Relational Database Models

Basic Concepts
Relational Theory

4/20/2005 ‘ ‘ 1 ‘ ‘ CS319 Theory of Databases

Basic concepts of the relational model 1

 relation, attribute, tuple
cf file, field type, record occurrence

relations have a degree (= # of attributes)
and cardinality (= # of tuples)

intensional view of relation = time-independent aspect
extensional view = current state of relation contents

» keys: primary, candidate, alternate

4/20/2005 ‘ ‘ 2 ‘ ‘ C€S319 Theory of Databases

Basic concepts of the relational model 2

Relation = special kind of file?
1. every 'file' contains only one record type

2. each record occurrence in a 'file' has same number of
fields cf "OCCURS DEPENDING ON” in COBOL

3. each record occurrence has a unique identifier

4. within a 'file', record occurrences have an unspecified
ordering, or are ordered according to values assoc
with occurrences (needn't be by primary key)

4/20/2005 ‘ ‘ 3 ‘ ‘ CS319 Theory of Databases ‘

Basic concepts of the relational model 3

Constraints

Key constraints

i.e. constraints implied by the existence of candidate
keys (as specified in DB intension)

* unigueness of tuples with given key

 attributes in primary keys non-null

4/20/2005 ‘ ‘ 4 ‘ ‘ CS319 Theory of Databases

Basic concepts of the relational model 4

Basic concepts of the relational model 5

Constraints ...

Referential constraints

Intension (indirectly) gives a specification of foreign
keys in a relation (as in the supplier-parts relation,
with tuples of the form (S#, P#, QTY))

The use of keys for supplier and parts in this way
independently constrains the S# and P# attributes to
values that are either null or designate uniquely
identified entities

Constraints ...

Integrity constraints

Certain constraints are imposed by the semantics of
the data. E.g. person’s height is positive, date-of-birth
won't normally be a future date etc

Real-world constraints can be too rich to express:
» hard to capture type of real-world observables
* have data dependent constraints, motivating triggers

4/20/2005 ‘ ‘ 5 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 6 ‘ ‘ C€S319 Theory of Databases

Summary: Basic concepts of relational model

Query Languages for Relational Databases 1

Relation: relation, attribute, tuple

Relation as analogue of file: cf. file, field type, record
Relational scheme for a database: cf. file system

- Degree and cardinality of a relation

- Intensional & extensional views of a relational scheme

Keys: primary, candidate, foreign

Constraints: key, referential, integrity

Issue: how do we model data extraction formally?

E.F. (“Ted”) Codd is the pioneer of relational DBs
Early papers: 1969, 70, 73, 75

Two classes of query language: algebra / logic

1. Algebraic languages
a query = evaluating an algebraic expression

2. Predicate Calculus languages
a query = finding values satisfying predicate

4/20/2005 ‘ ‘ 7 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 8 ‘ ‘ CS319 Theory of Databases

Query Languages for Relational Databases 2

Query Languages for Relational Databases 3

Issue: how do we model data extraction formally?

2. Predicate Calculus languages
a query = finding values satisfying predicate

Two kinds of predicate calculus language

Terms (primitive objects) tuples xor domain values:
 tuples = tuple relational calculus

+ domain values = domain relational calculus

Examples of Query Languages

algebraic: ISBL - Information System Base Language

tuple relational calculus: QUEL, SQL

domain relational calculus: QBE - Query by Example

Issue: how are these languages to be compared?

4/20/2005 ‘ ‘ 9 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 10 ‘ ‘ C€S319 Theory of Databases

Query Languages for Relational Databases 4

Relational Algebra 1

Issue: how are query languages to be compared?
Answer (Codd)

Can formulate a notion of completeness, and show
that the core queries in these languages have
equivalent expressive power

* mathematical notion, based on relational algebra
* in practice, is a basic measure of expressive power:
practical query languages are ‘more than complete’

Relational Algebra

algebra = underlying set with operations on it

elements of the underlying set are referred to as
"elements of the algebra"

relational algebra = set of relations + ops on relations

cf set of polynomials with addition and multiplication

4/20/2005 ‘ ‘ 1 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 12 ‘ ‘ CS319 Theory of Databases

Relational Algebra 2

Relational Algebra 3

... relational algebra = set of relations + ops on relations

Definition: a (mathematical) relation
is a subset of D; x D, x x D,
where Dy, D,,, D, are domains

Typical element of a relation is (d,, d,, d)
where d, e D;for1 Qi Qr

D, x D, x x D, is the type of the relation

r is the arity of the relation

Mathematical relation is an abstraction

* types are restricted to mathematical types
e.g. height, weight and currency all numerical data

« components of a mathematical relation are indexed

don't use named attributes in the mathematical
treatment - in effect, named attributes just make it
more convenient to specify relational expressions

.... ‘abstract’ expressive power unchanged

4/20/2005 ‘ ‘ 13 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 14 ‘ ‘ C€S319 Theory of Databases

Relational Algebra 4

Relational Algebra 5

Basic algebraic operations on relations

1. Union

R U S defined when R and S have same type
R U S = union of the sets of tuplesin R and S

2. Set Difference

R — S defined when R and S have same type
R — Sis the set of tuples in R but notin S

Basic algebraic operations on relations ...
3. Cartesian Product

R of type D; x D, x x D,
Softype E; x E, x x E

RxSisoftype D; xD, x....xD, xE; xE, x x E
R x S is the set of tuples of the form

(dy, dy, ..., d, €1, €5, ..., &)
where (d, d,,,d) € R, (e, €5,, &) € S

S

4/20/2005 ‘ ‘ 15 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 16 ‘ ‘ CS319 Theory of Databases

Relational Algebra 6

Relational Algebra 7

Basic algebraic operations on relations ...
4. Projection

[T, i), ... iw (R) is defined whenever R has arity r and
i(j)'s are distinct indices with 1 Qi) Qrfor1 QjQt

For a tuple, projection is defined by
Hi(l), i(2), ..., i(t) (dy, dy, ..., d) = (di(l)v di(2)' di(t))

[Ty, i), .. i (R) = set of distinct projections of tuples in R

‘ 4/20/2005 ‘ ‘ 17 ‘ ‘ CS319 Theory of Databases ‘

Basic algebraic operations on relations ...

5. Selection

Let F be a logical propositional expression made up
of elementary algebraic conditions.

or(R) is the set of tuples t in R whose components
satisfy the condition F(t).

In the absence of attribute names, refer to
components of tuples by index in F

€.0. G1—London" v 1="paris* (R) refers to set of tuples
whose first component is either London or Paris

4/20/2005 ‘ ‘ 18 ‘ ‘ C€S319 Theory of Databases

Relational Algebra 8

Simple examples of basic operations
R: X y z S: X y t
a b a b c
a
RuUS: union R-S: difference/minus
X y z X y z
a b C a y C
a y c
X y t

4/20/2005 ‘ ‘ 19 ‘ ‘ CS319 Theory of Databases

Relational Algebra 9

Simple examples of basic operations ...

R: X y z S: X y t
a b c a b c
a y c
RxS: cartesian product

t

O 0 o @ X X
<K<K ook X
O 0O O O N N
©» X 29 X @ X
O O X
O " o —~* o0

4/20/2005 ‘ ‘ 20 ‘ ‘ CS319 Theory of Databases

Relational Algebra 10

Relational Algebra 11

Simple examples of basic operations ...

HZ’ 3 (R): y z R: X y z
b C a b c
y c a y c
[(R): z projection
c

... hote that duplicates are deleted

61— (R): a b c selection
a y c

Summary of basic operations ...

1. Union RuUS
2. Set Difference R-S
3. Cartesian Product R xS
4. Projection [T i@, ...io (R)
5. Selection o:(R)

Codd's definition of completeness:

a query language is complete if it can simulate all 5
basic operations on relations

4/20/2005 ‘ ‘ 21 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 22 ‘ ‘ C€S319 Theory of Databases

Relational Algebra 12

Relational Algebra 13

Use of attribute names

In practical use of query languages, commonly use
attribute names to define operations, e.g.

- projection onto specific attribute names
- identification of components in selection
- making distinctions between domains

- forming natural joins

Claim:

none of these devices specifies operations that can't
be derived from the basic ones

Definition:

a derived operation in an algebraic system is an
operation that is expressible in terms of standard
operations of the algebra

e.g. sq() is derived from * via sq(x)=x*x

Derived operations on relations include
* intersection

e quotient

e join

e natural join

4/20/2005 ‘ ‘ 23 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 24 ‘ ‘ CS319 Theory of Databases

Relational Algebra 14

Derived relational operations ...

6. Intersection of relations of same type

R nS=R - (R -S) defines tuples common to R and S

7. Quotient
R/ S ="inverse of cartesian product"
specifies T where T x S = R, when such T exists!

In general, R/ S = set of tuples t such that <t, s> (that
Is, "t concatenated with s") isin R forallsin S

4/20/2005 ‘ ‘ 25 ‘ ‘ CS319 Theory of Databases ‘

Relational Algebra 15

Derived relational operations ...

8. Join

Ajoin of R and S is defined as the subset of R x S
for which there is an arithmetic relation (<, Q, =,A , >)
between the i-th component of R and the j-th
component of S

Most important kind of join is the equijoin
i=

A join is a selection from Cartesian product

4/20/2005 ‘ ‘ 26 ‘ ‘ C€S319 Theory of Databases

Relational Algebra 16

Derived relational operations ...

In practice, Cartesian product often generates relations
that are too large to be computed efficiently

More practical operation to join relations is natural join.

Definition of natural join refers to equality of domains
= simplest to describe w.r.t. named attributes

natural join = "equijoin without duplicate columns”

4/20/2005 ‘ ‘ 27 ‘ ‘ CS319 Theory of Databases

Relational Algebra 17

Derived relational operations ...
9. The Natural Join

Derive the natural join R = S by
» forming product R x S

» selecting those tuples (r,s) where r and s have same
values for all common attributes

* making a projection to remove duplicate columns that
correspond to these common attributes

R*S =1l i2) .. im) Oarx=sx(R X S)
with an appropriate choice of indices i(j) & attributes x

4/20/2005 ‘ ‘ 28 ‘ ‘ CS319 Theory of Databases

Summary of Relational Algebra concepts

ISBL: A Relational Algebra Query Language 1

Primitive operations:

e 1. Union RuUS
e 2. Set Difference R-S
« 3. Cartesian Product RxS
* 4. Projection i, i@, .10 R)
« 5. Selection o(R)

Derived operations: intersection, natural join, quotient

Codd’s definition of completeness:

a query language is complete if it can simulate all 5
basic operations on relations

ISBL - Information System Base Language

Devised by Todd in 1976
IBM Peterlee Relational Test Vehicle (PRTV)
PL/1 environment with query language ISBL

One of the first relational query languages
... closely based on relational algebra

The six basic operations in ISBL are union, difference,
intersection, natural join, projection and selection

4/20/2005 ‘ ‘ 29 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 30 ‘ ‘ C€S319 Theory of Databases

ISBL: A Relational Algebra Query Language 2

ISBL: A Relational Algebra Query Language 3

Operators in ISBL are ‘+’, *-', ‘%', . and *' .

R+S union of relations

R - S difference operation with extended semantics
R%AB,..,Z projection onto named attributes
R : F selection of tuples subject to boolean formula F
R .S intersection

R *S natural join

R - S is defined whenever R and S have some attribute
names in common: delete tuples from R that agree
with S on all common attributes.

Comparison: Relational Algebra vs ISBL

RuS R+S

R-S R-S subsumes
RxS no direct counterpart
[T, i), ..ip (R) R%A,B,..,Z
o:(R) R:F

contrived derived op R*S

To prove completeness of ISBL, enough to show that
can express Cartesian product using the ISBL
operators - return to this issue later

4/20/2005 ‘ ‘ 31 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 32 ‘ ‘ CS319 Theory of Databases

ISBL: A Relational Algebra Query Language 4

ISBL: A Relational Algebra Query Language 5

ISBL as a query language

Two types of statement in ISBL

LIST <exp> print the value of exp
R = <exp> assign value of exp to relation R

In this context, R is a variable whose value is a relation

Notation: use R(A,B,...,Z) to refer to a relation with
attributes A, B, ..., Z

Example ISBL query to specify the composition of two
binary relations R(A,B) and S(C,D) where A,B,C,D
are attributes defined over the same domain X (as
when defining composition of functions XUX):

Specify composition of R and S as RCS, where
RCS=(R*S):B=C% A, D

In this case: R * S = R x S because attribute names

(A, B), (C, D) are disjoint [cf. completeness of ISBL]

lllustrates archetypal form of query definition:
projection of selection of join

4/20/2005 ‘ ‘ 33 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 34 ‘ ‘ C€S319 Theory of Databases

ISBL: A Relational Algebra Query Language 6

ISBL: A Relational Algebra Query Language 7

Assignment and call-by-value

After the assignment

RCS=(R*S):B=C% A, D
the variable RCS retains its assigned value whatever
happens to the values of R and S

Hence all subsequent "LIST RCS" requests obtain
same value until reassignment

cf call-by-value parameter passing mechanisms

Delayed evaluation and call-by-name

* have a delayed evaluation mechanism to change
the semantics of assignment cf. a "definitive notation"
or a spreadsheet definition

» to delay the evaluation of the relation named R in an
expression, use NIR in place of R

RCS=(N'R*NIS): B=C% A, D

» this means that the variable RCS is evaluated on a
call-by-name basis: i.e. it's value is computed as
required using the current values of R and S

* whenever the user invokes "LIST RCS" in this case,
the value of RCS is re-computed

4/20/2005 ‘ ‘ 35 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 36 ‘ ‘ CS319 Theory of Databases

ISBL: A Relational Algebra Query Language 8

ISBL: A Relational Algebra Query Language 9

Uses for delayed evaluation
 definition of views is facilitated

 allows incremental definition of complex expressions:
use sub-expressions with temporary names, supply
extensional part later

 useful for optimisation: assignment means immediate
computation at every step, delayed evaluation allows
intelligent updating of values

Renaming

For union & intersection, attribute names must match
e.g. R(A,B) + S(A,C) is undefined etc.

To overcome this can rename attributes of R by
(R%A, B — C)
This project-and-rename creates relation R(A,C).

Can use this to make attributes of R & S disjoint, so that
R*S=RxS,
proving that ISBL is a complete query language

4/20/2005 ‘ ‘ 37 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 38 ‘ ‘ C€S319 Theory of Databases

Tensions between theory and practice in ISBL

ISBL: A Relational Algebra Query Language 10

» Mathematical relations abstract away certain
characteristics of data that are important to the
human interpreter — e.g. types, order for table
inspection

» Certain activities that are an essential part of data
processing, such as updating relations, forming
aggregates etc are not easy to describe formally

» Classical algebra uses homogeneous data types,
doesn’t deal elegantly with exceptions 3/0 = ? etc

Limitations of ISBL

ISBL is complete, but lacks features of QUEL, SQL etc
e.g. no aggregate operators
no insertion, deletion and modification
Primarily a declarative query language

Address these issues in the PRTV environment - user
can also access relations via the general-purpose
programming language PL/1

4/20/2005 ‘ ‘ 39 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 40 ‘ ‘ CS319 Theory of Databases

ISBL: A Relational Algebra Query Language 11

lllustrative examples of ISBL use

Refer to the Happy Valley Food Company [Ullman 82]
Relations in this DB are:
MEMBERS(NAME, ADDRESS, BALANCE)

ORDERS(ORDER_NO, NAME, ITEM, QUANTITY)
SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

4/20/2005 ‘ ‘ 41 ‘ ‘ CS319 Theory of Databases ‘

ISBL: A Relational Algebra Query Language 12

lllustrative examples of ISBL use

MEMBERS(NAME, ADDRESS, BALANCE)
ORDERS(ORDER_NO, NAME, ITEM, QUANTITY)
SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

1. Print the names of members in the red:
LIST MEMBERS : BALANCE < 0 % NAME

i.e. select members with negative balance and
project out their names

4/20/2005 ‘ ‘ 42 ‘ ‘ C€S319 Theory of Databases

ISBL: A Relational Algebra Query Language 13

lllustrative examples of ISBL use

MEMBERS(NAME, ADDRESS, BALANCE)
ORDERS(ORDER_NO, NAME, ITEM, QUANTITY)
SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

2. Print the supplier names, items & prices for suppliers
who supply at least one item ordered by Brooks

OS = ORDERS * SUPPLIERS
LIST OS: NAME="Brooks" % SNAME, ITEM, PRICE

... a simple example of project-select-join

ISBL: A Relational Algebra Query Language 14

lllustrative examples of ISBL use

MEMBERS(NAME, ADDRESS, BALANCE)
ORDERS(ORDER_NO, NAME, ITEM, QUANTITY)
SUPPLIERS(SNAME, SADDRESS, ITEM, PRICE)

2. (commentary on answer) Need two of the relations:
SUPPLIERS required for supplier details
ORDERS to know what Brooks has ordered

The join OS holds tuples where item field contains item

"ordered with associated order info” and
"supplied by supplier with assoc supplier info"

.. tuples featuring Brooks' name correspond to an item
ordered by Brooks with its associated supplier details

4/20/2005 ‘ ‘ 43 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 44 ‘ ‘ CS319 Theory of Databases

ISBL: A Relational Algebra Query Language 15

ISBL: A Relational Algebra Query Language 16

3. Print suppliers who supply every item ordered by
Brooks

"Every item" is universal quantification

Strategy: translate (VX)(p(x)) to =(3x)(=p(x))

find suppliers who don't supply at least one of the
items that is ordered by Brooks, and take the
complement of this set of suppliers

Notation: V is “for all”, 3 is “there exists”, — is “not”

3. ... suppliers supplying every item ordered by Brooks

S = SUPPLIERS % SNAME
| = SUPPLIERS % ITEM
NS = (S * 1) - (SUPPLIERS % SNAME, ITEM)
» Srecords all supplier names, and | all items supplied

* NS is the "does not supply" relation: all supplier-item
pairs with pairs such that s supplies i eliminated

Now specify items ordered by Brooks ...
B = ORDERS : NAME="Brooks" % ITEM

4/20/2005 ‘ ‘ 45 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 46 ‘ ‘ C€S319 Theory of Databases

ISBL: A Relational Algebra Query Language 17

3. ... suppliers supplying every item ordered by Brooks

NS
B

"doesn't supply" relation
"items ordered by Brooks"

.. find suppliers who don't supply at least one item in B
NSB = NS.(S * B)
.... set of (supplier, item) pairs such s doesn't supply i
and Brooks ordered i.

Answer is the complement of this set:
S - NSB % SNAME

To follow ...

Relational Theory: Algebra and Calculus
SQL review

4/20/2005 ‘ ‘ 47 ‘ ‘ CS319 Theory of Databases

4/20/2005 ‘ ‘ 48 ‘ ‘ CS319 Theory of Databases

