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ABSTRACT

Motivated by the fact that in images, there is usually a pres-
ence of local strongly oriented harmonics, a representation
which is both well-localised in frequency and orientation
is desirable to efficiently describe such oriented harmonic
features. Here we introduce a family of multiscale trigono-
metric bases for a bi-variate function called the Multiscale
Directional Cosine bases for image denoising tasks. Our
results show the promise of the new bases which almost
consistently outperform other image representation bases on
natural images.

1. INTRODUCTION

The application of transforms in image processing is often
based on a separable construction. Rows and columns in an
image are treated independently and the 2D basis functions
are simply tensor products of the corresponding 1D func-
tions. Such method keeps simplicity in terms of design and
computation, but is not capable of capturing properly all the
interesting features of an image. For example, the orthonor-
mal separable wavelet transform [1] in higher dimensions is
seriously limited in its ability to efficiently represent higher
dimensional features such as lines. Furthermore, the lack of
frequency selectivity remains an elusive problem with most
techniques operating in the wavelet domain.

The ability to efficiently analyse and describe directional
patterns is of fundamental importance for image analysis
and compression. In order to represent higher dimensional
image features, Candés and Donoho [2] proposed a direc-
tional multiresolution representation named ridgelets which
deal effectively with linear singularities in 2D. The idea of
curvelets [3] is to represent a curve as a superposition of
functions of various lengths and widths obeying the scaling
law. Starck et al. [4] employed the curvelet transform in
the denoising task. The curvelet coefficients are more than
16J + 1 times redundant, with J scales of decompositions.
Not only does the curvelet denoising outperform wavelet-
based methods in terms of PSNR, the visual appearance of
the resulting images is better as well. Do and Vetterli [5]

used similar ideas to construct curvelets that can be com-
puted with a perfect reconstruction filter bank, called the
contourlet transform, which combines the Laplacian pyra-
mid transform with directional filter banks.

However, the assumption that natural images are char-
acterised solely by linear edges is not true. In images, there
is usually a presence of local strongly oriented harmonics
(textures) separated by curvilinear edges. A sparse rep-
resentation which is both well-localised in frequency and
orientation is desirable to efficiently describe such oriented
harmonic features. Here we describe a set of bases called
Multiscale Directional Cosine Bases which can efficiently
represent local oriented harmonics, and with a local direc-
tional cosine packet analysis, we can accommodate the “tex-
ture + edge” model by representing both directional periodic
ridges and ridglets in a unified framework.

For the rest of this paper, we introduce a family of bases
called the “Multiscale Directional Cosine” (MDC) Bases in
section 2. Next we show some results from our denoising
experiments using the MDC bases in section 3. The paper
concludes with a summary in section 4.

2. MULTISCALE DIRECTIONAL COSINE BASES

First, we define the directional cosine basis in 2D as

Ck,θ = λk cos(πk(x cos θ + y sin θ)) (1)

where λk =

{

1 if k = 0√
2 if x 6= 0.

The directional 2D continuous cosine transform is de-
fined as

Cf(k, θ) = 〈f, Ck,θ〉

=

∫

R2

λkf(x, y) cos(πk(x cos θ + y sin θ))dxdy

The directional cosine basis vectors are indexed by fre-
quency k and direction θ, as can be seen in Figure 1. It is ob-
vious that the basis vectors look similar to the Fourier basis.
In fact, if we substitute the cosine basis function with eixξ ,
we obtain the polar Fourier basis representation. However,



Fig. 1. The 8 × 8 directional cosine basis vectors

the proposed transform has several advantages when com-
pared with traditional Fourier basis. First, the transform is
real-to-real instead of real-to-complex. Second, since the
cosine basis assumes a symmetric extension, its approxima-
tion error decays more rapidly than Fourier series. Lastly,
unlike in the Fourier domain, the Cartesian-to-polar coordi-
nate conversion has already been done in the Radon trans-
form to get the sense of directionality.

For an image representation basis to be useful, the basis
vectors should be localised both in space and frequency, and
they should have certain orientation selectivity. More im-
portantly, to capture patterns of interest at different scales,
the basis need to be multiresolutional. A prototypical MDC
function has the form

ψk,θ,s,t(x) = b

(

x − t

s

)

Ck,θ

(

x − t

s

)

. (2)

where k, θ, t and s denotes the frequency, orientation, lo-
cation and scale parameters of the function respectively and
b(·) is the smooth bell function chosen along with the sam-
pling interval to ensure invertibility of the discrete form of
the transform.

The discrete implementation of MDC transform is sim-
ilar to the digital curvelet construction. While the discrete
cosine transform and discrete Radon transform [6] are well
studied in the literature, a combination of these two trans-
forms gives us the discrete directional cosine operator. Un-
like the digital curvelet implementation in [4], which is very
redundant, the multiresolution property of the MDC trans-
form is given by the well-known Laplacian pyramid [7].
Therefore, the transform is over-complete by some 33%
in 2D if non-overlapping windows are used. The discrete
MDC of a 2D vector x, at scale s is given by

Xs = Cn(I − Gs,s+1Gs+1,s)xs. (3)

where Xs denotes the transform at scale s, Cn is the discrete
directional cosine transform operator with window size n×

n, I is the identity operator, xs is the Gaussian pyramid
representation of x at scale s

xs =

s−1
∏

l=0

Gl+1,lx. (4)

and Gs,s+1,Gs+1,s are the raising and lowering operators
associated with transitions between levels in the Gaussian
pyramid. The closeness of the Burt and Adelson filter to a
Gaussian function gives the pyramid virtually isotropic be-
havior, which can be well exploited by the high frequency
resolution of the cosine basis. We certainly have the choice
of using the directional cosine packets as the transform op-
erator Cn by substituting the cosine transform by a cosine
packet analysis, forming a semi-adaptive basis. In this way,
the MDC packet basis is able to capture a wide range of
directional features at different resolutions.

3. IMAGE DENOISING EXPERIMENTS

A good basis for reprensenting images should be able to
capture important features of interest. In this case, the MDC
bases should allow us to map directional periodic pattern
patches into coefficients of significant magnitude. In order
to demonstrate the efficiency of the proposed representa-
tion, we conducted image denoising experiment by simply
thresholding the coefficients in the transform domain with
certain threshold. The denoising experiments are performed
in such settings:

1. The Laplacian pyramid is decomposed at 5 levels of
subbands.

2. The window size n is chosen at 16 × 16, modulated
with a squared cosine with 50% overlapping.

3. We used both directional cosine and directional co-
sine packet as the operator Cn on the windowed block.

The thresholding we use is a form of the universal thresh-
olding proposed in [8], multiplied by an extra constant a
Θ = a

√
2 logNσ/1.23L, where N = n2 = 256 here and

L denotes the level of decomposition, while L = 0 corre-
sponds to the highest frequency subband. For directional
cosine denoising, the value of a = 0.08 was found to give
satisfactory result. For the directional local cosine packets,
a = 0.062 was used. The lowpass subband is left intact.

The results are compared with two algorithms. The first
one is a wavelet-packet based wavelet shrinkage algorithm
which is described in [9], called S-Bayes, with the thresh-
olding function being a modified version of the BayesShrink
[10]. The best wavelet packet basis is sought by using the
Shannon entropy function and cycle-spinning [11] is used to
suppress the pseudo-Gibbs artifact. Essentially such treat-
ment gives the translation invariance to the wavelet packet
basis, which is known to be good in representing some pe-
riodic signals. The second algorithm is a modified version



Image Noise TI Curvelet Directional Directional
(dB) S-Bayes Cosine Cosine Packets

0 14.75 14.59 14.89 15.19
5 16.08 15.93 16.42 16.85

barbara 10 18.00 17.64 18.44 18.85
15 21.12 19.64 20.34 20.71
20 24.92 21.41 21.88 22.10
0 17.06 17.10 17.24 17.75
5 18.96 18.82 18.99 19.63

lena 10 21.08 20.83 21.05 21.89
15 23.49 23.10 23.35 24.26
20 26.15 25.35 25.60 26.31

0 12.93 13.06 13.10 13.22
5 13.81 13.66 13.84 14.29

grain 10 15.87 15.01 15.51 16.18
15 18.72 17.28 18.00 18.84
20 22.02 20.05 20.56 21.38

Table 1. The comparative image denoising results in SNR

of curvelet. The curvelet implementation in [4] which uses
a much more redundant overcomplete wavelet frame than
our MDC, is a “specialised” transform to perform denois-
ing task instead of general-purpose image processing. In
order to carry out a fair comparison, here the local ridgelets
are placed on the Laplacian pyramid as well in our setting,
in order to carry out a fair comparison.

Here we present results from several typical natural im-
ages: barbara contains some directional and non-directional
periodic textures; lena, which can be regarded as one of
the “curvelet-friendly” image, since it mainly consists of
linear singularities at different scales; and grain image is
a texture image which is considered to be very difficult to
compress.

Table 1 gives denoising results in SNR using four algo-
rithms. It seems that directional local cosine transform is the
overall winner, although the TI-S-BayesShrink sometimes
outperforms in low noise levels, since the BayesShrink tends
to optimise the MSE output. However, the results on other
three images are more visually pleasing, preserving impor-
tant directional features on the image. A detailed head-to-
head comparison is presented in Figure 2 on barbara. It
is obvious that from the TI-S-BayesShrink denoised image,
the diagonal stripes are absent on the cloth in the middle,
although a few of such patterns can be seen on the trousers.
The curvelet is able to recover some of those directional
patterns, but incomplete nonetheless. These features are re-
stored almost completely by our proposed methods.

Since the directional cosine packets can be regarded as a
generalisation of curvelets and directional cosine bases, it is
not suprising to see it gives better results than its two coun-
terparts. However, it involves considerable amount of extra
computations, since the best basis has to be sought for each

of the Radon slices. It seems that such heavy computation
burden is not a fair tradeoff, at least at present, since the
directional cosine transform denoised images are visually
similar to directional local cosine’s results.

4. CONCLUSION

We have presented a set of new bases which have localisa-
tion in space and frequency, orientation selectivity and em-
ploy a multiresolution pyramidal framework allowing anal-
yse of the image at different scales. In a sense the MDC
bases qualify as geometric wavelets and share a lot of simi-
larities with other directional wavelet bases proposed previ-
ously, but the construction allows us to capture local direc-
tional texture patches and linear features at ease. Unlike the
traditional 2D local DCT constructed by tensor-product, the
directional cosine basis provides orientation selectivity like
the Fourier basis but avoids the unpleasant convergence rate
of the Fourier series on intervals.

The effectiveness of the MDC bases was tested against
the state-of-the-art translation-invariant wavelet packet based
shrinkage method and a directional basis, the so-called curvelet.
The new bases demonstrated a strong potential in the ex-
periments, often outperforming the other methods. While
producing much visually pleasant output than the wavelet
packets with optimal threshold, the MDC seems to be able
to capture a wider range of directional features than the
curvelet, even without the local cosine treatment on Radon
slices.

Of course the transform presented here with the Lapla-
cian pyramid for the denoising experiments is only a taste
for conducting multiresolution analysis with the directional
cosine (packet) bases. A wide variation on the theme is pos-



Original Noisy, 10dB TIWP-S-Bayes, 18.00dB

Curvelet, 17.64dB Directional cosine, 18.44dB Directional cosine packets, 18.85dB

Fig. 2. Detailed comparative denoising results on barbara

sible, for example using variable sized windows on the orig-
inal image might be another possibility, or to use the algo-
rithme á trous subband decomposition for better denoising
results. It is our intention to put forward this basis in a gen-
eral way in this work to popularise its usage in various kinds
of image processing tasks.
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