Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Nathan Tallent, Nitin Gawande, Charles Siegel, Abhinav Vishnu, Adolfy Hoisie

Pacific Northwest National Lab

PMBS 2017 (@ SC)

November 13, 2017
Acknowledgements

Center for Advanced Technology Evaluation (ASCR)
Performance Prediction & Diagnosis for Extreme Scientific Workflows (ASCR)
Scaling ‘Deep Learning’ Increasingly Important

- Scaling some workloads requires a high-performance interconnect
- Motivating Example: KNL/Omni-path vs. DGX-1 (NVLink 1.0)

What is scaling behavior given workload and interconnect?

- Single-KNL/GPU performance very similar, despite GPU's higher peak!
- DGX-1: better absolute performance...
- ...but scaling behavior is quite different

With Omni-Path, CifarNet scales better than AlexNet

With NVLink, AlexNet scales better than CifarNet

AlexNet’s much larger all-to-all reduction operations stress interconnect bandwidth
Our focus: Scaling Deep Learning across *on-node* GPUs:
- Is a high-performance interconnect required (e.g., NVIDIA NVLink)
- Are PCIe-based interconnects adequate?
- How dependent is the answer on my workload?

Answers not obvious!

NVIDIA DGX-1 (NVLink 1.0)

Cirrascale GX8
On-Node GPU Networks: DGX-1 vs. GX8

Hybrid cube mesh:
• Two (fully connected) 4-GPU meshes
• Each GPU: 4 links = 80 GB/s (uni)

Two-level tree (PCIe):
• Two (fully connected) 4-GPU clusters
• Each GPU: 16 GB/s (uni) PCIe ×16
• Switch upstream: 16 GB/s

DGX-1 appears to offer much higher performance...

NVIDIA DGX-1

Cirrascale GX8

(Simpled to avoid crossing links: GPU0 ↔ GPU4)
Outline of Deep Learning Workload

- Outline of deep learning training algorithm
 - Replicate neural network architecture on each GPU
 - For each batch in image data set:
 - Distribute images among GPUs (data parallel)
 - Process images → activations → parameters (per-GPU)
 - activation: floating point operations
 - Synchronize parameters: all-to-all reduction (allreduce)

- Use NCCL for GPU collectives:
 - NCCL: NVIDIA Collective Communications Library
 - topology-aware rings, optimized for throughput (pipelined)
 - interconnect-aware

- Train on ImageNet Dataset:
 - ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - Well known benchmark for object classification and detection

Workloads:
- AlexNet (high comm)
- GoogLeNet (high compute)
- ResNet/x: everything in-between & more
Parameterize ResNet: Control Compute Intensity

Parameterized workload: systematically represent range of neural network depths & batch sizes

ResNet/x
Replicate a ResNet ‘block’ \(x \) times where is \(x \) is \{1, 2, 4, 8, 16, 32\}

Intensities When Strong Scaled

Activations/Parameter per GPU

GoogLeNet sandwitched

GoogLeNet sandwitched

Span \(10^2 \)

Span \(10^3 \)

Batch Category

Activations/Batch

Work

FLOPS

Activations/Parameter per Batch

Activations/Batch

Intensity (Work/Comm)

Communication (allreduce)

Span \(10^2 \)

Span \(10^3 \)

Batch Category

Batch Category

GoogLeNet

ResNet/32

ResNet/16

ResNet/8

ResNet/4

ResNet/2

ResNet/1
MGBench: unidirectional; GPU-GPU; pipelined using CUDA’s async memcopy

GX8 has three groups:
- Intra-SR: within switch
- Inter-SR: between switches
- Inter-SR*: anomaly

Within 4-GPU clusters (1-hop; intra-switch): NVink wins (85% of 1 link)
(Uses only 1 NVLink; software has to manage routing, etc.)

Between 4-GPU cluster (2-hop; inter-switch): depends on payload size

PCIe can win on ‘long’ midsize transfers

PCIe anomaly (see latency plots)
GPU-to-GPU Memory Copy: Latency

Details at four different data sizes

PCIe anomaly

Data size: 1MB

DGX-1

GX8

Data size: 100 KB

Data size: 4 Byte

PCIe anomaly

Latency, ms

PCIe wins: bandwidth saturates more quickly w.r.t payload

NVLink wins for large payloads

NVLink: 2 groups, independent of data size

PCIe: 1—3 groups, dependent on data size

PCle Anomaly Cirrascale SR, 2nd slot (GPU5) has longer signal paths; delays

NVink wins

Details at four different data sizes

PCIe anomaly

Data size: 100MB
NCCL uses topology-aware & interconnect-aware rings

- Small payload: ring latency exposed
 - time = hops × link latency
- Large payload: ring latency hidden
 - time = payload / bandwidth

NCCL is optimized for throughput (pipelined)

PCle / QPI : 1 unidirectional ring
DGX-1 : 4 unidirectional rings
NCCL Allreduce: Effective Bandwidth

Effective BW: bandwidth relative to a single GPU’s payload. Max is BW of ‘memcpy’.

4-GPUs (within cluster); ideal allreduce is 1 step. NVLink wins by 40% (60% of max)

8-GPUs (between clusters); ideal allreduce is 2 steps: PCIe wins by 3%

8-GPUs: PCIe wins by 10% on midsize messages

PCIe

Bandwidth saturates more quickly with respect to payload size. More hardware for switching and flow control?

Broadcast

Performance differs with collective. On 8-GPU broadcast, NVLink has slight advantage: single-root has less synchronization vs. all-to-all.
Strong-scaling (ImageNet): AlexNet & GoogLeNet

NVLink important for AlexNet (NVlink has 36% advantage)

Unexpected! Although AlexNet is communication intensive, GX8 has slightly higher 8-GPU allreduce performance!

Same single-GPU performance. Power cap GPUs to equalize the slightly different SM frequencies

PCle is close to NVLink for GoogLeNet

Expected GoogLeNet is more compute intensive than AlexNet by 100× (activations/parameter/batch) AlexNet: 5.9 and 11.9 GoogLeNet: 500 and 1004

Expected NVLink becomes less important as batch size increases (more computation).

Gripe: GPUs have very poor performance tools
Strong-scaling (ImageNet): ResNet/x

Performance expectation
- Identical GPU work
- NVLink/PCIe win/loss: fraction of allreduce × allreduce win/loss

Single-GPU performance slightly different! Converges as batch size increases. But why? CPU-based overheads on smaller batch sizes?

Expect DGX-1 win for 2 and 4 GPUs. Holds.

Expect GX8 win for 8 GPUs. Explains ‘knee’ on batch size 16. Why no more ‘knees’?

GX8 is competitive for ResNet-style workloads.

Smaller batch sizes (vs. AlexNet, G-Net). Comports with ResNet’s deeper network & fewer parameters; highlight interconnect.
Scaling ML across multiple on-node GPUs is increasingly important.

‘Workload Intensity’ helps explain scaling performance:

- Parameterized ResNet captures a large space of workload intensities
 - Systematically characterize & specify neural network workloads
- Workload intensity: reflects computation/communication

DGX-1 typically has superior performance:

- More links than GX8’s PCIe bus; and higher bandwidth/link

GX8 is very competitive for all ResNet-style workloads:

- On 8 GPUs, the GX8 can slightly outperform
 - GX8’s PCIe bandwidth saturates more quickly w.r.t. to payload size
 - For medium-sized messages, GX8 has better memory copy latency and an average of 10% better allreduceop performance
- ResNet currently more popular than AlexNet (large allreduce)

GX8 may be especially attractive if cost is considered.