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Abstract

Trust and reputation allow agents to make informed decisions about potential interactions. Trust in an
agent is derived from direct experience with that agent, while reputation is determined by the experiences
reported by other witness agents with potentially differing viewpoints. These experiences are typically
aggregated in a trust and reputation model, of which there are several types that focus on different aspects.
Such aspects include handling subjective perspectives of witnesses, dishonesty, or assessing the reputation
of new agents. In this paper we distil reputation systems into their fundamental aspects, discussing first
how trust and reputation information is represented and second how it is disseminated among agents.
Based on these discussions, a unifying abstraction is presented for trust and reputation systems, along
with several instantiations to reflect the breadth of models found in the literature. Finally, the abstraction is
instantiated to combine the range of capabilities of existing reputation systems in the form of the Machine
Learning Reputation System (MLRS), which is evaluated using a marketplace simulation.

1 Introduction

Multi-agent systems (MAS) comprise intelligent agents that interact with each other [42]. Trust and
reputation are tools that enable agents to decide whether or not to interact with other agents and to select
interaction partners [10, 43]. Trust is the subjective belief, from the perspective of a trustor agent, that a
trustee agent will act as they say they will do in a given context [2, 16]. A trustor agent that has a high level
of trust in a trustee is confident that an interaction will be successful with good outcomes. Likewise, a low
level of trust in a trustee implies that the trustor agent expects an unsuccessful interaction. Whereas trust
is assessed using information collected by the trustor, the reputation of a trustee is based on the opinions
of several agents in a network.

Trust and reputation systems generally consist of the collection, dissemination, and aggregation of
agent experiences [12]. As agents interact with one another they record details of the interaction along
with a rating. In centralised systems these records are reported to a central authority which aggregates
them and provides reputation assessments of trustees to trustors [16]. In decentralised systems, agents
report their experiences and opinions to each other and aggregate them along with their own [38]. In both
centralised and decentralised systems several factors affecting reputation assessments must be considered,
including lack of experience with a trustee, dishonesty, subjective preferences, and context [10, 12, 43].

In this paper we distil trust and reputation into two kinds of aggregation, namely aggregating interaction
records to form trust opinions, and aggregating opinions to produce overall reputation assessments. To this
end, the way trust and reputation information is represented is discussed in detail, followed by how it is
disseminated while considering dishonesty and preferences. In particular, this paper makes the following
contributions:

1. we present a unifying abstraction for the different kinds of trust and reputation system found in the
literature,
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2. we show for each abstraction how a function of the same form and capabilities can be learned using
machine learning over gathered experiences, and

3. we present a machine learning framework to learn trust and reputation models that exhibit the
capabilities of existing systems in the literature.

Finally, we propose the Machine Learning Reputation System (MLRS) to combine the capabilities of the
different abstractions. The MLRS is then evaluated in a simulated marketplace, against trust and reputation
systems that are analogous to those found in the literature.

The paper is structured as follows. First, in Section 2 we review the literature on trust and reputation
systems with a focus on how trust and reputation information is represented and disseminated. A unifying
abstraction for trust and reputation systems is presented in Section 3, followed by a discussion of its
limitations and the corresponding limitations of existing trust and reputation systems in Section 4. Next,
Section 5 presents a machine learning framework for building trust and reputation models and introduces
the MLRS. Finally, an evaluation of several strategies in a simulated martketplace is presented in Section 6,
and Section 8 concludes the paper.

2 Related work

Trust and reputation systems can be divided in many ways, such as whether they are centralised or
decentralised, whether they process continuous or discrete ratings, or if they are suitable for dynamic
environments or not. Hoelz and Ralha [12] provide a meta-model for trust and reputation systems
consisting of three components, namely trust, reputation, and exploration. The trust and reputation
components consist of methods for gathering and processing direct and indirect experience, whereas
the exploration component contains methods for exploring the environment to locate new trustee agents
and reputation information sources. In this paper we consider only the trust and reputation components,
and in particular we consider the representation and dissemination of trust and reputation information.
When presenting abstractions for trust and reputation assessment models in Section 3, trust information
is generalised to opinions, and dissemination is further divided into gathering and aggregating opinions.

2.1 Representation of trust information

A trust or reputation score is typically given to the user as a single number, representing the trustworthiness
of a trustee agent. To compute a trust or reputation score, ratings of past interactions are typically
aggregated to produce a set of parameters that form an opinion. In the most simple cases the aggregation
computes the mean rating, which is then used as the measure of trustworthiness [13, 14, 30, 31]. Other
aggregations produce opinions with the parameters of probability density functions (PDF), such as the
Gaussian [38], Beta [15], or Dirichlet PDFs [29, 38]. In these cases, the measure of trustworthiness is
typically computed as the expected value of the PDF.

The representation of trustworthiness depends on the domain, as does the kind of ratings that
are assigned to interactions. In FIRE [13, 14], for example, ratings are assigned as real numbers in
the range [−1,1]. This means that the most suitable opinion representation is one with continuous
parameters. In FIRE, the mean rating is used as the opinion, which is in fact equivalent to a Gaussian
representation where the standard deviation is ignored. In BRS [15], ratings are given as binary (i.e.
{0,1}) to represent a successful or unsuccessful interaction. In this reputation system, therefore, a Beta
PDF is most appropriate with α being the number of successful interactions and β the number of
unsuccessful interactions. Regan et al. [29] extend this binary rating system to include more values, such
as {Very bad,Poor,OK,Good,Very good}, and use a Dirichlet PDF as the opinion.

In a stable environment, where the behaviour of agents does not change over time, simple aggregations
of historical interaction ratings can be used in assessing trust and reputation. If there are dynamic
properties to the environment and its members, however, some historical interactions may be more relevant
than others. If the performance of a trustee drifts over time, for example, the ratings given by trustors for
its interactions may decrease. Here, an old interaction rating is less relevant to the performance of the
trustee after the drift, than a more recent one. In several reputation systems, including REGRET [30],
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FIRE [13, 14], and BRS [15], this recency is considered by weighting the interaction records in the
aggregation, giving more weight to more recent interactions. In other systems, such as TRAVOS [37]
and HABIT [38], interaction ratings older than a threshold are ignored.

Weighting or ignoring interaction ratings by their recency is appropriate when older interactions are
always less relevant than more recent ones, but this is not always the case. If there is context associated
with interactions, it may be more useful to use this to determine their relevance to the assessment. This
notion of contextual trust has been investigated in even the first computational trust models. Marsh [24],
for example, considered general trust of an agent separately from situational trust of a trustee in particular
situation. The POYRAZ [33] reputation system uses an ontology to describe and compare contexts, and
uses only those ratings from relevant interactions in the assessment. If an old interaction occurred under
the same context as the one being evaluated, it is highly relevant to the assessment. If the interaction
occurred under a completely different context, no matter how recent, is unlikely to be relevant in the trust
or reputation assessment. Similarly, Urbano et al. [39] compare the current context to the context extracted
from negative experiences with the trustee. If there is a match above a threshold, the trust score is zero and
otherwise another trust aggregation is used over all interaction records involving the trustee. Both these
context aware assessments may be extended to provide a measure of context similarity, which can replace
the recency weighting.

An alternative to simple aggregation is to apply machine learning over features extracted from
interaction records, to produce models that predict the ratings [23]. In general, a machine learning
algorithm operates over a set of training samples, each with input values and an output target value.
The algorithm then learns a model that can accept inputs of the same form, and produce estimates of
the target. In the context of trust and reputation, the input values are a vector of features describing the
interaction (i.e. features describing the trustee and interaction context, etc.), and the output target value
is the rating. Once a learning algorithm has been applied to training samples extracted from interaction
records, the learned model can then be used to make predictions about potential future interactions. The
most common application of machine learning for trust and reputation is in deriving stereotype trust and
reputation [6, 7].

Stereotype trust and reputation relies on agents exhibiting traits prior to an interaction, where those
traits are indicative of their behaviour during an interaction. For example, a taxi service may be an airport
transfer service or a local taxi, which exhibit different traits that are observable prior to using their services.
The airport transfer taxi may have a large storage space, whereas the local taxi may be able to carry
more passengers. Other traits include those extracted from the organisational structure in which a trustee
is situated or their relationships with other trustees [3]. If several trustee agents with similar behaviours
exhibit similar traits, a stereotype can be formed to bootstrap or enhance the reputation assessment process.

Stereotype information is useful in highly dynamic environments where agents join and leave with
high frequencies, meaning that trustor agents may have too few direct experiences with trustees to make
reliable trust assessments. As with interaction context, one method for considering stereotype information
is to use ratings from historical interaction records where similar traits were observed. This is akin to the
clustering approach that Liu et al. [19, 21, 22] proposed in StereoTrust, where interactions are separated
into groups defined by observed traits. The interactions in groups that match the current trustee traits are
then aggregated to produce an overall trust value.

In using stereotype information alongside BRS, Burnett et al. [6, 7] propose a model that learns a
mapping from stereotype traits to a trust value. The output of the stereotype model is then used to shift the
Beta PDF, also considering how many direct experiences the trustor has had with the trustee. If the trustor
has directly interacted with the trustee only a small number of times, the distribution is shifted to have a
mean close to the output of the stereotype model. When the trustor has an abundance of experience with
the trustee, the stereotype model output has little impact on the overall assessment in comparison to the
direct experience.

When a trustor has not observed a trustee directly nor any of its traits, it has no information with
which to make a trust assessment. To overcome this lack of information it is typical to request reputation
information from witnesses, which is discussed in detail in Section 2.2. An alternative to this is to
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generalise stereotype traits so that a stereotype model can be built with even small numbers of interaction
records. Fang et al. [8] present a fuzzy decision tree that learns from a semantic ontology of stereotypes
that is able to generalise traits when making assessments of stereotype trust. For instance, if the trustor
has experience with trustees that have the trait of their location being China, this can be generalised to
Asia in the ontology. With this generalisation, the decision tree is then able to make an assessment of
stereotype-trust for a trustee in Japan even when there is no experience of trustees in this location.

Some representations of trust and reputation, in particular those that are based on PDFs, also provide
an accessible measure of confidence for the trust score. Teacy et al. [37] define confidence in a Beta
PDF as the integral of a range around the expected value, which increases as more evidence is gathered
and α +β increases. This confidence measure can be used to evaluate how reliable the trust score is, in
particular when deciding whether or not to use other sources of information (see Section 2.2). Rather than
confidence, Jøsang and Ismail [15] propose a measure of uncertainty for the Beta PDF, which decreases as
more evidence is gathered. Other measures of confidence may be based on the variance of the distribution,
particularly if the representation used is a Gaussian PDF. In general, a PDF that has a high variance is
considered to be less reliable than a PDF with low variance, which should be reflected in the confidence
measure.

For opinions produced by machine learning, Liu et al. [23] discuss using the estimated performance of
the model along with characteristics of the input to provide a measure of confidence in the trustworthiness
score. In particular, confidence in assessments should be low for models that are known to perform poorly
in evaluation. A learned model can be evaluated using either k-folds cross validation, or by using testing
samples that are distinct from the training samples [41]. Furthermore, several machine learned models,
including decision trees and naı̈ve Bayes, provide confidences alongside their predictions.

Finally, trustworthiness is sometimes considered to have multiple dimensions, such as when inter-
actions are rated using multiple terms. In a logistics scenario, for example, there may be two term
dimensions, such as timeliness of delivery and politeness. If a trustor does not mind whether the trustee
is polite or not, then it can look at timeliness only, but if both timeliness and politeness matter then
both should be considered. In this paper, we make the simplifying assumption that ratings, trust and
reputation have only one dimension. Furthermore, a multidimensional rating can be converted to have a
single dimension by taking a weighted average, or multiple reputation models can be created for each
dimension and their outputs averaged [9].

2.2 Dissemination of reputation information

In most trust and reputation systems the main source of information is the direct experience of the trustor
agent. When a trustor has too little direct experience, they can gather information from other sources.
Typically, these other sources are witness agents, or advisors, who report on their experiences to help the
trustor assess reputation. Another source of reputation information is from reference agents selected by
the trustee [13, 14]. There are two main considerations when disseminating reputation information, first
is how reputation is communicated from witnesses to the trustor, and second is how to handle dishonesty
of witnesses, their personal preferences, and different perspectives.

Reputation systems generally fit into one of two broad categories, ether centralised or distributed.
In centralised systems, reputation information, typically in the form of raw ratings, is transmitted to a
central authority for processing. In the SPORAS reputation system [44], trustor agents provide ratings to
a central authority, which then updates the reputation score for the trustee accordingly. Once processed,
trustor agents can request this reputation information to inform their decisions of whether or not to interact
with a trustee. The processing can be simply collating witness ratings for the trustor to aggregate, or it can
be an aggregation in itself with the result provided to the trustor.

Whereas centralised systems require a central authority to be maintained, reputation information
in decentralised systems is communicated directly between agents in the network. A trustor typically
requests information from witnesses, who then report their opinions to the trustor for combination with
their own direct evidence. To make requests the trustor must first discover witnesses, which can be found
either via a public directory, if one exists, or by asking agents the trustor has knowledge of (such as those
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they have previously interacted with). This is the basis of TrustNet [32], in which a request for reputation
information is sent to agents the trustor has previously interacted with. These witnesses are then able
to make requests on behalf of the trustor within their neighbourhood, creating a network of trust to be
combined into a single reputation assessment.

The FIRE [13, 14] reputation system has a similar reputation dissemination mechanism, where agents
within a local radius on a map are to be considered neighbours. Requests are then made to neighbours
of the trustor, who pass them onto their neighbours recursively until sufficient reputation information is
gathered to make an assessment. Likewise, in DTMAS [1] a breadth first search of the agent network is
performed, up to a given depth decided by the trustor.

When reputation information is gathered, it must then be combined along with any direct information
the trustor has. If witnesses are known to be honest and to rate interactions in the same way as the trustor,
the opinions can be combined using either a sum of functions or sum of parameters approach [20]. In a sum
of functions, the expected value of each of the gathered opinions is computed and the results combined
to produce an overall reputation score. When opinions all have the same representation (such as Beta or
Dirichlet PDFs) a sum of parameters can be used, to produce an overall opinion.

Reports provided by witnesses that are dishonest or otherwise rate interactions differently to the trustor
can be detrimental to reputation assessment if they are trusted blindly. The FIRE reputation system is able
to control the impact that witness reputation has on the overall reputation assessment, but this can lead
to reliable opinions being ignored unfairly. Building on BRS and using Beta PDFs, Whitby et al. [40]
iteratively remove witness opinions that have expected values that are outliers when compared to all the
opinions combined. Teacy et al. [37] developed TRAVOS to discount individual opinions based on the
perceived accuracy of the witness. If a witness has previously provided reports that differed significantly
from the subsequent interaction ratings, they are deemed to be unreliable. Reports provided by unreliable
witnesses are given a low weight so that they affect the overall reputation assessment less than those
from reliable witnesses. In STAGE, Şensoy et al. [34] filter unreliable opinions, while using stereotypes
extracted from witnesses to determine their reliability.

Discounting reports from witnesses who have previously provided poor information means that they do
not negatively affect the reputation assessment. In some cases, where agents rate interactions differently
and in a consistent way, however, their ratings may be useful. Reports provided by a witness that always
rates interactions inversely from the trustor are useful in reputation assessment once this difference in
ratings is understood. Koster et al. [17] provide a argumentation framework for agents to discuss and
translate their opinions from one perspective to another. Using Bayesian networks, BLADE [29] and
HABIT [38] both aim to re-interpret ratings from such witnesses, and maximize the useful information
that is input into reputation computation. BLADE and HABIT both learn the rating function used by
witnesses from their ratings of several trustees, comparing them to those of the trustor. Similarly, Koster
et al. [18] use shared experiences to learn an alignment for trust models in different perspectives.

3 Model abstractions

Reputation models aim in general to compute the trustworthiness of an agent using information gathered
from the environment. The reputation score, Rte

tr , is often an estimate of the utility that will be gained if an
interaction took place between the trustor agent, tr (who is performing the reputation assessment) and the
trustee agent, te (whose reputation is being assessed) [14]. In other cases the reputation is the likelihood
that the interaction will be successful, or have an outcome above some threshold [7]. The information
gathered is often collected as descriptions of interactions that have taken place, involving a trustee, te,
and a trustor, tr, or some other witness agent. These descriptions are in the form of tuples, describing
the agents that interacted, details of the interaction, and any ratings assigned by tr to the interaction. The
ratings represent how good the trustor agent thought the interaction was, and usually are either the utility
gained during the interaction or whether or not it was successful.

In this section we discuss abstractions of the kinds of reputation system proposed in the literature.
First we discuss the sources of information used in reputation assessments, namely the experience of the
trustor and that of witness agents. Second, given these sources of information, we detail a set of trust
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Symbol Description

tr Trustor agent
te Trustee agent
w Witness agent

agt An arbitrary agent (which can be either a trustor, witness, or trustee in a given interaction)
W Set of witness agents
Iagt Set of possible interaction experience databases from the perspective of agt
Sagt Set of possible situations from the perspective of agt
Oagt Set of possible opinions from the perspective of agt
Iagt Interaction database expressed from the perspective of agt

I Interaction tuple
S Situation tuple

Oagt Opinion expressed from the perspective of agt
Θ Set of possible trustee traits
θ A particular set of trustee traits
C Set of possible user-contexts
C A particular user-context
M Set of possible service-contexts
M A particular service-context

Table 1 Notation used for reputation system abstractions.

functions that aggregate interaction records to provide an opinion, and finally we detail mechanisms for
combining opinions provided by different agents. The abstractions we describe are to be combined in
different permutations, to produce reputation systems that are robust to different kinds of environment
with different requirements. For example, in highly dynamic environments where agents exhibit traits
indicative of their behaviour during an interaction, stereotype information may be combined with direct
and witness information for more accurate reputation assessments [7, 34].

In general, reputation is computed as,

R(S) = E[u(S)|D ] (1)

where u(S) is the utility of the situation (an estimate of prospective interaction ratings), S, being evaluated,
and D is the set of information sources used in the evaluation. A situation is a set of parameters describing
a prospective interaction to be assessed by a reputation system. For example, a situation may describe an
interaction with a trustee, te, under user-context, C. The reputation system then analyses this against the
data it has gathered from the environment, which is typically a set of interaction records, I. Throughout
this section, and subsequently in this paper, we will use the notation defined in Table 1.

3.1 Gathering opinions

In this section we discuss the sources of information that reputation assessment is based on. In particular,
direct information, which is derived from the experiences of the trustor agent, and witness information,
which is provided by agents other than the trustor. In the literature, witnesses are often considered as
acquaintances of the trustor, and are typically other trustor agents not involved in the current reputation
assessment. Here, we consider a witness as any agent able to provide information that is relevant to the
reputation assessment. This may be a central authority, such as a regulatory body, or other competing
providers, such as other trustees.
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3.1.1 Direct information
Almost all reputation systems use some form of direct information, collected through the trustor agent’s
own experience. In general, the direct-trust of a trustee in a particular situation is,

R(S) = E[u(S)|Itr], (2)

which estimates the utility of the prospective situation, given the interaction history of the trustor, Itr.
Our abstraction for this reputation computation is a function that maps a situation and a set of interaction
records to an opinion representation,

ftr : Str× Itr→Otr. (3)

For example, a situation may be described simply as a potential interaction between the trustor and the
trustee (i.e. S = 〈tr, te〉), with interaction records consisting of this information along with a rating (i.e.
I ∈ Itr = 〈tr, te,r〉). The direct-trust function then processes the interaction records with respect to the
situation to output an opinion, Otr.

In general, in this paper, we consider a situation tuple, S = 〈tr, te,τ,θ ,C〉, to contain all information
known during a reputation assessment prior to an interaction. This includes the interacting parties, tr and
te, the current timestamp, τ , the trustee stereotype traits observed by the trustor, θ , and the known-context,
C. Interaction records, I = 〈tr, te,τ,θ ,C,M,r〉, contain the situation definition along with unforeseen-
context information, M, and the rating given by the trustor, r, which are only known after the interaction
has taken place. For both situation and interaction tuples an element is indexed using a subscript, for
example the trustee agent in an interaction, I, is Itr.

In a typical reputation system, such as FIRE or BRS, this function searches through interaction records
to find those that match the current situation (i.e. those with the same te). These records are then
aggregated to produce an opinion, which in FIRE is a real number in the range [−1,1], and in BRS is
a Beta PDF represented by α and β parameters. In the general case, a second function,

f rep
tr : Otr→ R, (4)

is applied to convert the opinion to a real valued trust score. In FIRE, this function may simply output the
opinion, whereas in BRS this function queries the Beta PDF for its expected value.

3.1.2 Witness information
In assessing reputation, the trustor may have little or no direct information to make a direct-trust
assessment and must acquire information from other sources, such as witnesses. When combined with
direct information, the reputation of a trustee in a particular situation is,

R(S) = E[u(S)|Itr,Iw∀w ∈W], (5)

where W is the set of all witness agents that provide information for use in the reputation assessment.
We define a witness as any agent that is not the trustor providing information for use in the

reputation assessment. Typically, witnesses are synonymous with advisor agents who are acquaintances
or neighbours of the trustor, but this can be extended to those gathered through a recursive search of
the trustor’s social network. In FIRE, another kind of witness is introduced, selected by the trustee as a
referee, to provide information for certified reputation. Although the information provided by these referee
witnesses cannot be tampered with by the trustee, it is likely that only referees with positive opinions will
be selected. This is therefore likely to result in certified reputation being optimistic with respect to the true
reputation score, which should be handled appropriately by the aggregation.

As with direct-trust, each witness has their own individual trust function,

fw : Sw× Iw→Ow, (6)

which maps situations and interaction records to opinions, all from their own perspective and in their own
representations. After applying this function, the witnesses then provide their opinions to the trustor to
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combine them along with their direct-trust score. Such a combination function has the form,

f agg : Otr× ∏
w∈W

Ow→Otr, (7)

mapping all gathered opinions onto an opinion in the representation used by the trustor. Finally, the
opinion is processed in the same way as in Equation 4 to produce a single reputation score, Rtr(Str).

3.2 Opinion representation

This section outlines a representative selection of opinion representations. First, a simple aggregation
of ratings is considered, which is then built upon to incorporate more complex facets of reputation
assessment, including stereotypes and contexts. Each element of the situation and interaction tuples may
be irrelevant for a particular environment or opinion representation, and may be omitted when appropriate.

3.2.1 Basic trust
A simple method, used in FIRE, for computing an opinion is to take a weighted mean over all ratings from
interactions that match the prospective situation,

Otr = ftr(S,I) =
∑I∈I Ψ(S, I) · Ir

∑I∈I Ψ(S, I)
, (8)

where the interaction weight,

Ψ(S, I) =

{
1 if Ste = Ite
0 otherwise.

(9)

As this aggregation represents opinions as a single real number, it is appropriate to also use this as the
trust score, i.e. Rtr(Str) = Otr.

When ratings are binary, as in BRS, the parameters of a Beta PDF can be used to form the opinion,

Otr = ftr(S,I) = 〈α,β 〉, (10)

where,

α = ∑
I∈I

{
Ψ(S, I) if Ir = 1

0 otherwise
, and β = ∑

I∈I

{
Ψ(S, I) if Ir = 0

0 otherwise
, (11)

represent the number of matching positive and negative ratings respectively. While there are more concise
ways of defining α and β (e.g. using set cardinality), the summations of interaction weights enable BRS
to be sensitive to recency, stereotype, and context information, as discussed later in this section. This
representation is used by all reputation systems that are based on BRS, including TRAVOS [37] and
STAGE [34]. As previously stated, where opinions are represented as a set of parameters, a second trust
function is required,

f rep
tr (Otr) =

α +1
α +β +2

, (12)

which calculates the expected value of the Beta PDF and transforms the opinion into a trust or reputation
score.

Opinions can be represented using different sets of parameters, including those for Dirichlet PDFs [29,
38] or Gaussian distributions [38]. Due to space constraints we do not provide a comprehensive set of
opinion representations, but the abstraction presented is able to accommodate any opinion representation
that can be queried for a trust value (such as the expected value of the distribution they represent). As an
example, the parameters of a Dirichlet PDF may represent the number of times a particular rating out of
a set of discrete values (e.g. {Very poor,Poor,Good,Excellent}) has been given in previous interactions.
The expected value and reputation or trust score is then computed as the most common rating. It is also
possible to represent trust in multiple dimensions by using multiple sets of parameters in an opinion. For
example, both the quality and timeliness of a service may be represented as two Beta PDFs in one opinion,
i.e. Otr = 〈αquality,βquality,αtimeliness,βtimeliness〉. Our abstraction only assumes that the final reputation
score is represented as a single value.
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3.2.2 Weighting for recency
Many reputation systems consider recent information to be more important than old information. This
is typically achieved through applying weights to ratings in the aggregation proportionally to their age,
which can be incorporated into the abstractions interaction weighting function,

Ψrec(S, I) =

{
λrec(S, I) if Ste = Ite
0 otherwise,

(13)

where λrec(S, I) is a recency function that outputs a larger value for more recent interactions. The
FIRE reputation system uses a recency function that gives logarithmic weights based on the age of the
interaction,

λrec(S, I) = e
− ∆(Sτ ,Iτ )

λd , (14)

where ∆(Sτ , Iτ) is the time since interaction I, and λd is a constant defining the amount of decay [14]. Of
course, this weighing mechanism can also be used when aggregating the α and β parameters of BRS.

In some reputation systems old information is simply ignored, giving a interaction weighting of,

Ψrec(S, I) =

{
1 if (Ste = Ite)∧ (∆(Sτ , Iτ)≥ λτ)

0 otherwise.
(15)

Here, λτ is a cut-off for ignoring interaction ratings, where interactions older than the cutoff are given a
weight of 0 and not considered in forming the opinion.

3.2.3 Stereotypes
In many domains, agents exhibit traits that are indicative of their behaviour during an interaction, and are
observable during reputation assessment. If several trustee agents with similar behaviours exhibit similar
traits, a stereotype can be formed to bootstrap or enhance the reputation assessment process. In general
there are two techniques to incorporate stereotype information into the trust functions, namely to adapt
the match function to output stereotype similarity, or to use machine learning in the trust function.

The interaction weight when taking stereotype information into account should not depend on whether
the trustees are the same or not, but rather on the similarity of their stereotype features. For example, the
Jaccard index may be used to measure the similarity of the two sets of trait observations.,

Ψst(S, I) =
Sθ ∩ Iθ

Sθ ∪ Iθ

. (16)

As with recency, a threshold may also be used alongside a similarity measure such as the Jaccard index,
where the interaction weight is 1 when the similarity is above the threshold and 0 otherwise. This
thresholding method is akin to the clustering approach that Liu et al. [22] proposed in StereoTrust, where
interactions are separated into groups defined by observed traits. The interactions in groups that match the
current trustee traits are then aggregated to produce an overall trust value.

An alternative technique is to apply machine learning to build a predictive model, taking observed
traits as the inputs and outputting an estimate of trust. A stereotype function, f st(·), is built using learning
algorithms such as naı̈ve Bayes or the MD5 decision tree [28]. A training set can be generated from
interaction records, with the stereotype traits as inputs and the ratings as outputs. In particular, Burnett
et al. [6, 7] use the MD5 learning algorithm and generate one training sample per trustee, with the traits as
inputs, and the output variable is the direct trust computed using Equation 12. This gives a small training
set to learn from efficiently, but assumes that trustee traits do not change over time. An alternative to this
is to generate a sample for each interaction, but this may bias the trust value of a stereotype to a popular
trustee with numerous interactions. Once learned, observed traits, Sθ , are used as the input to estimate the
stereotype-trust, f st(Sθ ), of a trustee.

This output can then be combined with more simple aggregations, as in Burnett et al. [6, 7], Şensoy
et al. [34], and Taylor et al. [35, 36], or the model used directly as the opinion. Burnett et al. [6, 7] extend
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BRS to include stereotypes, and produce an opinion,

Otr = ftr(S,I) = 〈α,β , f st
tr (Sθ )〉, (17)

where the stereotype-trust, f st(Sθ ), is the likelihood of a successful interaction after observing the trustee
traits, Sθ . An overall trust value is then computed as,

f rep
tr (Otr) =

α +2 f st
tr (Sθ )

α +β +2
, (18)

When α + β u 0, this prior provides the trust function with a default value for trust, based on the
observed traits of the trustee. To combine this opinion with witness opinions, the mean value of each
of the parameters can be taken to form a new opinion. With no stereotype information, this equation
becomes equivalent to BRS in Equation 12 (i.e. when f st

tr (Sθ ) = 0.5).

3.2.4 Known context
When the context of a prospective interaction is known and is part of the situation tuple, it should be
accounted for in the reputation assessment. One approach is to alter the interaction weighting function so
that it reflects the similarity of the interaction record to the current context,

Ψctx(S, I) =

{
λctx(S, I) if Ste = Ite
0 otherwise,

(19)

where the Jaccard index is again used to measure context similarity,

λctx(S, I) =
SC ∩ IC
SC ∪ IC

, (20)

where SC and IC is recorded as a set of traits. As with stereotype and recency weighting, a threshold can
be applied, where the interaction weight is 1 when the similarity is above the threshold and 0 otherwise.

Another approach is to have a different opinion for each context [38],

Otr = ftr(S,I) = 〈SC,O
C1
tr ,O

C2
tr , . . .O

Cn
tr 〉, (21)

where OC1
tr ,O

C2
tr , . . . ,O

Cn
tr are contextual opinions for contexts, C1,C2, . . . ,Cn, each produced using aggrega-

tions over interaction records with a context sensitive interaction weighting. A trust score can be computed
using the most appropriate contextual opinion or as an aggregation of all the opinions, weighted by their
context similarities.

As with stereotype trust, a third approach to incorporate user context is to apply machine learning and
to use the context fetaures as inputs to a context model. The output of this model can then be either used
directly as the opinion or as a parameter in the trust function. This is discussed further in Section 5.

3.2.5 Unforeseen context
When the context is only known after an interaction has taken place, and not during the assessment of a
situation, it cannot be considered directly. Instead, the impact of contexts on previous interactions must be
considered when inspecting their ratings. We consider two kinds of unforeseen context, namely those that
were caused by the trustee and those that were caused by external factors. If the context is caused by the
trustee, then the interaction ratings are relevant when performing reputation assessment. For instance, if a
logistics company is delayed after taking on a second contract, a poor rating for timeliness may be relevant
and should be considered. If an external factor is the root cause of the context, such as an unexpected storm
causing the delay, it may be more reasonable to ignore a poor rating. Similarly, a good rating caused by
an external factor should also be ignored.

To consider these unforeseen contexts that should be ignored in reputation assessment, Miles and
Griffiths [25, 26] adapted the recency weighting of FIRE to reflect the impact of a context on an
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interaction. An example interaction weighting function for the abstraction is,

Ψmit(S, I) =


1 if (Ste = Ite)∧ (IM = normal)

0.1 if (Ste = Ite)∧ (IM 6= normal)

0 otherwise,

(22)

where an interaction unforeseen context, IM , is normal when the context was under the control of Ite, and
0.1 is arbitratily used to represent a low weight.

3.3 Opinion aggregation

To combine direct and witness information the opinions must be aggregated. One simple aggregation,
when all opinions contain the same parameters, is to take the mean of each opinion parameter value,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
Otr + ∑

w∈W
Ow

]
, (23)

where the addition of two opinions is the addition of their parameters. For example, the addition of two
BRS opinions, Oa = 〈αa,βa,〉 and Ob = 〈αb,βb,〉, is Oa +Ob = 〈αa +αb,βa +βb,〉. A trustor may wish
to give more importance to their own direct information compared to witness information, and so this
aggregation may be weighted to reflect this,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
ωdirOtr +ωwit ∑

w∈W
Ow

]
, (24)

where ωdir and ωwit are weights for the direct and witness information respectively. Similarly to
addition, multiplication of an opinion by a scalar is applied to each of the opinion parameters, i.e.
ωOa = 〈ωαa,ωβa〉. This weighted aggregation is similar to that used in FIRE, where the trustor defines
the weights to sum to one.

In general it is unreasonable to assume that all witnesses will be benevolent and provide opinions
from the same perspective as the trustor. To combat this, many reputation systems, such as TRAVOS [37]
and STAGE [34], discount witness opinions to limit their impact on the overall reputation assessment,
particularly if they differ subjectively. Other reputation systems, including BLADE [29] and HABIT [38],
map opinions from the witness perspective to the perspective of the trustor, accounting for differing
opinion representations and preferences.

3.3.1 Discounting witness information
If witnesses are known to be unreliable, it is possible to ignore their information in Equation 24 by
setting the witness weight to zero, ωwit = 0. Universally discounting all witnesses ignores some potentially
reliable information, however, and so TRAVOS [37] uses an individual weighting for each witness,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
ωtrOtr + ∑

w∈W
ωwOw

]
, (25)

based on the opinions they have previously provided. The individual weights again sum to one, and
are derived by comparing the opinions of trustees provided by the witnesses to what happened during
subsequent interactions with the same trustees. Specifically, the witness weights in TRAVOS shift the
Beta PDF toward the uniform distribution with α = β = 1 in proportion with the disagreement between
the witness and trustor opinions.

3.3.2 Reinterpreting witness information
When witnesses disagree with the trustor in a consistent way, then discounting or ignoring their opinions
may be detrimental to reputation assessment. For example, if a witness is observed to consistently have the
opposite opinion to the trustor, this knowledge can be used to reinterpret or flip future opinions provided
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by the witness. Similarly, opinions of a witness that are consistently optimistic about the performance of
trustees can be mapped to be more realistic. The opinion aggregation function for a reputation system
with this reinterpretation capability is,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
ωtrOtr + ∑

w∈W
ωwρ(Ow)

]
, (26)

where ρ(·) is a mapping function that reinterprets the witness opinion. The weighting, ωw, remains in this
definition for witnesses that are unreliable in an unpredictable way.

The mapping funtion, ρ(·), can be learned by inspecting the opinions provided by a witness against
those of the trustor. For example, if the witness has provided opinions for several different situations for
which the trustor also has sufficient information from which to form an opinion, a mapping between the
two perspectives can be built. Existing reputation systems that have this reinterpretation capability include
BLADE [29] and HABIT [38], which are based on Bayesian networks that model the rating functions of
witnesses and map their opinions to the trustor’s perspective.

4 Limitations

Trust and reputation is a multi-faceted problem, of which most trust and reputation systems target one
particular aspect. As a result, most reputation systems in the literature are limited as they do not easily
generalise to new environments with new information types or sources. In our abstraction we have
provided a mechanisms for including different types of information in aggregation models. The FIRE and
BRS models, for example, were extended to use context information by altering the interaction weighting
function, as in Equation 19.

While including information using weighting functions works in isolation, it is unclear how multiple
types of information should be combined using aggregation models. One approach may be to aggregate the
weights themselves, for example using a multiplication, but the distribution of weights may be complex.
Multiplying weights that are each in the range [0,1] may also produce very small values for overall
weights. This issue could be solved by separating the filtering and weighting of interactions, but this
adds unnecessary complexities into the abstraction that may limit its applicability in other ways.

Another limitation of many reputation systems is that they use endogenous discounting, causing a
feedback loop where useful witness information is discounted because it disagrees with unreliable direct
information [27]. This is not accounted for in our abstraction, as it relates to the computation of opinion
weights and formation for reinterpretation functions, rather than their application.

5 Machine learning of trust functions

In this section we view reputation assessment as a machine learning problem, and discuss how a trust
function can be learned algorithmically to form opinions. Using machine learning, descriptions of
interactions, their context, and the environment, can easily be incorporated in assessing reputation by
appending features to the samples. In addition, viewing reputation assessment as a machine learning
problem enables the use of established and well understood techniques to enhance the learning process,
including feature selection, cross-validation, and ensemble learning [41]. If context features extracted
from interaction tuples are not relevant to the ratings then they can be ignored by the machine learning
process, especially if feature selection techniques are applied.

In general, a supervised learning algorithm, F(·), builds a function, f ml(·), that maps m input features to
a target variable. The algorithm learns this function by processing training data with n samples, that each
have m features and a target variable. In the case of reputation assessment, the training data is generated
from interaction records, with m features extracted to describe an interaction and a target variable of the
rating. The training data for the basic trust function using direct information, comprises samples extracted
from all interactions tr has taken part in, Itr. Each interaction record produces one sample with values,
〈te;r〉, where te is an input feature signifying the trustee in the interaction, and r is the target value
representing the interaction rating. A learning algorithm is applied to the training samples, F(∀〈te;r〉 ∈
Itr), to produce the mapping function, f ml

tr (·). The reputation of different trustee agents is then assessed
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Trust function Input structure Similar Models Notes

Basic trust 〈te;r〉 BRS Sample for each interaction between the trustor or
witness agent and a trustee.

Recency 〈te;Ψrec(S, I)r〉 REGRET, FIRE Sample for each interaction between the trustor or
witness agent and a trustee, with training samples
weighted by their age.

Stereotypes 〈θ ;r〉 Burnett,
STAGE,
POSSTR

Sample for each interaction between the trustor or
witness agent and a trustee. This is to be combined
with other models, either by adding te to the
samples or by aggregating the outupts.

Known context 〈te,C;r〉 POYRAZ Sample for each interaction and witness reports,
including features describing the known context.

Unforeseen
context

〈te;Ψmit(S, I)r〉 Miles Sample for each interaction and witness reports,
with training samples weighted by the unforseen
contexts.

Combined trust 〈te,θ ,C;Ψmit(S, I)r〉 N/A This is a combination of the above models, with
training samples weighted by the unforseen con-
texts.

Table 2 Sample structures extracted from interaction records that can be used in a supervised machine learning
algorithm. The input features and target value of the sample structures are separated by ‘;’.

by inputting to the learned function samples of the form 〈te; ?〉, extracted from situation tuples describing
the potential interactions between tr and the different trustees. The estimated utility for the situation,
E[u(S)|Itr] = f ml

tr (〈te〉 ∈ S), is then the trust score for te in the prospective interaction.
Table 2 lists each of the trust functions discussed in Section 3.2, presenting the structures of input

data for their corresponding machine learning models. For clarity, input features are each separated by
‘,’, which are separated from the target value by ‘;’. For recency and unforeseen context the training
samples are weighted prior to applying the learning algorithm. In general, an all-or-nothing weighting
function can be used to filter out those training samples that are too old (as in Equation 15) or where an
unforeseen context occurred. Alternatively, several machine learning algorithms are able to account for
training weights, by learning more from training samples with high weights and less from those with low
weights.

Hereinafter, we do not repeat the input features when referring to a learning function or the learned
models. This is both for clarity and to abstract the input structures of the models, which are independent
of the learning algorithm and combining opinions. A opinion learned using direct information, Itr, is
therefore,

Otr = 〈 f ml
tr (S)〉, (27)

which can be defined using a partial function application,

f ml
tr (S) = F(Itr)(S). (28)

Similarly, an opinion learned by a witness, w, is,

Ow = 〈 f ml
w (S)〉= 〈F(Iw)(S)〉. (29)

5.1 Opinion aggregation

To combine direct and witness information with trust functions of this kind, there are two possibilities.
First, the learned functions can be stored in the opinion tuple and then combined in the opinion
aggregation, either by collating the interaction records or by combining the model parameters. Second, the
outputs of the learned functions comprise the opinions and these can be aggregated to produce an overall
reputation score. For simplicity, in this paper we mainly consider aggregating the model outputs, as this is
more amenable to discounting and reinterpretation of opinions. Specifically, the overall reputation score
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is the mean output of the direct and witness models,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
f ml
tr (S)+ ∑

w∈W
f ml
w (S)

]
. (30)

5.2 Discounting witness opinions

To discount unreliable witness opinions we use,

f agg(Otr,Ow∀w ∈W) =
1

|W|+1

[
ωtr f ml

tr + ∑
w∈W

ωw f ml
w (S)

]
, (31)

where ωtr and ωw are weights that reflect the performance of the respective learned models. The
performance can be measured in accuracy, true positive or true negative rates, precision, or recall, etc.,
and can be estimated using a k-folds cross validation or another evaluation procedure [41]. In keeping
with the TRAVOS discounting mechanism, the weights in this paper represent the ability of the learned
model to predict ratings given by trustor. Specifically, ωtr = 1, and each witness weight is the accuracy
of the witness model estimated using the direct interactions where trustor has previously given a rating.
For discrete rating systems this is the number of true positives when predicting the rating divided by the
number of direct interaction records. With continuous ratings, the accuracy may be derived from the root
mean squared error.

5.3 Reinterpreting witness opinions

To reinterpret witness opinions, an individual reinterpretation model, ρw(·), is learned for each witness,
w ∈W, to reinterpret the outputs of the witness models to the perspective of tr. The training samples for a
reinterpretation model are generated from both the interaction records and witness reports, Itr ∪ Iw. Each
of these records is used to generate a reinterpretation training sample, 〈 f ml

w (I); f ml
tr (I)〉, with an input of

the witness opinion and a target of the trustor opinion. The reinterpretation model learned,

ρw(·) = F(∀〈 f ml
w (I); f ml

tr (I)〉 ∈ Itr ∪ Iw) (32)

is then able to convert an input rating from the perspective of the witness, Ow, to the perspective of the
trustor, Otr.

It is also possible to include the trustee, stereotype, and context features in this reinterpretation model,

ρw(·) = F(∀〈te,θte,C,M, f ml
w (I); f ml

tr (I)〉 ∈ Itr ∪ Iw), (33)

for when differences in agent perspectives are dependent on the situation. This can then be applied as,

ρ(〈te,θte,C,M, f ml
w (〈te,θte,C,M,〉)〉 ∈ S) = ρ(S, f ml

w (S)) (34)

The final reputation value output is an aggregate of the direct interaction trust mdoel, ftr(·), and
reinterpreted outputs of the witness function, fw(·). Many different aggregation functions can be used,
but in this work we use a weighted mean of model outputs. Reputation is then computed as,

R(S) =
1

|W|+1

[
ωtr f ml

tr (S)+ ∑
w∈W

ωwρw(S, f ml
w (S))

]
, (35)

and is referred to as the MLRS strategy.
Although MLRS requires 1 + 2|W| models to be learned in total, each of the individual models

can be relatively simple and are often able to be learned from small sample sizes. Naı̈ve Bayes has a
computational complexity of O(nm), for example, which means that models can be learned quickly. The
interactions used to learn each trustor and witness model are also only those interactions recorded by the
trustor and provided by the individual witnesses, meaning that n is often not large. If the sample is too
large, subsampling techniques can be applied to reduce its size, and many machine learing algorithms,
including naı̈ve Bayes, can be updated with new samples to avoid a full re-learning of the model. Also,
features may be selected using feature selection techniques such as Mutual Information and Principal
Components Analysis, to limit m and reduce learning time further [41].
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(a) Trustee profile (µ = 0.4,σ = 0.5)
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(b) Context profile (µ = 0.1,σ = 1)
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(c) Trustee-context profile (a+b)
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(d) Trustee profile (µ = 0.9,σ = 0.5)
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(e) Context profile (µ =−0.5,σ = 1)
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(f) Trustee-context profile (d+e)

Figure 1: Two example combinations of trustee and context profiles.

Trustee profile µte σte θte

0 0.0 [0.0,0.1,. . . ,0.5] 111110000000000
1 0.1 [0.0,0.1,. . . ,0.5] 011111000000000
2 0.2 [0.0,0.1,. . . ,0.5] 001111100000000
3 0.3 [0.0,0.1,. . . ,0.5] 000111110000000
4 0.4 [0.0,0.1,. . . ,0.5] 000011111000000
5 0.5 [0.0,0.1,. . . ,0.5] 000001111100000
6 0.6 [0.0,0.1,. . . ,0.5] 000000111110000
7 0.7 [0.0,0.1,. . . ,0.5] 000000011111000
8 0.8 [0.0,0.1,. . . ,0.5] 000000001111100
9 0.9 [0.0,0.1,. . . ,0.5] 000000000111110
10 1.0 [0.0,0.1,. . . ,0.5] 000000000011111

(a) Trustee profiles

C µC σC θC

A -0.5 1 111110000000000
B -0.4 1 011111000000000
C -0.3 1 001111100000000
D -0.2 1 000111110000000
E -0.1 1 000011111000000
F 0.0 1 000001111100000
G 0.1 1 000000111110000
H 0.2 1 000000011111000
I 0.3 1 000000001111100
J 0.4 1 000000000111110
K 0.5 1 000000000011111

(b) Context profiles
Table 3 List of (a) trustee and (b) context profiles, their base means and STDs, and their features.

6 Evaluation

To evaluate models in our abstraction we use a simulated marketplace based on that presented by Burnett
et al. [6, 7], and subsequently adopted by Şensoy et al. [34] and Taylor et al. [35, 36]. The simulation and
models discussed in this evaluation are available for download as open source software.1 The simulation
consists of trustor agents that assess the reputation of, and interact with, and trustee agents over 250
rounds. At the beginning of the simulation each trustee is assigned a base capability, µte, in the range
[0.0,0.1, . . . ,1.0], and a base STD, σte, in the range [0.1,0.2, . . . ,0.5]. Similarly, each interaction context
is assigned a base mean, µC, in the range [−0.5,−0.4, . . . ,0.5] and a STD of σC = 1. The mean capability
of a trustee, te, for a particular context, C, is given as,

µte,C = µte + sample(µC,σC), (36)

where sample(µC,σC) is a random sample drawn from the Gaussian distribution defined by µC and σC.
The mean capability, µte,C, and STD, σte, then define the Gaussian from which interaction outcomes with
a trustee in a context are drawn, sample(σte,C,σte).

1github.com/jaspr-project/MLReputationTestBed
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Two example combinations are shown in Figure 1. Figure 1(a) displays trustee profile 4, where µte =

0.4, with a standard deviation of σte = 0.5, and Figure 1(b) shows context profile G. Their combination,
having sampled µcontext = 1.25 from the context profile distribution (indicated by the vertical dashed line
on the context profile), is displayed in Figure 1(c). The mean of this combined trustee-context profile is
µte,C = 1.65, which is higher than the base trustee profile mean and represents that this trustee is more
proficient in this context than on average. A second trustee profile, with µte = 0.9 and σte = 0.5, is shown
in Figure 1(d), and is combined with the context profile, with µC = −0.5, shown in Figure 1(e). The
sample taken from the context profile is −1, meaning that the trustee-context profile in Figure 1(e) has a
mean of −0.1, representing that this trustee does not perform well in this context compared to the base
trustee profile.

After each interaction with a trustee, the trustor then rates that interaction based on their preference
threshold, which is assigned randomly at the beginning of the simulation in the range [0.0,0.1, . . . ,1.0].
An interaction with an outcome greater than their preference threshold is deemed successful and given a
rating of 1 by the trustor, otherwise it is rated as 0. This means that a preference threshold of 0.5 leads to
a random strategy having a successful interaction 50% of the time.

Each trustee is also assigned a set of observable stereotype traits, which are indicative of their
base capability, as outlined in Table 3(a). The observable traits distinguish each of the profiles, to be
used in stereotype assessments of trustees. Each element in these feature vectors can be interpreted as
the trustee exhibiting a trait or not, e.g. the first trait may represent ‘airport transfer’. Similarly, each
interaction context is associated with a set of traits (outlined in Table 3(b)) for use in contextual reputation
assessments. To introduce noise into stereotype and context traits, each of binary values are flipped (i.e.
0→ 1 and 1→ 0) with a probability. With a noise level of 0.25, for instance, each trait value is flipped
with a probability of 0.25, whereas a noise level of 0 means that no values are changed. For stereotype
traits the noise is applied when assigning them to a trustee at the beginning of the simulation. With context
traits, the noise is applied separately for each trustor at the beginning of each round. The traits observed
by the trustor in a round are used in their reputation assessment and stored in the subsequent interaction
record.

Each trustor and trustee agent leaves the simulation in each round with a probability of 0.05, to
be replaced by another agent. New trustees are assigned a base capability, context capabilities, and
stereotype traits using the same process as described above. The number of agents in the simulation is
static, therefore, and in all of our simulations there were 100 trustee agents and 20 trustor agents. In each
round, each trustor agent is given a random 10 available trustees from which they select the one with
highest reputation as an interaction partner. Similarly, in each reputation assessment, each trustor requests
reputation information from 10 random witnesses.

Each trustor is either an honest, negative, random, or slanderous witness (which is determined when
they join the simulation). Honest witnesses report all their reputation information truthfully, whereas
negative witnesses report an opinion computed using the negation of all their ratings. For example,
if they gave a rating of 0.4 for an interaction, they will use −0.4 as the rating when computing an
opinion to be communicated to the requesting trustor. A slanderous witness reports true assessment of
half of the trustees, and for the remainder they report an opinion computed using decreased ratings,
specifically 0.5(r− 1). Finally, a random witness computes their opinions using random ratings for all
their interactions, before communicating that opinion.

The evaluation is separated by the information used by the strategies. We first investigate basic trust,
where only the trustee identifier is used by the strategy, and then introduce known context, stereotype,
and unforeseen context features. Two instantiations are considered for each kind of strategy, namely one
using an aggregation (as described in Section 3) and another based in machine learning (as described in
Section 5).

The strategies based on aggregations are instantiated using probabilistic reputation models, namely
BRS, TRAVOS, BLADE, and HABIT. The opinion representation used was therefore a Beta PDF, as in
Equation 10, and the trust function computes its expected value, as in Equation 12. These models are
used because of their probabilistic nature in predicting whether an interaction will be successful or not,
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Strategy Description Representative models

RAND Uniformly random reputation score regardless of input. N/A
D, MLD Direct information only. N/A
DW , MLDW Direct and witness information. REGRET, BRS, FIRE, Burnett
DDW , MLDDW Direct information and discounted witness information. TRAVOS, STAGE
DRW , MLDRW Direct information and reinterpreted witness information. HABIT, BLADE, MLRS

Table 4 List of opinion aggregations investigated. Machine learning variants of the strategies are prefixed with ML.

Strategy One context Five contexts Ten contexts

RAND 0.524 (0.030) 0.526 (0.010) 0.499 (0.004)
D 0.730 (0.030) 0.564 (0.012) 0.543 (0.004)
DW 1.280 (0.020) 0.835 (0.012) 0.724 (0.005)
DDW 1.293 (0.022) 0.794 (0.011) 0.705 (0.005)
DRW (HABIT) 1.021 (0.025) 0.598 (0.011) 0.566 (0.004)
DRW (BLADE) 1.042 (0.022) 0.618 (0.011) 0.566 (0.005)
MLD 0.715 (0.031) 0.557 (0.012) 0.545 (0.004)
MLDW 1.318 (0.022) 0.813 (0.011) 0.714 (0.005)
MLDDW 1.250 (0.021) 0.792 (0.011) 0.717 (0.004)
MLDRW 1.052 (0.024) 0.615 (0.011) 0.569 (0.004)

Table 5 Utilities for strategies using basic trust information only, with different numbers of contexts and honest
witnesses. The standard error is displayed in braces after the mean utility and bold signifies the highest mean utility
gained by a strategy in the environment.

which can be implemented using machine learning as a binary classification task. For the machine learned
reputation strategies, a random forest [5] was learned using the trustor’s direct interaction records. A
random forest model is made up of several decision trees, each learned using a random subset of samples
(via bootstrap aggregating [4]) and a random subset of features (via random subspace learning [11]).
Typically, a majority vote over the decision trees is used, where the modal prediction is taken as the
overall output. In this paper we aggregate the likelihood outputs of each of the decision trees and take the
mean likelihood of success as the trust score. This is then a probabilistic estimate of the rating, akin to
that provided a Beta PDF.

The opinion aggregations investigated are outlined in Table 4. The aggregation strategy using direct
information only, D, and the machine learning variant, MLD, both use the trustor’s opinion only in
computing the trust score. To combine direct and witness information, DW aggregates the opinions as
in Equation 23, and MLDW aggregates the opinions using Equation 30. The discounting of unreliable
witness information in DDW is as in Equation 25, and uses computes the witness weights as in
TRAVOS [37]. MLDDW discounts unreliable witness information using Equation 31, for which the
respective model accuracies, estimated using the direct interaction records, are the weights. To reinterpret
witness information (DRW ), we use both BLADE [29] (denoted DRW (HABIT)) and HABIT [38]
(denoted DRW (BLADE)). In the machine learning case, MLRS is used, as in Equation 35.

All results presented are the mean utility gained by agents over the 250 simulation rounds, averaged
over 100 simulations. To analyse the results we have performed pair-wise t-tests and corrected for
multiple-comparisons using the Bonferroni correction. Each conclusion discussed is significant at the
p < 0.01 level, unless otherwise stated.

6.1 Basic reputation

With basic reputation information, strategies do not account for any context or stereotype features. The
aggregations used an interaction weighting as in Equation 9 and the machine learning models used only the
〈te〉 as an input feature. Table 5 shows the mean interaction utilities gained over 250 rounds in simulations
where all witness agents were honest and with one, five, and ten interaction contexts selected at random
from the contexts outlined in Table ??. The random strategy, RAND, gained a mean utility of around 0.5 as
expected, which was significantly worse than all other strategies in all cases. This indicates that assessing
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Strategy Single context 5 contexts 10 contexts

Dst 0.687 (0.030) 0.685 (0.011) 0.673 (0.004)
DW st 0.933 (0.034) 0.892 (0.012) 0.895 (0.005)
DDW st 0.839 (0.033) 0.796 (0.012) 0.784 (0.005)
DRW (HABIT )st 0.743 (0.028) 0.708 (0.011) 0.700 (0.004)
DRW (BLADE)st 0.723 (0.028) 0.718 (0.010) 0.702 (0.004)
Dst (Burnett) 0.793 (0.031) 0.630 (0.013) 0.615 (0.004)
DW st (Burnett) 1.343 (0.022) 0.947 (0.010) 0.875 (0.004)
MLDst 0.789 (0.030) 0.642 (0.012) 0.630 (0.004)
MLDW st 1.227 (0.028) 0.974 (0.012) 0.903 (0.005)
MLDDW st 1.275 (0.025) 0.946 (0.011) 0.891 (0.004)
MLDRW st 0.959 (0.030) 0.730 (0.012) 0.699 (0.005)

Table 6 Utilities for strategies using stereotype information, with different numbers of contexts and honest witnesses.
The standard error is displayed in braces after the mean utility and bold signifies the highest mean utility gained by a
strategy in the environment.

reputation with information from previous interactions is beneficial, even if only direct interactions are
used (as in D and MLD). In all cases, lower utilities were gained in simulations with more contexts.

Using witness information provided significantly higher utilities than using direct information only.
Discounting witness information, in DDW and MLDDW , gained similar utilities to using witness
information directly, in DW and MLDW . However, reinterpreting witness reports in DRW (HABIT), DRW
(BLADE), and MLDRW , provided significantly worse utilities than these strategies. This indicates that
when witnesses are known to be honest there is no benefit to discounting their reports, and it is detrimental
to attempt to translate them to the perspective of the trustor.

In general, the utilities gained by the machine learned strategies were not significantly different to
the respective aggregation strategy. For instance, there was no significant difference between the utilities
gained by MLDW and DW for any number of contexts. The same was true for the all other opinion
aggregations, showing that machine learning can be used to replicate aggregation strategies.

6.2 Stereotypes

Stereotype information was included in the aggregation models using the interaction weighting function
in Equation 16. The utilities in Table 6 show that such aggregation strategies performed very poorly
compared to the machine learning models, which used stereotype traits as binary input features. In
simulations with a single context, all aggregation models gained lower utilities when using stereotype
information than when using basic information only. With multiple contexts their performances were
better with stereotype information, but in most cases were still worse than the performances of the machine
learning strategies in all cases. Another kind of stereotype reputation, proposed by Burnett et al. [6, 7] and
defined by Equation 18, is therefore included in this table. Although the Burnett model used machine
learning for the stereotype model, it represents opinions using Beta PDFs and uses direct and witness
information in the same way as DW and MLDW .

Using direct information only, as with basic trust, generally gave significantly lower utilities than using
both direct and witness information. One exception was the reinterpretation strategies, DRW (HABIT) and
DRW (BLADE), which gained slightly lower utilities than D. Furthermore, the utilities gained by these
strategies in simulations with single contexts was not significantly different to those gained when using
basic information. In multi-context simulations utilities when using stereotype information were generally
higher compared to not using stereotypes.

By far the highest utilities were gained by strategies that used machine learning with both direct
and witness information. With any number of contexts in the simulation, Burnett’s strategy, MLDW ,
and MLDDW gained significantly the highest utilities. Although there was no statistically significant
difference between the three strategies in any case, Burnett’s strategy did gain the highest utility in
simulations with a single context. With ten contexts in the simulation, MLDW and MLDDW outperformed
Burnett’s strategy by a slight margin, as did DW .
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Strategy Single context 5 contexts 10 contexts

Dctx 0.726 (0.032) 0.584 (0.011) 0.538 (0.004)
DW ctx 1.281 (0.023) 0.908 (0.010) 0.789 (0.004)
DDW ctx 1.261 (0.023) 0.893 (0.011) 0.756 (0.005)
DRW (HABIT )ctx 1.058 (0.025) 0.619 (0.012) 0.552 (0.004)
DRW (BLADE)ctx 0.730 (0.031) 0.571 (0.011) 0.556 (0.004)
MLDctx 0.705 (0.029) 0.553 (0.011) 0.546 (0.004)
MLDW ctx 1.279 (0.021) 0.868 (0.010) 0.762 (0.005)
MLDDW ctx 1.263 (0.023) 0.855 (0.010) 0.734 (0.005)
MLDRW ctx 1.079 (0.023) 0.674 (0.011) 0.617 (0.005)

Table 7 Utilities for strategies using known context information, with different numbers of contexts and honest
witnesses. The standard error is displayed in braces after the mean utility and bold signifies the highest mean utility
gained by a strategy in the environment.

6.3 Known-contexts

To incorporate context information into the aggregation strategies, the interaction weighting in Equa-
tion 19 was used, using Jaccard similarity between the context traits. For the machine learning approaches,
the binary feature vector indicating which context traits were observed was used as inputs to the learned
models. It is assumed that all agents represent context in the same way, but this does not need to be true
in general [35]. The results for using known context information are shown in Table 7.

As with basic trust, the strategies using direct information only tended to gain significantly lower
utilities than those that used both direct and witness information. One exception to this was DRW (HABIT)
and DRW (BLADE), which gained similar utilities to D and MLD when there were multiple contexts
in the simulation. MLDRW , while gaining lower utilities than strategies that did not reinterpret witness
opinions, did gain higher utilities than DRW strategies. Furthermore, D, MLD, DRW (HABIT), and DRW
(BLADE), did not improve on their performances compared to when context information was not used,
and MLDRW gained only slightly more utility in simulations with multiple contexts. One explanation for
this is that trustor agents were unable to individually collect enough interaction records to discriminate
between contexts themselves, and as a result could not reinterpret contextual opinions from witnesses.

For any number of simulation contexts, no strategy gained significantly lower utilities when using
context information than when using basic information only. Furthermore, strategies using context
information did not achieve significantly higher utilities than strategies using basic information. This
means that, for an unknown number of contexts, there is no cost in utility to using context information
when assessing trust and reputation, but also that context information has no benefit when there only is
only one context. In simulations with multiple contexts, all strategies gained lower utilities. However,
strategies that used witness information without reinterpretation, namely DW , MLDW , DDW , and
MLDDW , gained significantly more utility when using context information compared to using basic
information.

Of the four best performing strategies, DW gained the most utility by a small but statistically significant
margin in simulations with ten contexts, outperforming MLDW by around 0.027. Similarly, DDW gained
about 0.022 more in utility than MLDDW . These differences are possibly due to the difference in the
two aggregation approaches, and the limited number of samples available for the learning algorithm to
discriminate between the contexts. An alternative learning approach that improves on this performance is
discussed in Section 6.7, where a single model is learned using both direct and witness interaction records.

6.4 Unforeseen context

Table 8 shows utilities gained in simulations where interactions encountered unforeseen contexts with
different likelihoods, for a single known context. The utility of interactions with unforeseen contexts was
always −1. As a result, with higher likelihoods of unforeseen contexts the utilities gained by all strategies
was lower. To mitigate for ratings made after an interaction with an unforeseen context, strategies used the
interaction weighting function defined in Equation 22. In the machine learning strategies this weighting
was applied to the training samples prior to learning.
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Strategy 0.0 0.05 0.1 0.25

RAND 0.524 (0.030) 0.418 (0.028) 0.390 (0.031) 0.102 (0.023)
D 0.730 (0.030) 0.621 (0.031) 0.563 (0.028) 0.271 (0.025)
DW 1.280 (0.020) 1.200 (0.021) 1.009 (0.021) 0.615 (0.019)
DDW 1.293 (0.022) 1.126 (0.023) 1.038 (0.020) 0.642 (0.017)
DRW (HABIT) 1.021 (0.025) 0.874 (0.024) 0.761 (0.023) 0.362 (0.020)
DRW (BLADE) 1.042 (0.022) 0.954 (0.023) 0.802 (0.022) 0.399 (0.020)
MLD 0.715 (0.031) 0.619 (0.030) 0.575 (0.025) 0.238 (0.023)
MLDW 1.318 (0.022) 1.173 (0.022) 0.986 (0.019) 0.637 (0.017)
MLDDW 1.250 (0.021) 1.119 (0.021) 0.961 (0.019) 0.626 (0.017)
MLDRW 1.052 (0.024) 0.896 (0.023) 0.769 (0.023) 0.379 (0.022)
Dmit 0.761 (0.030) 0.557 (0.029) 0.441 (0.027) 0.223 (0.022)
DW mit 1.288 (0.022) 1.169 (0.023) 1.061 (0.020) 0.700 (0.017)
DDW mit 1.270 (0.021) 1.169 (0.020) 1.049 (0.019) 0.643 (0.018)
DRW (HABIT )mit 1.091 (0.026) 0.932 (0.025) 0.822 (0.023) 0.466 (0.021)
DRW (BLADE)mit 1.048 (0.023) 0.963 (0.022) 0.834 (0.020) 0.474 (0.021)
MLDmit 0.727 (0.030) 0.585 (0.030) 0.555 (0.028) 0.247 (0.023)
MLDW mit 1.306 (0.024) 1.193 (0.022) 1.035 (0.021) 0.688 (0.017)
MLDDW mit 1.233 (0.023) 1.132 (0.022) 0.984 (0.021) 0.675 (0.017)
MLDRW mit 1.016 (0.023) 0.893 (0.022) 0.801 (0.022) 0.445 (0.020)

Table 8 Utilities for strategies using unforeseen context information, with different likelihoods of unforeseen
contexts and honest witnesses. The standard error is displayed in braces after the mean utility and bold signifies
the highest mean utility gained by a strategy in the environment.

Strategy 50% Negation 50% Random 50% Slander

RAND 0.506 (0.033) 0.474 (0.032) 0.494 (0.030)
D 0.655 (0.030) 0.671 (0.029) 0.676 (0.033)
DW 0.678 (0.032) 1.044 (0.026) 1.330 (0.025)
DDW 0.799 (0.028) 1.140 (0.022) 1.322 (0.024)
DRW (HABIT) 1.061 (0.025) 0.895 (0.026) 1.010 (0.025)
DRW (BLADE) 1.080 (0.023) 0.971 (0.025) 1.068 (0.024)
MLD 0.681 (0.031) 0.703 (0.031) 0.639 (0.031)
MLDW 0.567 (0.028) 1.022 (0.027) 1.363 (0.025)
MLDDW 0.494 (0.032) 1.012 (0.023) 1.271 (0.023)
MLDRW 0.984 (0.025) 0.883 (0.028) 1.062 (0.022)

Table 9 Utilities for strategies using basic trust information, when half of all witnesses are either negation, random,
or slander. The standard error is displayed in braces after the mean utility and bold signifies the highest mean utility
gained by a strategy in the environment.

Regardless of mitigation, using direct information only in D and MLD or reinterpreting witness
information in DRW (BLADE), DRW (HABIT), and MLDRW , provided significantly lower utilities. In
general, the difference in utility gained was not significant when witness information was used without
reinterpretation. For higher likelihoods the mitigation strategies, DW , DDW , and MLDW outperformed
the respective non-mitigation strategy by a small but not statistically significant margin. The machine
learning strategies, therefore did not perform significantly differently to their aggregation counterparts.

6.5 Dishonesty

Table 9 shows utilities gained by strategies when 50% of witness agents either negate their ratings when
reporting opinions, use random ratings, or slander trustees. In each case only basic trust information is
used, and there is only one simulation context. When direct information is used in D and MLD there
was no significant difference in utilities from when all witnesses are reliable. Using witness information
directly, in DW and MLDW , the utility was significantly lower when there were either negation or random
witnesses, compared to with all honest witnesses. They were not, however, significantly different with
slander witnesses.

With negation witnesses, DRW (HABIT), DRW (BLADE) and MLDRW gained significantly highest
utilities, as they were able to reinterpret the witness opinions properly. These utilities were also not
significantly different to those that the reinterpretation strategies gained with no unreliable witnesses.
MLDDW performed particularly poorly in this case, compared to DDW . DDW also gained the highest
utilities with random witnesses, but was not statistically significantly better than MLDW or MLDDW .
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Strategy Basic st+ ctx ctx+mit st+mit st+ ctx+mit

RAND 0.425 (0.004) NA NA NA NA
D 0.459 (0.004) 0.566 (0.004) 0.464 (0.004) 0.585 (0.004) 0.571 (0.004)
DW 0.629 (0.005) 0.735 (0.006) 0.692 (0.004) 0.798 (0.005) 0.735 (0.005)
DDW 0.616 (0.004) 0.673 (0.005) 0.670 (0.004) 0.691 (0.005) 0.689 (0.005)
DRW (HABIT) 0.481 (0.004) 0.575 (0.004) 0.486 (0.004) 0.615 (0.004) 0.581 (0.004)
DRW (BLADE) 0.493 (0.004) 0.606 (0.004) 0.485 (0.004) 0.620 (0.004) 0.613 (0.005)
MLD 0.458 (0.004) 0.545 (0.004) 0.469 (0.004) 0.545 (0.004) 0.547 (0.004)
MLDW 0.614 (0.005) 0.825 (0.005) 0.642 (0.004) 0.806 (0.005) 0.828 (0.005)
MLDDW 0.616 (0.004) 0.825 (0.005) 0.653 (0.004) 0.803 (0.004) 0.820 (0.004)
MLDRW 0.489 (0.004) 0.649 (0.004) 0.531 (0.004) 0.606 (0.004) 0.655 (0.005)

(a) Honest witnesses

Strategy Basic st+ ctx ctx+mit st+mit st+ ctx+mit

RAND 0.419 (0.003) NA NA NA NA
D 0.463 (0.003) 0.574 (0.004) 0.462 (0.004) 0.587 (0.004) 0.573 (0.004)
DW 0.492 (0.004) 0.554 (0.006) 0.511 (0.005) 0.600 (0.007) 0.562 (0.006)
DDW 0.506 (0.004) 0.597 (0.004) 0.514 (0.004) 0.627 (0.004) 0.597 (0.005)
DRW (HABIT) 0.481 (0.004) 0.567 (0.004) 0.484 (0.004) 0.608 (0.004) 0.577 (0.004)
DRW (BLADE) 0.479 (0.004) 0.609 (0.004) 0.479 (0.004) 0.617 (0.004) 0.613 (0.005)
MLD 0.472 (0.004) 0.546 (0.004) 0.455 (0.004) 0.542 (0.004) 0.553 (0.003)
MLDW 0.477 (0.005) 0.587 (0.007) 0.497 (0.004) 0.584 (0.007) 0.582 (0.007)
MLDDW 0.500 (0.005) 0.572 (0.006) 0.503 (0.005) 0.576 (0.007) 0.577 (0.006)
MLDRW 0.474 (0.004) 0.604 (0.005) 0.510 (0.004) 0.568 (0.005) 0.609 (0.004)

(b) Dishonest witnesses
Table 10 Utilities for strategies using different combinations of trust information with (a) honest witnesses and (b)
witnesses that are each 25% likely to be either random, slander, or negation. In each simulation there were ten contexts
and freak events occurred with a likelihood of 0.05. The standard error is displayed in braces after the mean utility
and bold signifies the highest mean utility gained by a strategy in the environment.

With slander witnesses there were no significant differences in utility gained by any of the strategies when
compared to when all witnesses were reliable.

6.6 Putting it all together

When combining multiple kinds of trust information, such as stereotype and context, in one model,
aggregation approaches must resort to combining the respective interaction weights. In these results
we combine weights by taking their product, e.g. stereotype and context information is combined
by multiplying their respective interaction weights, Ψst+ctx(S, I) = Ψst(S, I)×Ψctx(S, I). For machine
learning strategies, the features are simply appended together and all of them are used in the learned
model.

Utilities gained by strategies using different combinations of stereotype, known-context and unknown-
context, information are shown in Table 10. The simulations all contained ten contexts and freak events
had a likelihood of 0.05. Witnesses for results in Table 10(a) were all honest, and results in Table 10(b)
were from simulations with dishonest witnesses that were each 25% likely to be either random, slander,
or negation.

Using basic information only, machine learning strategies had similar performance to the aggregation
strategies. With honest witnesses, all strategies except those that reinterpreted witness reports gained
similar higher utilities, whereas DRW (HABIT), DRW (BLADE), and MLDRW , gained utilities close to
that of RAND. In the presence of dishonest witnesses, all strategies using basic information only performed
poorly.

Using stereotype and known-context information (st + ctx) increased performance in all cases with
honest witnesses. In this environment the machine learning strategies gained significantly higher utilities
than did their aggregation counterparts. This was also the case when stereotype and unknown context
information was combined (st + mit), and also when all three kinds of information were combined
(st + ctx + mit). When known-context and unknown-context information (ctx + mit) were combined,
the aggregation strategies gained slightly higher utilities than the machine learning strategies. Overall,
this shows that machine learning methods are more equipped to use these different combinations of
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Strategy One context Five contexts Ten contexts

DW 1.280 (0.020) 0.835 (0.012) 0.724 (0.005)
DW ctx 1.281 (0.023) 0.908 (0.010) 0.789 (0.004)
MLDW 1.308 (0.022) 0.793 (0.011) 0.697 (0.005)
MLDW ctx 1.280 (0.021) 0.963 (0.010) 0.818 (0.004)

Table 11 Utilities for DW and MLDW (using an alternative opinion aggregation) with and without context
information, and in simulations with different numbers of contexts and honest witnesses. The standard error is
displayed in braces after the mean utility and bold signifies the highest mean utility gained by a strategy in the
environment.

Strategy One context Five contexts Ten contexts

DW 1.462 (0.026) 0.862 (0.010) 0.752 (0.005)
MLDW (Eq 24) 1.468 (0.031) 0.860 (0.012) 0.737 (0.005)
MLDW (Eq 23) 1.519 (0.034) 0.842 (0.013) 0.738 (0.005)
DW ctx 1.388 (0.026) 0.945 (0.012) 0.805 (0.005)
MLDW ctx (Eq 24) 1.444 (0.028) 0.908 (0.010) 0.791 (0.005)
MLDW ctx (Eq 23) 1.521 (0.035) 1.013 (0.011) 0.851 (0.005)

Table 12 Utilities for DW using continuous ratings and MLDW using a multi-dimensional learning algorithm, both
with and without context information. The simulations had different numbers of contexts and honest witnesses. The
standard error is displayed in braces after the mean utility and bold signifies the highest mean utility gained by a
strategy in the environment.

features. Further, the combination of stereotype and known-context information (st + ctx) gained the
highest utilities, when used in the MLDW and MLDDW strategies. The addition of unknown-context
information to these models did not improve performance significantly.

With dishonest witnesses there was generally no significant difference between the machine learning
and aggregation strategies. Some exceptions to this are with stereotype and unknown-context information
(st + mit), where DDW significantly outperformed MLDDW , and with known-context and unknown-
context information (ctx+mit) where MLDRW outperformed both DRW (HABIT) and DRW (BLADE).
These observations may indicate that, in general, dishonest witnesses cancel out the benefits of applying
machine learning to combinations of features. When using dishonest witnesses as information sources,
the inclusion of stereotype information in any model provided the highest utilities, regardless of what it
was combined with. For instance, st + ctx had similar results to θ +mit and θ + ctx+mit, indicating that
stereotypes are the most important information to use in models in the presence of dishonesty.

6.7 Single learned model

The aggregation of the machine learned opinions produced lower utilities than the aggregation used in
DW . In this section, therefore, we use an alternative aggregation for machine learned opinions, where
the models were combined rather than the outputs. This is done in a simple way, by concatenating the
training samples and learning a single random forest model. Using this approach it is difficult to discount
or reinterpret the opinions, and so only results DW and MLDW are presented. Alternative methods may
exist where model parameters are combined, weighted, or reinterpreted, but this is left as future work.

Table 11 shows utilities in simulations with one, five, and ten contexts, for the DW and MLDW
when using both basic and context trust information. With a single context, the two strategies gained
similar utilities regardless of whether context information was used or not. In simulations with multiple
contexts, MLDW and DW also did not have significantly different utilities when they did not use
context information. When using context information with multiple contexts, however, MLDW gained
significantly more utility than DW .
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6.8 Continuous ratings

In all the results presented thus far, interaction ratings have been been binary and reputation has been
probabilistic. Specifically, ratings of interactions have been positive where the outcome was above
the trustor’s preference threshold, and negative otherwise. Higher utilities can be gained by reputation
strategies that use continuous ratings, in particular ratings that are computed as the difference between the
interaction utility and preference threshold. The FIRE reputation system uses the interaction aggregation
defined in Equation 8, and uses continuous ratings to output a continuous trust and reputation scores.

To mirror this in machine learning reputation, either a regression learning algorithm or multi-label
classifier can be used. In this paper we simply increase the dimensionality of the target variable in the
random forest algorithm, to make a multi-label classifier. In particular, rather than mapping input features
to two values, the target can now take one of five values that span the intervals (−∞ : −1.5), [−1.5 :
−0.5), [−0.5 : 0.5), [0.5 : 1.5), [1.5 : ∞).

Table 12 shows results for these variants of the DW and MLDW reputation systems in simulations
with one, five, and ten contexts. The first MLDW is based on the aggregation of outputs, and is the
same reputation system as outlined in Sections 3.2.1 and 3.2.4. The second MLDW uses the aggregation
presented in Section 6.7, and concatenates the training samples prior to learning. With any number of
contexts in the simulation, the utilities gained by these strategies were significantly higher than the binary
strategies using the same information. When using basic trust information only, there was no significant
difference between the utilities gained between DW and MLDW . With context information, however,
MLDW had significantly higher performance in simulations with multiple contexts than did DW . This
again highlights the power of using machine learning as the basis of trust and reputation assessment.

7 Summary

In general, machine learning strategies had similar performance to the aggregation models using the
same information sources. There were some situations where machine learning was better able to model
features, in particular when stereotype information was used. When using context information, the
aggregation strategies gained higher utilities than did the machine learning strategies that learned a model
for each witness. When a single machine learning model was learned, by combining the data from all
witnesses, however, the utility gained was significantly higher than for other strategies investigated. This
indicates that the machine learning approach is limited by the number of samples available, which is
overcome when direct and witness information are incorporated into the same training data for a single
model. Methods for weighting training samples by the reliability of the witness, or reinterpreting them
for different perspectives, should therefore be investigated to maximise the utility gained by single model
variants of the MLDDW and MLDRW strategies.

8 Conclusion

In this paper we have reviewed the literature on the representation and dissemination of trust and
reputation information. In analysing the representation we found that trust opinions are often represented
as using PDFs formed via aggregations of previous ratings. Other trust and reputation systems represent
trust information in models learned using machine learning over interaction tuples. Typically, reputation
information is disseminated through a central authority or to acquaintances in a trust network. In either
case, dishonesty of witness agents can be handled by discounting their opinions before combining them
with the trustor’s own. In cases where witness agents may have opinions that are different to those of the
trustor in a consistent way, reinterpretations can be learned.

Following this review, a unifying abstraction of reputation systems for reputation systems was
presented as opinion gathering, representation, and aggregation. As well as create instantiations of
the abstraction to represent several existing reputation systems, we also presented instantiations based
on machine learning over interaction tuples. A machine learning model was presented for each kind
of reputation system found in the literature, to use the same kind of information in forming an
opinion and aggregate opinions in a similar way. In culmination, the MLRS was presented to combine
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these capabilities in one reputation system, including contextual reputation, stereotypes, and opinion
reinterpretation.

Finally, an evaluation of the models discussed throughout the paper was performed using a simulated
marketplace. The main findings from the evaluation were that the machine learning based strategies
perform equally well to the aggregation based strategies using the same information sources. It was also
clear that combining multiple information sources was more beneficial when using machine learning than
weighted aggregations. For both the machine learning an aggregation models, however, using information
relevant to the environment produced higher reputation assessments. For example, in an environment with
multiple contexts it was beneficial to use context information, and in dynamic environments stereotype
information was useful. The code for the simulations can be found as open source software.

As future work we intend to investigate combining model parameters, rather than their outputs, in
combining opinions. This will enable more detailed reinterpretations of witness opinions, and possibly
allow detection of dishonesty by inspecting the model for inconsistencies. Another avenue for research
is to determine the usefulness of continuous, over discrete or binary, ratings in different kinds of
environment.
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[33] Murat Şensoy, Jie Zhang, Pinar Yolum, and Robin Cohen. Poyraz: Context-aware service selection
under deception. Computational Intelligence, 25(4):335–366, 2009.
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