurations (e, n′, m′) and
(e′, k, 	) of T2 are compatible, and (d′, e′, k, 	) ∈ B.

Note that all the responses we have defined above are indeed possible due
to Property 6.23 and definition of a domino bisimulation, and moreover, they
maintain Property 6.23.

From hhp- to domino bisimulation. Let B be an hhp-bisimulation relating
Unf

(
A(T1)

)
and Unf

(
A(T2)

)
. We define a winning strategy for Duplicator in

game Bd(T1, T2). The strategy for Duplicator we define below has the follow-
ing property.
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Property 6.24 If configuration (d, e, n, m) of Bd(T1, T2) can be reached while
Duplicator is playing according to the strategy then

(
n, m, {dnm}, {enm}

) ∈ B.

Suppose without loss of generality that Challenger makes a move in T1; the
other case is symmetric. We consider the two kinds of moves possible in a
domino bisimulation game.

• In order to fix an initial configuration of Bd(T1, T2) Challenger chooses
a configuration (d, n, m) of T1. Note that for all n, m ∈ N, we have that
(n, m, ∅, ∅) ∈ B. Let enm be Duplicator’s response if Challenger makes a
forward move in Bhhp

(
Unf

(
A(T1)

)
, Unf

(
A(T2)

))
by choosing event dnm

in configuration (n, m, ∅, ∅). Then we take e to be Duplicator’s response
to Challenger’s choice of configuration (d, n, m).

• Let (d, e, n, m) be the current configuration of Bd(T1, T2). In a next move
Challenger can choose a configuration (d′, n′, m′) of T1 compatible with
(d, n, m). We consider cases when (n′, m′) = (n − 1, m) and (n′, m′) =
n, m + 1); the other two cases are analogous. Note that by Property 6.24
we have that (

n, m, {dnm}, {enm}
) ∈ B. (6.1)

– Let (n′, m′) = (n− 1, m). Since configurations (d, n, m) and (d′, n −
1, m) of T1 are compatible, by applying condition 2. of the defini-
tion of an hhp-bisimulation to (6.1) we get that there is a domino e′

of T2, such that configurations (e, n, m) and (e′, n − 1, m) of T2 are
compatible, and(

n, m, {d′(n−1)m, dnm}, {e′(n−1)m, enm}
) ∈ B. (6.2)

We define event e′ to be Duplicator’s response in Bd(T1, T2) for Chal-
lenger’s move consisting of choosing configuration (d′, n − 1, m) of
T1. By applying condition 4. of definition of an hhp-bisimulation
to (6.2) twice we get that(

n− 1, m, {d′(n−1)m}, {e′(n−1)m}
) ∈ B.

– Let (n′, m′) = (n, m + 1). By applying condition 2. of definition of
an hhp-bisimulation to (6.1) we get that(

n, m + 1, {dnm}, {enm}
) ∈ B. (6.3)

Since configurations (d, n, m) and (d′, n, m + 1) of T1 are compati-
ble, by applying condition 2. of definition of an hhp-bisimulation
to (6.3) we get that there is a domino e′ of T2, such that configura-
tions (e, n, m) and (e′, n, m + 1) of T2 are compatible, and(

n, m + 1, {dnm, d′n(m+1)}, {enm, e′n(m+1)}
) ∈ B. (6.4)
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We define event e′ to be Duplicator’s response inBd(T1, T2) for Chal-
lenger’s move consisting of choosing configuration (d′, n, m + 1) of
T1. By applying condition 4. of definition of an hhp-bisimulation
to (6.4) we get (

n, m + 1, {d′n(m+1)}, {e′n(m+1)}
) ∈ B.

Note that all the responses we have defined above are indeed possible due
to Property 6.24 and definition of a domino bisimulation, and moreover, they
maintain Property 6.24.

6.4.4 Finite elementary net system N(T )

In this subsection we argue that undecidability of hhp-bisimilarity for finite
elementary net systems follows as a corollary of our proof for finite asyn-
chronous transition systems.

Given a tiling system T we define an elementary net system N(T ) and we
argue that A(T ) is isomorphic to the asynchronous transition system na

(
N(T )

)
corresponding to the net N(T ). This immediately implies the following fact.

Theorem 6.25
Hhp-bisimilarity is undecidable for finite labelled elementary net systems.

The elementary net system N(T ) = (PN(T ), EN(T ), preN(T ), postN(T ), MN(T ))
is shown in Figure 6.2 and it consists of the following:

• the set of conditions

PN(T ) =
{
ai, bi : i ∈ {0, 1, 2, 3, 4}}∪{aj

i(i+1), b
i
j(j+1) : i, j ∈ {0, 1, 2, 3}}∪ED;

• the set of events EN(T ) = EA(T );

• the function preN(T ) : EN(T ) → ℘(PN(T )) specifying the set of places in
the pre-condition of an event:

preN(T )(e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{a0} if e = x0,

{b0} if e = y0,

{ai} ∪ A(i−1)i if e = xi for i ∈ {1, 2, 3, 4},
{bj} ∪ B(j−1)j if e = yj for j ∈ {1, 2, 3, 4},
{aj

i(i+1), b
i
j(j+1)} ∪ Incompat(dij) if e = dij ∈ ED,

where for i, j ∈ {0, 1, 2, 3}, we define Ai(i+1) =
{
ak

i(i+1) : k ∈ {0, 1, 2, 3}}
and Bj(j+1) =

{
bk

j(j+1) : k ∈ {0, 1, 2, 3} }
, and for dij ∈ ED , we define

Incompat(dij) = { ek� ∈ ED : (dij , ek�) �∈ ID };
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Variables i and j range over {0, 1, 2, 3}. Therefore we have four copies of
each place in the second column, for j ∈ {0, 1, 2, 3}, and four copies of each
place in the third column, for i ∈ {0, 1, 2, 3}.

�	
����aj
i(i+1)

�� dij
�	
���� bi

j(j+1)
��

�	
����•
  ������
. . . �	
����•

!!������

︸ ︷︷ ︸
Incompat(dij)

The preconditions of each dij ∈ ED, are the two places aj
i(i+1) and bi

j(j+1),
and all the places in Incompat(dij) = { ek� ∈ ED : (dij , ek�) �∈ ID }.

Figure 6.2: The elementary net system N(T ).
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• the function postN(T ) : EN(T ) → ℘(PN(T )) specifying the set of places in
the post-condition of an event:

postN(T )(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ai+1} ∪ A(i+1)(i+2) if e = xi for i ∈ {0, 1, 2},
{a4} ∪ A12 if e = x3,

{a2} ∪ A23 if e = x4,

{bj+1} ∪ B(j+1)(j+2) if e = yj for j ∈ {0, 1, 2},
{b4} ∪ B12 if e = y3,

{b2} ∪ B23 if e = y4,

∅ if e ∈ ED;

• the initial marking MN(T ) = {a0, b0} ∪ A01 ∪ B01 ∪ ED.

Proposition 6.26 The asynchronous transition system A(T ) is isomorphic to
na

(
N(T )

)
.

Proof. We define a function Ξ : SA(T ) → ℘(PN(T )) as follows:

Ξ
(
(i, j, C)

)
= {ai, bj} ∪ Xi ∪ Yj ∪ ED \

⋃
c∈C

preN(T )(c),

where

Xi =

⎧⎪⎨⎪⎩
A01 if i = 0,

A(i−1)i ∪ Ai(i+1) if i ∈ {1, 2, 3},
A34 ∪ A12 if i = 4,

and similarly

Yj =

⎧⎪⎨⎪⎩
B01 if j = 0,

B(j−1)j ∪ Bj(j+1) if j ∈ {1, 2, 3},
B34 ∪ B12 if j = 4.

In order to argue that Ξ is an isomorphism of asynchronous transition systems
A(T ) and na

(
N(T )

)
it suffices to establish the following:

1. Ξ(sini
A(T )) = MN(T ), i.e., the initial state of A(T ) is mapped by Ξ to the

initial marking of N(T ),

2. for all s ∈ SA(T ),

(a) if s
e→A(T ) t then Ξ(s) e→na(N(T )) Ξ(t),

(b) if Ξ(s) e→na(N(T )) M then there is t ∈ SA(T ), such that s
e→A(T ) t and

M = Ξ(t),

3. (e, f) ∈ IA(T ) if and only if •e• ∩ •f• = ∅.
It is a routine exercise to verify that clauses 1.–3. hold. [Proposition 6.26]
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in infinite games with Streett and Rabin chain winning conditions.
In Tiziana Margaria and Bernhard Steffen, editors, Tools and Algo-
rithms for Construction and Analysis of Systems, Second International
Workshop, TACAS ’96, volume 1055 of LNCS, pages 207–224, Pas-
sau, Germany, 27–29 March 1996. Springer-Verlag.

[Bra98] J. C. Bradfield. The modal mu-calculus alternation hierarchy is
strict. Theoretical Computer Science, 195(2):133–153, 30 March 1998.
A preliminary version appeared in Proceedings of CONCUR’96.

[BS00] Julian Bradfield and Colin Stirling. Modal logics and mu-calculi: an
introduction. To appear in Handbook of Process Algebra. Available
from http://www.dcs.ed.ac.uk/home/jcb/Research/,
February 2000.
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