The University of Warwick

THEORY OF COMPUTATION

‘ REPORT NO.5

A DEFINITION OF THE ARCA HOTATION

BY

W. M. Bevnon

{3

A definition of the ARCA notation.

W.M.Beynon.
Department of Computer Science, University of Warwick.

ABSTRACT'

ARCA is a programming notation intended for interactive
specification and manipulation of combinatorial graphs. The main
body of this report is a technical description of ARCA sufficiently
detailed to allow an interpreter to be developed. Some simple
illustrative programs are included.

ARCA incorporates variables for denoting primitive data
elements (essentially vertices, edges and scalars), and diagrams
(essentially embedded graphs). A novel feature is the use of two
kinds of variable: the one storing values (as in conventional
procedural languages), the other functional definitions (as in non-
procedural languages). By means of such variables, algebraic
expressions over the algebra of primitive data elements may
represent either explicit values or formulae. The potential
applications and limitations of ARCA, and more general "algebraic
notations" defined using similar principles, are briefly discussed.

Contents.
Introduction.

§1. Generalities.
1.1. Basic concepts.
1.2. Program structure and scope rules.

§2. The primitive data algebra.

2.1. Primitive data-types.

2.2. Primitive operators.
a) Arithmetic operators.
b) Vector operators.
c) Permutation operators.
d) Geometric operators.
e) Construction/projection operators.
f) Conversion operators.
g) Amalgamation operators.
h) Indexing operators.
i) The weight operator.

§3. Expressions of primitive type.
3.1. Syntax for expressions of primitive type.
3.2. Precedence rules.
3.3. Modulus coercion rules.
3.4. Scaling and coordinate information.

§4. Primitive actions.
4.1. Primitive variables.
4.2. Actual and abstract expressions and formulae.
4.3. Assignment to primitive variables.
4.4. Values of abstract variables and formulae.

§5. Diagrams: variables and assignment.
5.1. Diagram variables.
5.1.1. Explicit diagrams.
5.1.2. Vertices and colours in explicit diagrams.
5.1.3. Subdiagrams of explicit diagrams.
5.1.4. Implicit diagrams.
5.2. Diagram assignment.

§6. Diagrams and algebraic expressions.
8.1. Expressions derived from a diagram.

6.2. Diagram expressions.
6.3. Diagrams as parameters and results of user-defined operators.

§7. Composite actions.
7.1. Boolean relations.
7.2. Integer lists.
7.3. General syntax for actions.

§8. User-defined operators.
B.1. Syntax for user-defined operators.
B.2. Semantics of operator definition.

§9. Programmming in ARCA.
9.1. Examples of ARCA programs.
9.2. Miscellaneous remarks on ARCA programming.

§10. A parser for ARCA expressions.
Epilogue.
Acknowledgements.

References.

Introduction.

The ARCA* notation is intended for the description and interactive
manipulation of combinatorial diagrams such as graphs or lattices. The main
body of this report comprises a definition of the notation hopefully precise
enough to allow implementation. Some simple ARCA programs for describing
Cayley diagrams are included for illustration. The primary purpose of
undertaking this design exercise is to indicate how a general class of "algebraic
notations" might be modified for practical use. The design suggests a number of
theoretical and practical issues for further research, which are briefly discussed
in the final section of the report. This is the principal justification (or perhaps
excuse) for presenting the technical description of ARCA as a Theory of
Computation report.

§1. Generalities.

The purpose of an ARCA program is to describe appropriate internal
representations of combinatorial diagrams - specifically, realisations of graphs
in Euclidean space - for the purpose of display and manipulation. The ideal
environment for the development of such a program would provide both an
interactive medium for editing and interpreting ARCA programs (as is available
for POP2 or APL), and a means of displaying diagrams at each stage of the
descriptive process.

It should be emphasised that the abstract description of a diagram which
an ARCA program provides is not merely a means to the end of display. In
effect, it describes a simple conceptual model of the diagram which may not be
apparent in a display, but can aid the user in its subsequent manipulation or
application. As a trivial illustration of this, consider the diagram consisting of a
unit square with vertices OABC. Under one conceptual model, C might be
constrained so that OC is the vector sum of OA and OB. In this case, the effect of
moving the point A to the present position of C would be to transform the
original square into a parallelogram. Under another model, C and B might be
constrained to be the vertices of a square OACB in a particular orientation. In
this case, the same movement of A would result in rotation and magnification of
the original square. '

This report focuses on the abstract specification and interpretation of ARCA
programs, and deals only superficially with the problems of implementation and
display.

1.1. Basic concepts.

The ARCA notation is intended for describing geometric realisations of
graphs in Euclidean space. It includes means of specifying

(1) incidence information for vertices and (possibly directed and/or coloured)
edges.

() geometric information about the coordinates of vertices (if necessary in
dimension higher than 2).

To a limited degree, it also allows the abstract specification of relationships
between coordinates for vertices, and incidence and colouring information for

edges.

* ARCA is named after Arthur Cayley (1821-1895). [t may be charitably regarded as “An Aid for the
Realisation of Combinatorial Artefacts’. Experience of ARCA programming suggests novel
interpretations of old and neo-English epithets such as arcane, Arcadian, arcaic, arcangelic, and
arcatypal. »

-2-

As will be explained in more detail later, there are three primitive data
types in ARCA: integer, for representing scalar information: vector, for
representing coordinate information: colour, for representing incidence
information. A variable of primitive type also has a 'kind’: actual or abstract.
Actual variables are similar to variables in conventional programming languages;
they are used to store explicit values which may be re-assigned in the traditional
manner. Abstract variables are used to store 'implicit’ values; that is, values
which are specified indirectly by means of formulae. Such variables serve to
represent relationships between values. (As a trivial example,.the coordinates of
the vertex C of the parallelogram OACB referred to above might be represented
by an abstract variable to which a simple formula such as "coordinates of A +
coordinates of B” had been assigned.) A formula is attached to a variable by
means of an "abstract assignment"”; just as specific values may be altered by re-
assigning to actual variables, so relationships between values can be altered if
desired by re-assigning to abstract variables.

There is one complex data type in ARCA: the diagram. A variable of type
diagram is used to represent a geometric realisation of an edge-coloured
digraph in Euclidean space. Diagram variables can be of several different kinds:
actual or abstract and explicit or implicit. This reflects the fact that a
realisation of a graph may be specified at several levels of abstraction; for
instance: its size, coordinate and incidence information may be known explicitly:
it may be known as an abstract graph, but have coordinates implicitly specified:
it may be specified as a complete graph of unknown size.

Like primitive assignments, assignments to diagram variables are of two
types: 'explicit’ assignments in which appropriate values are assigned (implicitly
or explicitly) to the individual vertices and edges of an explicit diagram variable,
and 'implicit' assignments, in which a formula which implicitly represents a
diagram is assigned to an implicit diagram variable. (See §8 for more details,
and illustrative examples.) :

In all assignments, the RHS is an 'algebraic expression’' built up out of
constants, actual and abstract variables by means of operators. There are
numerous standard operators, and these can be augmented if necessary by the
introduction of user-defined operators. In an actual assignment to a primitive
variable, the RHS must be an algebraic expression in which no abstract variable
appears, since it is to be interpreted as a value rather than a formula. In an
abstract assignment, the RHS will generally be an algebraic expression in which
abstract variables are present; such an expression is to be interpreted as a
formula in so far as the value it represents (if defined) is dependent upon the
current values of these abstract variables.

1.2. Program structure and scope rules.

An ARCA program is a sequence of declarations, actions and definitions. In
general terms: declarations are used to specify the nature of variables
represented by particular identifiers, actions serve either to assign explicit
values to variables (e.g. to give explicit coordinates to a vertex, or specify a set
of edges in a graph) or to establish relationships between variables (e.g. to
ensure that four vertices to lie at the corners of a square, or that the
orientation of edges on a directed cycle is determined by the parity of an
integer variable): definitions permit the user to specify more complex
relationships between variables by introducing additional operators.

The precise syntax and semantics for declarations, actions and definitions
will be described later. Informally, the syntax of declarations and actions in
ARCA resembles that of declarations and statements in traditional ALGOL-like

-3-

languages, but declaration and formula assignment to abstract variables
enriches the semantics. Definitions comprise a heading for parameter
specification, followed by the "definition body"; though they superficially
resemble ALGOL function declarations syntactically, the definition of an
operator is in no sense a general ARCA subroutine, and is subject to rigorous
restrictions. For instance, only actual declarations of primitive variables may
appear in the body of a definition, whilst the actions are constrained to simple
forms, and must prescribe how to compute a result from the set of parameters
without side-effects. The parameter passing conventions are unusual, and will
be explained later. .

In ARCA, declarations and actions are either local to a definition body, or
global, and declarations may not be embedded in actions. The scope of the
declaration of a variable is the set of statements in which use of the variable is
valid, and is defined by two "scope rules':

(1) A global statement is in the scope of any global declaration which precedes
it.

() A statement which is local to a definition body is in the scope of any
declaration which precedes it within the same body, and any global
declaration of an actual primitive variable which precedes it.

The order of declarations, actions and definitions in an ARCA program is
constrained only by the above scope rules, and the additional requirement that
the (complete) definition of an operator must precede its use in any action.

In the interpretation of an ARCA program, global statements are
interpreted as they are encountered, whilst statements local to the body of an
operator definition are compiled for interpretation on each subsequent
evaluation of the operator.

§2. The primitive data algebra.

ARCA is largely based upon a small set of primitive data-types and
operators, which (with some poetic licence) may be conveniently described as
the "primitive data algebra”. This algebra is specified in detail below. At times,
the emphasis on interpreting notation by means of operators may appear
pedantic (see e.g. vector and colour constructors), but the reasons for this will
become apparent later.

2.1. Primitive data-types.
There are 3 primitive data-types in ARCA:
integer (int) , vertex (vert) , colour (col).

Type 'int’' is used to represent a scalar quantity, such as an index, an angle of
rotation, or a coordinate of a point. (All scalar information is treated as
discrete, as will be explained in more detail later.) Each 'int' has an associated
modulus which is a non-negative integer. An integer of modulus m will be called
an 'm-int’. For m>1, an m-int represents a residue modulo m. By default (that is,
unless a positive modulus is explicitly specified), integer constants in ARCA are
integers in the traditional sense; they are regarded as O-ints. The class of 1-ints
is used syntactically for "scaled integers"; integers which denote a number of
geometrical units of length, but which are operationally interpreted as O-ints by
scaling.

Type 'vert’ is used to represent a vector quantity, such as a sequence of
indices, or the coordinates of a point. In general, coordinates of points which are
explicitly specified will be vectors of 1-ints. Formally, a vertex represents a m-
int valued function on §1,2,...n}. It is then said to have modulus m, and

dimension n.

Type 'col’ is used to represent 1-1 partial functions ("partial perms") from
the set {1,2,....n} to itself. The integer n is then the degree of the colour. The
main purpose of colours is to represent edge information within diagrams (see
§5). but they may also be used for representing permutations.

2.2. Primitive operators.

There are a number of standard operators on primitive data-types; these
are classified and described below.

a) Arithmetic operators.

The infix binary operators '+''-','*/'%' respectively denote addition,
subtraction, multiplication and mod-reduction. The postfix unary operator '~ ' is
used to denote 'inverse within residue class' (where defined).

Semantic rules.

The arguments for '+','-' and '*' must have the same modulus, and those of
‘%' must be of modulus 0. The inverse of an m-int n is defined if and only if m and
n are co-prime.

b) Vector operators.
The infix binary operator '+' : vertxvert - vert denotes vector addition.

Scalar product of vectors is defined by < , >.vertxvert-int, and scalar
multiplication by the infix binary operator .’ : int X vert - vert.

Semantic rules.

The arguments of '+' must have the same dimension and modulus. The
arguments of '’ must have the same modulus. The arguments of a scalar
product or scalar multiplication must be of the same modulus, which will also be
that of the result.

c¢) Permutation operators.

The infix binary operators ' : colxcol-col and '@ : colxint-col
respectively denote composition (product) and exponentiation of perms. The
postfix unary operator ' ~ ' : col -» col denotes the inverse of a partial perm.

Semantic rules.

The arguments of '.' must have the same degree. The int argument to '@
must be a 0-int. If p is a partial perm then "p@0" will denote the perm obtained
by restricting the identity perm to those indices on which p is defined.

d) Geometric operators.
Scalar multiplication by a rational number defines a "'scaling operator":

int X int X vert -» vert.

If v is a vector, and m and n are integers, then {m/n).v denotes the image of
(m.n,v) under this map.

The ternary operators
rot(,,) : vertxintxvert-vert and ref(,,) : vertxvertxvert-vert
are used to specify rotation and reflection in the plane.

Semantic rules.

The scaling operator is defined for parameters (m,n,v) such that n>0 and v
has modulus 1 or 0. Note that if m<0 scaling entails reflection of the vector v in
the origin.

The arguments for rot() are to be interpreted as
(point to be rotated , angle of rotation , centre of rotation).
The vert arguments must be of dimension 2, and of modulus 1 or 0. Anti-
clockwise rotation through 2mn/ n is specified by int argument 'm%n’'.

The arguments for ref() are to be interpreted as
(point to be reflected , < pair of points on axis of reflection >).
All the arguments in this case are of dimension 2 and modulus 1 or 0, and the
pair of points on the axis of reflection must be distinct. ‘

Since vectors in ARCA have integer components, the use of geometric
operators will frequently lead to approximation. As explained more fully in §3.4,
the integer arithmetic with coordinates should be carried out on an internal
scale large enough to ensure that approximation errors introduced through the
reasonable use of geometric operators are not significant when points are
displayed.

e) Construction/projection operators.

Vectors can be constructed by specifying their component lists explicitly.
Formally, a family of 'constructors’ is introduced for this purpose. A vertex
constructor is a map

m~—int" -» n—vert.
The image of (I;, - - - ,I,) is denoted by [1;, - - - ,I,].
There is also an "interval operator"

‘,.' : O—int X 0—int -» vert.

If m and n are 0-ints, then m..n is defined if and only if m<n, when it denotes the
vector [m,m+1, ..., n] of modulus 0 and dimension m-n+1.

The projection operator vertxint-int mapping (V,I) to V[I], where the
modulus of | is the dimension of V, is used to specify a particular component of a
vertex.

Constructors for colours, though syntactically similar to vertex
constructors, are semantically different, and are based upon a form of cycle
notation for partial perms. The 'colour constructor’

{,...]: m—-int®-col
is used to specify a partial perm which is a "complete” cycle. Formally
th, - - 1y}
denotes the partial perm p of degree n which is defined by
p(I;)=li4, for i<i<n
(where addition of suffices is mod n), and is otherwise undefined. A second type
of constructor, defined by a map
{....7} : m-int® - col
is used to specify an "incomplete” cycle. Formally
) PO 3
denotes the partial perm p of degree m which is defined by
p(L)=l,, for 1<i<n—1
and is otherwise undefined.

Note that the need for an adequate notation for colours which are partially
defined precludes the use of conventional cycle notation. Indeed, to obtain a
convenient notation for most partial perms it is necessary to use constructors in

-6 -

conjunction with the 'vert-to-col conversion' and ‘superposition’ operators to be
introduced below.

The projection operator for colours is the map
colxint -+ int
which maps (CI) to C{l}. This projection is meaningful provided that I has
modulus m = degree of C; the result C{]} then also has modulus m. The value of
C{1] is the result of evaluating the partial perm C at |, and may be undefined if C
is undefined at 1.

f) Conversion operators.

There are two operators for "integer convérsion". They are the postfix unary
operators ": 1—int-0—int and ': m-int - O—int.

If Tis a 1-int, then I is a scaled integer, which represents a number of
geometric units; I is derived by multiplying I by the appropriate scale factor.

If I is an m-int, then I' denotes the 'principal value' of I: the unique integer
congruent modulo m in the range 1<l<m.

Note that there are syntactic conventions which enable implicit conversion
of 0-ints to m-ints (see below), but all other conversions must be explicit.

There is also a "vert-to-col conversion" operator
{ §:vert » col
which maps the vector [a;,az,....am] to the colour C of degree m defined by C{lj =
a; for l<l<m. For this purpose, the a's must be m-ints which define a
permutation of the set of residues 1,2, .., m mod m; thus the colour
{[21.82,....am]} is defined only if it represents a conventional permutation C for
which C{]} is defined for 1<I<m.

g) Amalgamation operators.
There are two infix binary operators

** (smash) : vertxvert-svert and : (join) : colXcol - col

which are intended to be used in the context of diagram products and joins
respectively.

If Vand W are verts of dimension m and n respectively, and having the same
modulus r, then V**¥ is the (m+n)-vert of modulus r whose first m components
are the components of V and whose last n components are the components of W.

If A and B are cols of degree m and n respectively, then A::B is the (m+n)-
col defined component-wise by the formula
o, _ | Al % (m+n) for lsism
A:B i} = m+B{i—m}' %Z (m+n) for m<ism+n

with the convention that A::Bf{i] is undefined if the corresponding RHS is
undefined.

If f and g are colours of degree m, then f$g ("superposition of f and g")
denotes a colour of degree m which is defined by
18g{1} = if g{I] is defined then g{I} else 1{1].

h) Indexing operators. -

There are two infix binary operators
** . intxint»int
7% : int xvert - int
which are intended for specifying indices in diagram products and joins

respectively.
If I and J are integers of modulus m and n respectively, then I**J denotes
the mn-int whose principal value is m(I'-1)+J’ modulo mn.

Let V=[1,.....;] be a vertex whose components are positive 0-ints, and let S,
denote the sum
i)lr
=1

If 1is an integer of modulus Sy, then I%%V is defined as an Ij-int for some j. The
value of j is the unique integer such that S;_, i< I' = S; and I%%V then has the
principal value I-§;_;.

i) The weight operator.
There are unary operators
int »0-int , vert » 0—int and col » 0—int
which respectively return the modulus of an int, the dimension of a vert, and the

degree of a col. The postfix unary operator '# is used to denote each of these
operators.

If X is an object of primitive type, X# will be called the 'weight’ of X.

§3. Expressions of primitive type.
All the operators above can be used to form algebraic expressions. The

primary operands in such expressions are constants and/or variables of
primitive type, including possibly constituent variables of diagrams (see §8).

As explained in §8 below, the set of operators can also be augmented by
means of user-defined operators.

The syntax of expressions of primitive type is summarised below. A form of
BNF grammar is used for syntactic specifications, and the following conventions
are adopted throughout:

- terminal tokens (e.g. operators, identifiers, reserved words) are roman
- grammar variables are distinguished from terminal tokens by italic

-meta-symbols (| . [.]. § .} and ::=) are bold.

The symbol ” |" is used for alternatives in grammar rules, square brackets

([]) to indicate an optional term, and braces (i f) to indicate one or more
instances of a term.

3.1. Syntax for expressions of primitive type.

Integer expressions.

I_exp 1= (I_exp)
| | 1ezp |
| NUMBER | 1_ID | 1_OP (ezp_tist)
| Iezp# | veezp# | cazp# | DD #
I I.exp + I_exp I I_exp — [_exp
| I_exp * I_exp I I_exp ™ '-
I I_exp 7 I_ezp I I_ezp '
I I_exp ** [_exp I I_ezp %7 V_exp

I < V_.ezp , V_ezp >
| Veezp [I_ezp] | C_ezp {I_ezp |
| rezp -

Vertex expressions.

V_exp 1= (V_ezp)

| | veezp |

| [I_ezp_tist] | V.ID | V_OP (ezp_tist)
| D_ID ! 7_exp

| V_oezp + V_exp I I_exp . V_exp

| I_exp .. I_ezxp

| ROT (V_exp ,I_ezp , V_exp)
I REF (V_exp , V_ezp , V_ezp)
| (I_ezp / I_ezxp) . V_exp

l V_ezp ** V_ezp

Colour expressions.

C.ezp ::= (C-exp)
| | Cezp |
| §Iezp_tist} | c_ID | C_OP (ezp_tist)
| LETTER _ D_ID
| col_seq LETTER - D.ID [E] [@ /_exp]
I C_ezp . C_ezxp I C_.exp ™ I C_ezp @ [_exp
| C_ezp $ C_ezp
| C_exp :: C_exp
| §V_ezp }
col_seq ::= § LETTER [—] [@I_ezp] 3
I_exp_list 1= [_exp { , I_exp ;
exp_list :i=exp § , ezp }

exp 1= J_exp | V_exp l C_exp I D_ezxp

3.2. Precedence rules.

As the syntax above shows, ARCA expressions can be very complex, and a
large number of precedence rules are needed for disambiguation. The syntactic
rules given in this report have been used as the basis of a YACC-generated LR-
parser for ARCA expressions and relations; the interested reader is referred to
the source for this parser (see §10) for a a suitable disambiguating set of
precedences.

3.3. Modulus coercion rules.

Integer variables and constants of modulus 1 are intended to simplify the
specification of coordinates; those of modulus > 1 for indexing of diagram
vertices and components of colours. In both these contexts, it can be
inconvenient to have to specify the moduli of integer constants explicitly, and
modulus coercion rules have been devised to alleviate this problem.

As mentioned above, coercion of a 0-int to an m-int may occur within an
expression, but no other modulus coercions are permitted. Such coercions may
extend to the coercion of a vector of meodulus 0 to a vector of positive modulus.
There are three general contexts in which coercion of a 0-int occurs:

[1] Suppose that a binary operator requires operands of the same modulus,
and one operand is of positive modulus. The other operand, if of modulus 0,
will be coerced. (The operators to which this rule applies are: integer
addition, subtraction and muitiplication: addition and scalar multiplication
of vertices: multiplication and juxtaposition of colours.) In the same spirit,
in an J_exp_list, all entries with positive modulus must be of the same
modulus, and any entries of modulus 0 will be coerced so that all entries
have the same modulus.

-10-

[2] An integer I which is used to index a component of a colour C (as in C{1}), or
to select a vertex from a diagram D (as in D), is coerced to the
appropriate modulus viz. the degree of the colour C, and the size of the
diagram D, respectively.

[3] In any assignment to an integer or vertex variable of positive modulus, the
expression on the RHS, if of modulus 0, will be coerced to the appropriate
modulus. (In a similar fashion, it is permissible for an abstract integer
variable of positive specified modulus to evaluate to a 0-int.)

3.4. Scaling and coordinate information.

As mentioned above, scalar information in ARCA is treated as discrete, even
though in principle geometric operators should introduce points with non-
integral, even irrational, coordinates. It is intended that coordinate arithmetic
is in fact done (where necessary with approximation) on an integer internal grid
far larger than the grid any physical device used for display would permit. For
purposes of display, physical coordinates would then be calculated by means of
an appropriate mapping of the internal grid onto the display grid. On the
internal grid, the point produced (for instance) by rotating a gridpoint V
through an angle of 7/ n, n times over, might very well differ from V, but it is
intended that this discrepancy should be small enough to lie beyond the
resolution of the display. The precise choice of internal and external scales, and
the mapping between them, is a pragmatic issue of implementation. It would be
unreasonable to expect such a display system to be proof against the effect of
cumulative approximation errors, but in practice a simple mechanism of the
above kind should be sufficient if used with discretion.

In an ARCA program, vectors of modulus 0 which are used to specify
coordinates are to be interpreted on the internal scale. This means that a
vector of modulus 0 such as [1,1] will represent a point indistinguishable from
(0,0) on display. Thus, the effective use of literal vectors of modulus 0 for
coordinate specification will require reference to the internal coordinates of
other points, or special knowledge of the relationship between internal and
external coordinate scales. As an alternative, vectors of modulus 1 may be used
to specify coordinates on some pre-set geometric scale. Thus a vector of
modulus 1 such as [1,1] will be represented on the internal grid by the point
[i.u], where p is a (large) pre-set integer of modulus 0, and displayed at the
point whose displacement from the x and y axes is a standard length such as a
centimetre or an inch. The conversion operator " then maps the i-int m to the
O-int mu.

§.4. Primitive actions.

Within each primitive data-type, there are "actual” variables which are used
to represent and manipulate values in the conventional manner, and "abstract”
variables which represent abstractly defined values i.e. algebraic expressions
which evaluate to the appropriate type. A primitive action in ARCA is then the

assignment of a value to an actual variable or an expression to an abstract
variable.

4.1. Primitive variables.
In ARCA, each variable has a type viz.
‘int’, 'vert’, 'col’ or 'diag’.
Primitive variables (those of type int, vert or col) also have a kind : 'actual’ or
'abstract’. There is an important distinction between the two kinds of primitive
variable, and (for the purposes of this report) a lexical convention is adopted

-11-

whereby identifiers of the form AX,BX,CX.... are used for actual variables, and
identifiers of the form ax,bx,cx,... for abstract variables. (A similar convention is
useful in ARCA programs - c.f. §9.)

Declaration of primitive variables.
declaration 1= [abst] typename [I_ezp] id_list

= int | vert | col
id_list x=m § . D]}

typename

Examples of declarations.

The simple examples below are suppleuiénted by the example programs in
§9. For clarity, related declarations have been placed on a single lme and
separated by semi-colons.

vert 2. OX

int 0 : AX; int 2*AX : MX, NX
abst int 2 : px

abst col : ax, bx, cx

abst int : rx; abst vert rx: vx

Semantics of declaration of primitive variables.

The keyword "abst"” is used when declaring abstract variables; variables are
otherwise actual. In a declaration, the typename specifies the type of a variable,
and where necessary the integer expression /I_ezp specifies its weight.

The weight of an actual variable must be specified on declaration by means
of an integer expression which is ‘actual’ in a sense to be explained below, and
defines an appropriate non-negative value. On declaration, actual variables are
assigned default values: int's are initialised to 0, vert's to the zero vector, and
col's to the totally undefined partial perm.

It is not necessary to specify the weight of an abstract variable on
declaration. If a weight is specified, it may be an arbitrary integer expression
(not necessarily actual). It then serves a purely 'defensive’ function; on any
subsequent evaluation of the variable, its weight must be consistent with its
declared weight.

Abstract variables have no default value on declaration.

4.2. Actual and abstract expressions and formulae.

Actual variables are used to store explicit values; abstract variables values
which are "abstractly defined”, that is, for which a formula rather than an
explicit value is supplied. For this purpose, a formula is defined to be an
algebraic expression in which each operand is either a constant or an abstract
variable, and each operator is either primitive, or user-defined (see §8). The full
syntax of expressions of primitive type is given in §3.

A formula is constant if it contains no abstract variables. If f is a formula,
the value of f (to be discussed formally below) is denoted by |t].

There is no special notation for formulae. A general algebraic expression
will be interpreted as a formula by replacing each actual variable by its value,
and pertormmg any evaluation of subformulae explicitly stipulated by means of
"| -+ |". Such an algebraic expression is actual if it correponds to a constant

-12-

formula, and is otherwise abstract. Actual and abstract expressions can be
distinguished statically; that is, without the need for explicit evaluation. In this
connection, note that an abstract expression, such as 'ax-ax’, may have a
constant value.

4.3. Assignment to primitive variables.

Syntax for assignment to primitive variables.
assignment ::= [_l_name := [_exp
| V_ID := V_ezxp
| C_ID := C.exp
I_l.name ::= V.ID [I_exp]
| C_ID { /_ezp }
| 11D

Note: In the syntax rules above, the identifiers and expressions are typed,
so that e.g. V.ID is an identifier of type vert. Similarly, the meta-variable /_ezp
denotes a primitive expression which defines an integer value. Type checking of
identifiers and expressions is conveniently handled syntactically by the ARCA
expression parser in §10, but might alternatively be managed by semantic rules.

Examples of assignments.

The assignments below are to be interpreted in conjunction with the
examples of declarations given above, and similar conventions have been used.

0X :=[0,1%1]

AX := 3; MX := 5; NX := 2*MXZ6
ax := bx @ (1-2*px'); px:= rx%2
rx ;= 1; vx := [px'%1, 1-px']

Semantics for assignment to actual variables.

Actual variables are similar to variables in conventional imperative
languages; they are used to store a value of the appropriate type, and are
overwritten on each assignment. In any assignment to an actual variable name,
the RHS must be an actual expression, and define a value of the same weight as
the LHS.

Actual vert's and col's can be also assigned "component-wise”. In this case,
the /_l_name must be defined by an actual vert or col name indexed by an
actual /_exzp of an appropriate weight. Component-wise assignment to a vert or
col is subject to the same semantic rules as assignment to an actual integer
variable of the appropriate modulus.

The value of an actual variable (or component of an actual variable) is
determined by the last value assigned.

Semantics for abstract assignment.

As explained above, abstract variables are used to represent implicitly
defined values. This is achieved by assigning formulae to abstract variables; the
value of an abstract variable is then obtained by evaluating the formula most
recently assigned.

-13-

For abstract assignments, the only valid l-names are abstract variable
names, so that component-wise assignment to abstract vertices and colours is
impossible. In an abstract assignment, the RHS is interpreted as a formula,
which may be constant.

4.4, Values of abstract variables and formulae.

Abstract variables have no default values. Even the assignment of a formula
to an abstract variable does not guarantee that its value exists. For instance, it
is quite legitimate to introduce a formula which contains uninitialised abstract
variables on the RHS of an assignment. It is only necessary to ensure that an
abstract variable has a value (if appropriate, of a specified weight) when
required; that is, when its evaluation is stipulated in the context of an
expression

Suppose that the abstract variable vx is " currently defined by formula f "
(ie. f was the formula most recently assigned to vx) and that S is the set of
abstract variables in f. The (current) value of vx (if it exists) is then the value of
the formula f, which is recursively defined as " the result of replacing each
abstract variable in f by its value, and evaluating f . Whether or not this value
exists, it is useful to consider "the set of abstract variables on which the current
value of vx notionally depends”, defined as

dep(vx) = if Sis p then p else S U { dep(wx) | wx € S }.

Meaningful use of abstract variables may then be ensured by monitoring the sets
dep() and checking that

(i) at no time does a variable vx belong to dep(vx)

(i) at no time is a variable vx such that dep(vx) contains an undefined variable
evaluated.

To guarantee condition (i), it is enough to avoid assignments to an abstract
variable wx which lead to wx becoming dependent upon itself.

Coercion rules.

In principle, it is always possible to convert an abstract expression e to the
actual expression le| by evaluation. In practice, it may be helpful to allow
conversion of an abstract expression to an actual expression by means of such
an evaluation whenever a value rather than an abstract formula is expected,
though warning of any such coercion would be desirable.

§5. Diagrams: variables and assignment.
‘ The non-primitive data-type diagram (diag) is used to represent a
realisation of an edge-coloured digraph. A diag comprises an array of verts and a

list of cols whose degree is the size of the vert array. The size of a diagram is
the size of its vertex array.

If the digraph G is represented by the diag D, the array of verts of D
supplies an index and coordinates for each node of G. Each col ¢ of D then
denotes a partial perm of the node indices; if ¢ maps index i to index j, then
there is a directed edge "of colour ¢" from the node with index i to the node with
index j. Note that only digraphs G in which at most one -edge of a particular
orientation and colour is incident at any vertex are representable by a diag.

-14 -

5.1. Diagram variables.

Like primitive variables, variables which represent diagrams are of two
kinds: actual and abstract. There is an additional distinction between 'explicit’
and 'implicit’ diagram variables (see below); this reflects two ways in which
abstractness can be generalised. The terms 'actual/abstract/explicit/implicit
diagram' will be used as synonyms for 'actual/abstract/explicit/implicit
diagram variable’. A single letter will be used to denote a diagram variable:
upper-case for explicit, lower-case for implicit.

An ezplicit diagram is comprised of an array of variables of type vertex
("vertices") and a list of variables of type colour ("colours"). Both the colour list
and the size of an explicit diagram are fixed on declaration. The constituent
variables in an explicit diagram have a kind which is specified (independently for
vertices and colours) on declaration. An actial diagram is an explicit diagram in
which both vertex and colour variables are actual.

A diagram which is explicit but not actual is abstract in as much as its
vertices and/or colours may be implicitly described by means of formulae. An
implicit diagram is a variable whose value is a diag defined by means of a
formula involving standard and/or user-defined operators. As explained and
illustrated below, "implicit diagram" rather than "abstract diagram" is the more
direct generalisation of "abstract primitive variable".

The evaluation of a diagram § is a diag denoted by |6]. If & is an explicit
diagram, |8] is derived by replacing each of the constituent vertex and/or colour
variables of & by its evaluation (If the evaluation of a component of ¢ is
undefined, so also is |8].) If 6 is an implicit diagram, its value is represented by a
formula which returns the diagram |4| (if defined) on evaluation.

The evaluation of a general formula (in which diagrams may appear as
operands) is then unambiguously defined as in §4 viz. as the result of recursively
replacing all operands by their evaluation, bearing in mind that an explicit
abstract diagram and an implicit diagram are distinguished on declaration.

5.1.1. Explicit diagrams.

Syntax of explicit diagram declaration.

exp_diag_dec .= [' colour_list ’ —] diag diagram_spec : id_list

colour_list 1= letter § letter §

letter = alblec| |z

diagram_spec ::= (vertex_spec , colour_spec)

vertex_spec ..= abst vert [I_e:rp] | vert I_exp

colour_spec ..= [abst] col I_.ezp
id_list w=m}{ .0}

Examples of declarations.
'abe’-diag (vert 3, col 5) : D
‘ab’-diag (abst vert, col 6) : E

-15-

diag (vert 2, col 3) : T

Semantics of explicit diagram declaration.

In the declaration of an explicit diagram, the colour_list is used to specify
the set of valid colour-names, each of which is a single lower-case letter. The
vertex_spec (respectively colour_spec) determines whether the constituent
vertices (respectively colours) are actual or abstract variables.

Within an explicit diagram, the colours (whether abstract or actual) all have
the same degree, which must be specified on declaration by an actual integer
expression in the colour_spec. The size of an explicit diagram is the common
degree of its colours, which is also the number of vertices in the diagram. Note
that the size of an explicit diagram is fixed on declaration. '

It the vertices of an explicit diagram are declared to be actual, they must
all have the same dimension, which must be specified by an actual integer
expression in the vertez_spec. If the vertices are declared to be abstract. a
dimension may be specified by means of an optional integer expression, possibly
abstract.

5.1.2. Vertices and colours in explicit diagrams.

Vertices and colours of an explicit diagram are specified by means of
selection functions " ! " and " _". Formally, an explicit diagram D of size k has
associated functions, prefix and postfix respectively:

"D!'": k—int -+ (abst or act) vertex variables
'-D ": {set of colour names} - (abst or act) colour variables,

where the vertex variables may have specified dimension, and the colour
variables are of degree k.

Syntax for vertices and colours of D.

vertez_of D =D ! I_exp
colour_of D .= letter _ D

Semantics.

The definition of vertez_of_D and colour_of _D is subject to two semantic
rules:
[1] the integer expression which defines the index of a verter_o f-D must be
actual, and define an integer of the appropriate weight.

(2] the letter which identifies a colour_o J-D must be a valid colour name for
the diagram D. :

Each vertex and colour of an explicit diagram is semantically equivalent to
a variable of the appropriate type and kind, and all assignments to vertices and
colours are subject to the same conventions and semantic rules for assignment
to primitive variables explained in §4 above. In particular, in any assignment to
an actual diagram vertex, or abstract diagram vertex of specified weight, the
RHS must define a value of the same weight. On declaration, actual vertices
(resp. colours) in an explicit diagram are initialised to the zero vector (resp.
totally undefined partial perm) of the appropriate dimension (resp. degree).

When evaluated, the set of vertices and colours of an explicit diagram D of
size k defines a geometric realisation of an edge-coloured digraph G. The

-16 -

vertices D!1, D!2, ... , D!k of G are located at the points [D!1], [D!2], ... , |Dk|
respectively, and there is a "c-coloured”" edge (or 'c-edge’) from D!i to D!j,
Iwhenever ‘c’ is a valid colour name for D, and i and j are indices such that
c-Diij|=j. '

It should be emphasised that the vertices of an explicit diagram are
variables of type vert not to be identified with the geometric points they may
represent. Distinct vertices define distinct variables, even though (by accident
or design) they may represent the same geometric point. Similarly, the ‘edges’
which colours define are abstract as opposed to geometric, that is, they connect
vertices with particular indices, not geometric points with particular
coordinates. '

Note also that the choice of a particular colour name in a diagram is of
purely "local” significance; if X and Y are two diagrams, the colours "a_X" and
"a_Y" in no sense necessarily represent "edges of the same colour”. A colour
name merely identifies a particular colour variable associated with a diagram, in
the same way that an index identifies a vertex variable.

5.1.3. Subdiagrams of explicit diagrams.

Suppose that D is an explicit diagram which has k vertices and m colours: a
"(k,m)-diagram". A subdiagram of D is a diagram derived by restricting and/or
re-ordering the colour list and/or vertex array of D.

Syntax for subdiagrams of D.
subdiagram 1= [' colour_list ' —] D [/ V_exp]

Examples of subdiagrams.

In the context of the diagram declarations above, the expressions
'ba’-D/[1,4,2] . 'b'-E/[1,8,5] and T/[3,2,1]
denote subdiagrams of D, E and T respectively.

Semantics.

Let D be a (k.m)-diagram, as above. Within an ARCA program, the identifier
'D’ alone will denote the (0,m)-diagram consisting of the vertex array of D. The
colour_list is used in order to select colours for a subdiagram; it must be a
sequence of distinct valid colour names for D. The V_ezp is used to specify the
set of vertices to which the subdiagram is restricted; it must be an actual
expression defining a vector of distinct m-ints (or O-ints). In a subdiagram
defined by restriction to a proper subset of the vertices, only edges which join
vertices within the restricted vertex set are retained. As will be clear from the
discussion of diagram operators and assignment below, the order in which
colours appear in the colour_list of a subdiagram is significant.

5.1.4. Implicit diagrams.

As illustrated in §9, Example 3, an abstract explicit diagram is adequate for
representing a graph whose structure is known, but whose geometric realisation
is to be determined experimentally, or a graph in which incidence information is
a simple function of an independent variable. In practice, it is also useful to be
able to describe a parametrised family of graphs, such as "complete graphs on n
vertices"”, or "Cayley diagrams of dihedral groups (appropriately generated)". An
abstract description of an entire graph, rather than a family of abstract
descriptions of vertices and edges is then required. Implicit diagrams are
intended for this purpose (see §9, Example 4 for an illustration).

-17-

Syntax of implicit diagram declaration.

imp_diag_dec .= abst [' colour_list ' —~] diag spec_opt : id_list

spec_opt w= [(wt_spec)]
wi_spec ce=vert [_ezp [, col I_ezxp] I col J_exp

Semantics of implicit diagram declaration.

The keyword ‘abst’ is used to distinguish implicit from explicit diagram
declaration. The spec_opt is an optional weight. specification for the vertices and
colours of the declared diagram(s). It has a defensive function analogous to the
optional weight specification for abstract primitive variables; on evaluation,
vertices and/or colours of the declared diagram must be of the weight specified
in the wi_spec. The /_ezp's in the wt_spec may accordingly be abstract.

5.2. Diagram assignment.
There are two kinds of diagram assignment: ‘explicit’ and 'implicit’.

Syntax for assignment.

ezplicit_assignment :!= subdiagram := D_ezxp
implicit_assignment = D_ID := D_exp

Semantic rules for assignment.

The RHS of a diagram assignment is a 'diagram expression’; an expression
in standard and/or user-defined operators which returns a diagram. The
informal references to diagram expressions in this paragraph will be
supplemented by the formal rules for their construction and interpretation
given in §6.

In an explicit assignment, the LHS is an explicit diagram, and the RHS
supplies an appropriate family of formulae or values which are to be assigned to
the constituent variables on the LHS. For this purpose, the RHS must be an
erplicit diagram expression: an expression which 'returns a diagram explicitly’,
in that it can be interpreted as an array of V_ezp's and a list of C_exp's. For
such an assignment to be valid, the RHS must comprise an array of V_ezp's and
a list of C_exp's of the same size respectively as the vertex array and colour list
of the subdiagram on the LHS. Explicit diagram assignment is then semantically
equivalent to "parallel assignment of formulae or values to some or all of the
constituent variables of an explicit diagram"; each constituent primitive
assignment being subject to the semantic rules given in §4.

In an implicit assignment, the LHS is an implicit diagram, and the RHS an
arbitrary diagram expression. Semantically, implicit assignment is similar to
assignment to an abstract primitive variable; the RHS is interpreted as a
formula by substituting values for actual variables, and carrying out partial
evaluation. The value of the variable on the LHS is subsequently defined by this
formula until re-assignment.

Diagram assignment can only be fully understood in conjunction with the
rules governing diagram expressions explained in §6. For simple illustrative
examples, see §9. :

-1B-

§6. Diagrams and algebraic expressions.

Diagrams may appear in algebraic expressions in a number of ways. A
diagram or component of a diagram may be used as a parameter for a standard
or user-defined operator. There are also operators which return diagrams for
their result; these may be used to form diagram ezpressions (D_ezp’s)
analogous to integer, vertex and colour expressions.

The semantics of expressions which involve diagrams but represent a value
of primitive type is based upon the semantics of primitive expressions as set out
in §4. The definition of kind (actual or abstract) for such expressions is
sufficient to allow the semantic rules for primitive expressions to be generalised.

Where diagram expressions are concerned, the semantic rules for diagram
assignment also require a distinction between an 'implicit’ D_ezp, which
provides "a recipe for an array of vertices, and a list of colours” and an 'explicit’
D_ezxp, which is "a family of independent recipes, one for each of its vertices and
colours”,

To specify kind for all expressions involving diagrams, it suffices to consider
expressions which are derived from a diagram variable (e.g. by selection of a
vertex, or restriction to a subdiagram), expressions which return diagrams, and
expressions in which diagrams occur as parameters.

The precedence rules for general D_ezp's can be inferred from the ARCA
expression parser in §10.

6.1. Expressions derived from a diagram.

To exploit diagrams, it is necessary to refer to their constituent variables.
If X is a diagram (of arbitrary kind), there are a number of rules by which
algebraic expressions can be derived from X. It should be carefully noted that
derived expressions are defined for diagram variables rather than diagram
expressions (see below).

Syntax for expressions derived from X.
size_of X =X #
V_exp_of X 1= X! I_exp
C.exp_of X 1= letter _ X
C_path_of X ::= colour_seq letter __ X [-] [@I_exp]
colour_seq w= sletter [B] [@[_ezp] . ;
D_expof X = X/ V_exp I " colour_list ' - X

Semantic rules for derived expressions.

The expression X# denotes the size of the diagram X. If X is explicit, X# is an
actual integer expression; otherwise, X# is an abstract integer expression whose
value (if defined) is the size of the diag [X|.

Let ¥ denote an /_exp. The interpretation of X!y when X is explicit and 7y is
actual is explained above. If X is implicit, or ¥ is abstract, then X'y is an
abstract vertex expression whose evaluation is the result of selecting the vert
indexed by |y| from the diag [X]. For this purpose, }y| must be an appropriate
index.

Let a denote a letter. The expression a_X is defined provided that a is a

-19-

valid colour name for X. For explicit X, the interpretation of a_X is explained
above. If X is implicit, X is an abstract colour expression whose evaluation (if
defined) is the result of selecting the col referenced by & from the diag [X].

Since the value of a colour in a diagram is a partial perm, there is at most
one edge of a particular colour into and out of a vertex. This makes it possible to
reference one vertex from another in the same diagram as "the result of
following a specified path made up of edges and/or reverse edges". The syntax
for C_path is designed to simplify such referencing, so that, for example

"a_X{a_X{b_X fa_Xti}}}}"
(which is equivalent to “a_X®2.b_X ~.a_X "{i}") may be abbreviated to
“a@2.b".a_ X {i}".
Abbreviation of a colour expression in this fashion does not affect its kind.

Let v denote an vertex expression. If X is explicit, and v is actual, then (as
explained above) X/v is a subdiagram of X: an explicit diagram whose kind
(abstract or actual) is that of X. If X is implicit, or v is abstract, then X/ v is an
implicit diagram, necessarily abstract, whose evaluation (if defined) is the result
of restricting the diag [X| to the vertices associated with the sequence of indices
specified by |v|. For this purpose, |v| must define a sequence of distinct valid
indices for X

Let B denote a list of distinct valid colour names for X. If X is explicit, then
'8'—X is an explicit subdiagram of X of the same kind as X. If X is implicit, so also
is 'g'=X. Its evaluation (if defined) is then obtained by restricting the diag [X| to
the list of colour names B.

6.2. Diagram expressions.

There are four principal methods for specifying diagrams by means of
operators; by restriction (defined for diagram names) as explained above, by
standard operators ‘join’' (::) and 'product’ (**), and by user-defined operators.

Syntax.
D_exp 1= (D_exp)
| | D_ezp |
[cotour_tist « =] DD [/ Viezp]

|

I D_exp :: D_exp

I D_exp ** D_exp
| D_oP (par_tist)

Standard operators on diagrams.

There are two standard binary operators on diag's: join (::) and product
(tt).

Join is defined as a map

(m,s)-diag x (m,t)-diag -+ (m.s+t)-diag.
IfXand Y are diag's of size s and t respectively, with colour lists
‘818z * * - 8, and '‘bybz * - - by’

respectively, the join of X and Y has a vertex array of size s+t whose i-th element

is "X1i" if 1<i<s, and "Y!(i-s)" if s<i<s+t, and a list of m colours, the j-th of
which is specified to be "a;:: b;".

-20 -

Product is defined as a map
(m,s)-diag x (n,t)-diag » (m+n,st)-diag.
If Xand Y are diag's of size s and t respectively, with colour lists
'alaz T am' and 'blbz et bn'
respectively, the product of X and Y has a vertex array of size st whose (i*%j)-th
element is specified to be "X!i**Y!j" for 1<i<s, and I<j<t, and the colour list
'e1Cz * * * Cman'» Where

o ayfi}»*j for 1<k<m
cx(ies)) = i**by_m{i} for m<k<m+n
for 1<i<s, and l<sj<t.

In the context of an ARCA program, there is no way of introducing a literal
diag value into a formula, and join and product are used to combine D_ezp's.
The join or product of D_exp's 6, and &3 is explicit if §, and &, are both explicit,
and is otherwise implicit. Formally, suppose that &; (i=1,2) is an explicit diagram
expression comprising an array A; of V_ezxp's and a list L; of C_ezp's. The join
6,::0z is defined provided that L, and L, have the same length, and is the explicit
D_exp comprising the array of V_exp's obtained by concatenating A; and A,
and the list of C_ezp’s whose i-th entry is the join of the i-th entries in L; and L.

6.3. Diagrams as parameters and results of user-defined operators.

As explained above, a diagram may be specified as a parameter or result of
a user-defined operator. If an operator m requires a diagram as a parameter yet
returns a result of primitive type, the kind of an expression w(x;,%z, . . . ,xy) is
determined in the usual fashion; it is abstract if and only if at least one of its
operands X; is an abstract expression.

If an operator m returns a diagram, the expression 7 (X,.Xg,X) will
denote an actual diagram if all x;'s are actual, and an abstract diagram
otherwise. The semantic rules needed to distinguish between implicit and
explicit diagram expressions are more complex, and will be formulated in §8,
where further explanation of the conventions governing user-defined operators
is given.

§7. Composzite actions.

Apart from assignment, there are three standard constructs for defining
actions. They are the conventional “iterative" (while) and "alternative” (if)
constructs, and a with-construct resembling the usual for-statement.

There is some paraphernalia associated with complex constructs, viz:
notation for boolean relations and integer lists, which is explained below. It is
important to note that abstract variables and expressions cannot be assigned to
control variables or appear as relations in complex constructs; their use is
confined to declarations and assignments, and the complexity of a composite
action derives simply from its composite nature. In particular, neither relations
nor integer lists can be specified implicitly by means of abstract expressions.

7.1. Boolean relations.

-21-

Syntax.
relation ::= (relation)
| I_exp rel_op I_exp
| exp # ezp
| e = emp
I relation && relation
| relation || relation
l relation -~
| true
| false
relop =< | =|=1]>

Semantic rules.

In all relations, expressions must be actual. In any comparison, the integer
expressions must denote O-ints. Equality of expressions naturally entails that
both have the same type, and that their values are identical component for
component. The operators &&, || and ~ respectively denote conjunction,
disjunction and negation.

7.2. Integer lists.

Syntax.
integer_list (.= I_ezxp
| I_ezp to I_exp
l integer_list , integer_list

Semantic rules.

In an integer_list, all /_exp's must be actual and represent integers having
a common modulus m. If i and j are O-ints, or are principal values of m-ints
(m=>2), then "i to j” denotes the list of integers i, i+1, ..., j if i<j, and is otherwise
empty. The comma is used to indicate concatenation of integer lists.

Integer lists may be used in the specification of (actual) colours and

vertices. The constructions
[integer_tist], { integer_list } and { integer_list , ?]

denote vertices and colours following the conventions explained in §2.2 e).
7.3. General syntax for actions.

action 1= assignment | while | if | with

while .= while relation block

if ::= if relation block else fi

else ::= § elseif relation block §

-22-

with = with int [J_ezp | : ID := integer_tist block
l with vert /_ezp : ID := V_ezp { ., V_ezp ; block
I with col /_exp : ID := C_exp f , C_exp ; block
block 1= do [action { . action ;] od

Semantics.

The interpretation of while and if is.conventional; in both cases, the
relation’'s which appear involve only actual expressions. In essence, an if
specifies a list of (relation , block) pairs; each relation is evaluated in turn
until a valid relation is (perhaps) encountered, when the corresponding block is
‘executed. .

A with contains an embedded "specification of a control variable”, whose
scope is the set of statements in the associated block. The type of this variable
is specified by the typename, and its weight by the /_ezxp.

A with is interpreted by successively assigning each of the values specified
by the associated expression list to the control variable and executing the block,
as in a traditional for-statement. The expressions in the expression list must be
actual, and represent values of the appropriate weight.

Assignment to the control variable, or to a component of the control
variable of the with-statement is not permitted within the with -block.

§>B. User-defined operators.

The definition of primitive operators in §2 provides a semantic paradigm for
"user-defined operators’ as described in this section. Like primitive operators,
user-defined operators have strongly typed parameters, and are without side-
effects. Note also that in defining a new operator it is only necessary (as with
primitive operators) to specify the result of applying the operator to evaluated
parameters. The semantics governing use of the operator in formulae (i.e. as a
mechanism for combining abstractly defined values) can then be inferred.

8.1. Syntax for user-defined operators.

de finition «.= op_header is op_body si

op_body = [action i ;‘a.ctionf]

op_header :i= op (par_spec_list) » type_spec : op_name
op_name =D

par._spec_list 1= [pa:r_specs . par_spec ;]

par_spec ::= type_spec : por § . par }

par ::= § NUMBER

type_spec <i= I_spec l V_spec I C_spec |D.spec
I_spec = int[I_exp]

i’_spec o= vert.[I_ezp]

C_spec o= col[I_ezp]

-23-

D_spec = [colour_list] diag spec_opt
where spec_opt is as specified in the syntax of implicit diagram declaration
(85.1.4), and action is as specified in §7.3.

8.2. Semantics of operator definition.

A definition is used to introduce a new operator. There are two parts to
the definition; the op_header and the op_body. The op_header supplies details
of the parameters required (via the par_spec_list), the type of the result (via
the fype_spec) and the name of the new operator (op_name). The op_body
describes the sequence of actions which must be carried out when the operator
is evaluated with given parameters.

If m is a user-defined operator of arity k, and x;,Xsx) are actual
expressions of appropriate type and weight (as specified in the op_header, as
explained below), the expression n(X;Xs, ...,x,) will denote the result of
evaluating 7 with the parameters x;,X3, . . . ,X,. As with a primitive operator, if
one or more of the xj's is an abstract expression, then m(x;xg, ...,xy) is
regarded as an abstract expression, which may be used in specifying a formula
rather than an explicit value.

Within the definition of an operator, pre-declared primitive actual global
variables may be used to denote values in expressions, but may not be re-
assigned. A reference to an actual global variable in a definition will be replaced
by its current value (c.f. the interpretation of an expression as a formula).

In the op_header of an operator = of arity k, the parameters (which must
be specified in a fixed order in every subsequent use of 7) are referred to by
"formal names” $1,82,...,8k. The header supplies a template for the new
operator: a type for each parameter and the result, and a set of integer
expressions prescribing how the weights of the parameters and result are
constrained on evaluation of the operator. The type of an operator is the type of
its result.

Formally, the set of par's appearing in the par_spec_list must be
{81,382, . ..,8k];, each parameter then has an associated type_spec which
comprises type and weight information. If a parameter is of primitive type, its
type_spec resembles the declaration of an abstract variable, in that the
specification of weight is optional. Similarly, if a parameter is of type diagram,
its type_spec resembles that of an implicit diagram in that the weights of its
constituent vertices and colours may be partially specified. An /_exp which
appears in the type_spec of a particular parameter $j, where 1<j<k, may involve
any pre-declared primitive actual global variable, and any parameter $t which is
specified prior to 8j in the par_spec_list .

By contrast, the type_spec of the result, as specified in the op_header,
must resemble the declaration of an actual variable of the appropriate type, in
that specification of weight information is obligatory rather than optional. For
instance, if an operator returns a diagram, the type_spec in its op_header must
include /_ezp's to represent the dimension of its vertices and the degree of its
colours. The I_ezp's which appear in the type_spec of the result may involve
any pre-declared primitive actual global variable, and any parameter $t.

In the op_body of a definition, the parameters and op_name are treated
syntactically as though they were declared actual variables of the appropriate
type and weight. This is consistent with the fact that execution of the op_bady
is only required in a context in which values for the parameters are explicitly
known. Auxiliary local variables may be declared within the op_body, but these
must be primitive and actual.

-24-

The actions in the op_body are subject to the usual semantic rules,
together with three additional restrictions on assignments:

1. adiagram which occurs as a parameter or result of an operator can only be
referenced via its constituent vertices and colours in the op_body

2. only the op_name, locally defined variables, or components thereof may
appear on the LHS of an assignment

3. the op_name may not appear on the RHS of an assignment.

The simplicity of the actions in an ap._body reflects the fact that a definition
is intended to add an operator to the underlying algebra, rather than a
subroutine to a program. The sole purpose of the op.body is to indicate how the
parameters should be processed in order to compute a result.

In evaluating an operator for which ‘appropriate parameter values are
supplied, the specification of the result in the op_header is to be interpreted as
a declaration of an actual variable; all assignments to the op_name in the
op-body are then made to this variable, and its value is returned on termination
of the op_body. Note that there is no special provision for exceptional
termination of the op_body (e.g. by means of a return statement).

Rule 2 above eliminates side-effects. Rule 3 ensures that when an operator
returns a vertex, colour or diagram, there are no implicit relationships between
the components of the result.

Rule 1 relates to the use of diagrams as parameters and results of user-
defined operators. As explained above, the result of applying a user-defined
operator is an abstract expression if at least one of its arguments is abstract;
this rule is consistent with Rule 1 in that the constituent variables of a diagram
may be abstract only if the diagram is itself abstract. In the specification of a
parameter of type diagram, the colour names supplied by the colour_list are
formal. For instance, it is legitimate to substitute any expression which denotes
a diagram with two colours (such as 'ba'-D or 'ab’-D::'be’-E) in place of a
parameter §i formally specified as a 'ab’-diagram. The interpretation of
constituent colours within the definition body is then as would be expected on
assignment of the substituted expression to a diagram variable declared as an
'ab’-diagram. Thus, under the specimen substitutions given above, a_$i would
respectively denote b_D and a_D::b_E.

When a diagram is specified as the result of a user-defined operator, the
need to distinguish between implicit and explicit diagram expressions poses
special problems. Semantic rules are required to determine when an expression
defined by a user-defined operator of type diagram is to be interpreted as an
explicit diagram, and how to exhibit it as a family of V_ezp's and C_ezp's in this
event. The following rule is adopted: a user-defined operator of type diagram
defines an explicit diagram if its arguments are such that

(2) the size of the result (as specified in the op_header) is actual,
(b) all diagram expressions supplied as arguments are explicit,

(c) all expressions in the expression lists of with-statements, and all relations
in if and while-statements are actual. (This condition can be easily
checked provided that the parameters and components of parameters
which appear in with, while and if-statements are monitored during the
compilation of the definition body.)

When these constraints are satisfied, the definition body may be interpreted
as a family of V_erp's and C_exp's (as the semantic rules for diagram
expressions require) by "formal evaluation”. The family will have known size,
and expressions (possibly abstract) for each of the constituent vertices and

-25-

colours of the result can be determined. To justify this claim, it suffices to
observe that all references to the input parameters in the definition body can be
replaced by expressions (all arguments of type diagram are explicit, and Rule 1
applies). Moreover, the precise sequence of assignments specified in the
definition body is explicit (the relevant control information in all composite
statements is known), and expressions for the results of all assignments can be
successively determined.

§9. Programming in ARCA.

Some simple program fragments illustrating the main principles of ARCA
are presented below. In all cases, the diagrams described are "Cayley diagrams"
(also called "Van Kampen diagrams") of small groups (see [DJ] Ch.5 for
background details). The design of ARCA borrows ideas from Cayley diagrams
(e.g. referencing vertices by colour paths, and forming products), and was
originally conceived for their description. As emphasised in §1. an ARCA
program is not intended merely for “generating a picture”, and Cayley diagrams
are a useful medium for illustrating how the ARCA description of a diagram
encodes both pictorial and conceptual (viz. group-theoretic and geometric)
information.

9.1. Examples of ARCA programs.

Example 1:
A program to represent a Cayley diagram for the presentation
<x,y|x*=yd=landxy =y x>
of the dihedral group Ds of order 6 (see Fig.l) by means of an actual ARCA
diagram.

vert 2: 0X;

‘ab'-diag (vert 2, col 6) : D;

0X :=[0,0];

a-D:= §1,3,5{8{2,6.4];

b_D := {1,2}8{3.48{5,6};

D!l := [0,1%1]; D12 := [0,2%1];

withint 3:1X:=2,3do
DI{2*IX') := rot(D!2,IX-1,0X);
DI(2*IX’-1) := rot(D!1,IX-1,0X)

0 od

= OO ~23D0 DN

Example 2:

The program above generates an actual diagram to represent a specific
realisation of the abstract graph in Fig.1. By modifying line 2 so that the vertices
of D are declared abstract, and deleting line 6, an abstract diagram to represent
a family of realisations is obtained. In each realisation, the triples (D!1,D!3,D!5)
and (D!2,D!4,D!6) are at the vertices of equilateral triangles centred on [0,0], but
D!1 and D!2 are at points which can be independently specified. Thus the
geometric configuration could be completely specified by

D!1:=[0,3%1] ;: D!2:= [0,4%1] or D!2:=2.D!1;D!1:=[0,2%1].
In the latter case, the coordinates of all the vertices of D would depend on the
coordinates of D!1.

-26 -

Example 3:

The Cayley diagram of Fig.1 is closely related to the Cayley diagram for the
presentation <x,y | ¥* = y? =1 and Xy = yx > of the Abelian group C; x C3 (see
Fig.2). The geometrical relationship between the two reflects a group-theoretic
relationship; the group Dj is a 'semi-direct’ product of Cz and Cs (see [MH] p.BB-
80). The program below generates an abstract ARCA diagram which represents
the abstract graph of Fig.1 or Fig.2 according to whether the abstract integer
variable px is 0 or 1, and defines different planar realisations subject to the
current values of D!1 and D!2.

1 vert2: 0X;
2 abstint 2: px;
3 'ab'-diag (abst vert 2, abst col 6) :D;
4 0OX:=[0,0]
5 a.D:={1,3,5]8{2,4,6]@(1-2*px’);
6 b_D:={1,2]8{3,4]8{5,6];
7 withint3:IX:=2,3do
8 DI(2*IX") := rot(D!2,IX-1,0X);
9 D!(R*X'-1) := rot(D'1,IX-1,0X)
10 od

Example 4:

Cayley diagrams for the presentations

<x,y|x®*=y"=landxy=y x>

of the dihedral group D, (n=2), and
<x,y|x®=y"=1landxy =yx >
of the Abelian group C; x C; (n>2) form a simple 'generic’ class of graphs; each
member of this class comprises a nested pair of n-cycles, in similar or inverse
orientation, with corresponding pairs of vertices linked by a bi-directed edge.
Such a class cannot be represented by an explicit ARCA diagram, which has fixed
size, but can be by an implicit diagram. This is demonstrated by the following
program, in which the ternary operator Dd requiring arguments
(int 2: 81, int : $2, vert 2: $3)

is defined so that Dd(BB,NN,UU) denotes a specific realisation (depending on UU)
of a direct or semi-direct product (depending on BB) of C, and Cyy. Thus
Dd(1,4,[1%1,0]) denotes the Cayley diagram of D, in Fig.3.

-27-

1 vert2:0X; 0X:=[0,0];

2 op (int 2:31; int:$2; vert 2:33) -> 'ab'-diag(vert 2, col 2*$2):Dd is
3 vert 2: VV,WW;

4 VV:=83; WW := 2.83;

5 with int $2 : IX:= 1 to 32 do

6 Dd!(2*IX') := rot(WW,IX-1,0X).

7 Dd!(2*IX'-1) := rot(VV,IX-1,0X);

B b_Dd{2*IX'] := 2*IX’-1;

9 b_Dd{2*IX'"-1] := 2*IX":

10 a_Dd{2*IX'-1} := 2*IX'+1;

11 a_DA{2*IX'} := 2%(IX'+1-2*81")

12 od

13 si - -

14 abst int : bb,nn; abst vert 2; uuy;
15 abst 'ab’-diag(vert 2): d;
16 d := Dd(bb,nn,uu)

Example 5:
A program to represent a Cayley diagram for the presentation

<xX*=y’=(xy)’=1>
of the alternating group As; of order 60 (see Fig.4) by means of an explicit
diagram with abstract vertices is given overleaf. (Lines 15-18, of the form
"//...", are comments.)

The required diagram ('ab’-T) is constructed by first defining the skeletal
subdiagram ‘'a’-T (lines 17-26), then inserting the edges of colour 'b’. The
diagram ‘a’-T is synthesised from four components: the innermost and
outermost pentagons ('a'-P and 'a’-S), and the two "pentagons of pentagons”
('a-Q and ‘'a’-R) which enclose ‘'a’-P and are enclosed in ‘a'-S. The
subdiagrams’'a’-Q and 'a’-R are defined using diagram product at lines 19-20.

The operator Cc is used to define regular pentagons, appropriately scaled,
oriented and centred. Explicit diagram assignment is used at lines 17-18 to
specify the subdiagrams ‘a’-P and 'a’-S, and at lines 23-24 to specify the
coordinates of Q and R. In all cases, coordinates of vertices are abstractly
specified. Note that the coordinates of the vertices of Q and R specified at lines
19-20 (see the definition of diagram product in §6.2) are redundant; only the
indexing and incidence information is required.

The skeleton of the final diagram ('a’-T), comprising 12 regular pentagons
whose edges are of colour 'a’, is defined as the join of its four components at line
26. The vertices of T are abstractly specified by formulae which depend on the
abstract integer rr; in effect, rr is a 'scaling parameter’ for T.

The edges of colour 'b' incident with the innermost and outermost
pentagons are defined in lines 27-33, using the indexing operator '** (§2.2 h)).
Colour paths are used for subsequent vertex referencing. Referring to Fig.4: the
with-statement at lines 27-33 introduces edges such as AB (introduced when
KK=0, JJ=2 and YY=11), and the with-statement at lines 34-37 introduces edges
such as CD (line 36, when KK=30, JJ=3, XX=42 and YY=50), EF (line 44, when
KK=0, JJ=2, CC=a_T, XX=48 and YY=13) and FE (line 44, when KK=30, JI=4,
CC=a_T, XX=48 and YY=13). The usefulness of modulus coercion rules (§3.3) in
conjunction with the principal value operator (§2.2 f)) is apparent here.

OO WN -

-28-

abstint: rr;

int 60: XX, YY;

int 25: MM, NN ;

vert 2: ZZ;

22 := [0, 0};
a'-diag (abst vert,,col5):P,S;
‘a’-diag (abst vert , col 25) : Q R;

'ab’-diag (abst vert , col 60) : T;

op(vert2: 81, $2; int 2: $3) -> 'a*diag (vert 2, col 5) : Cc is

withint 5: HH:= 1 to5do .
Cc!HH :=rot (32, HH-1, $1);
a_Cc{HH) :=HH-1+2 "33
od
si;
// the above operator returns a regular pentagon with centre $1,
// first vertex at 32, and orientation specified by 3$3 (= 1 or 0).

a'-P:='a'-Ce(ZZ, [rr,0], O);
a'-S:='a'-Cec (ZZ , (-4).P!1, 1);
a-Q: =P *a-P,;
a-R:=P**'a'-P;

- withint5:11:=1 to 5do

MM := II**1; NN := [[**5;

Q/(MM..NN) := Ce(2.P!11, (8/2).P!11, 0) ;

R/(MM..NN) := Ce((-3). P'II (-7/2). P'II 0)
od;

a-T:='a-P:'a-Q:'a-S: 'a-R:

withint 5: JJ := 1 to 5do
MM:=Jl**1+5;
with int 680: KK := 0, 30 do
b_T{KK+JJ'} := KK+MM' ;
b_ T{KK+MM'} := KK+JJ’

od
od;
with int 60: KK := 0Q, 30 do
withint 5: JJ :=1to 5 do
XX :=a. T{KK+JJ'!
YY:=a .ba_ iKK+JJ§
b_T{XX} :=YY
b_T{YY} .= XX
with col 60 : CC :=a_T,a.T do
XX :=CC@2.b_ TiKK+JJ';
YY:=CC@z2. b T.CC™ @Z{KK+30+JJ i
b_TiXX} :=
od
od ’
od

In practical ARCA programming, the hnature of the display interface will be
very important. It wil] Dot be enough to adjoin the command
. ”display(diagram)"
~ to ARCA, since additiona] information on the colour ang direction of displayed

-30 -

edges is needed. ARCA is most conveniently used for describing the intrinsic
geometry of a diagram, and auxiliary means of performing geometric
transformations such as projection, translation or magnification of a component
would be helpful.

Vertex referencing might also be simpler in practice. Whilst referencing by
colour paths is eflective in a highly connected graph, a more rudimentary mode
of referencing is needed when synthesising a graph from many components {c.f.
Example 5, lines 27-33). Such referencing might be done directly by
identification of (presumably non-coincident) points on the display by means of
a mouse or light-pen. y

§10. A parser for ARCA expressions.

The file overleaf can be used as the basis for a YACC-generated parser for
ARCA expressions and relations. It has been included in order to provide
definitive precedence rules, and might not be appropriate for use in a full ARCA
interpreter without modification. (For instance, ARCA relations are semantically
diﬁe)rent from other algebraic expressions, and cannot appear in a parameter
list.

The parser accepts typed identifiers and constants from the lexical
analyser. A colour name specified by a lower-case letter is passed as a LETTER
token The lexical analyser is intended to recognise a construction of the form

'LETTER*'-

as a "colour string”, and return the token STRING. Special names have been
given to certain tokens; the symbolic equivalents are generally obvious, but for a
few cases: AND(&&), OR(|l), DOTDOT(..), MODMOD(%%), PRIME('), SMASH(**),
JOIN(::). Note that the precedence rules do not distinguish between
semnantically different occurrences of the same token; the typing of expressions
resolves any such ambiguities. Note also that specific precedences have been
given to two nullary productions (using "%prec ...”) in order to eliminate all
parsing conflicts.

The format of the file has been modified slightly to save space; the
alternatives in rules should be on separate lines.

-31-

%token 1_ID V_ID C_ID D_ID I_OP V_OP C_OP D_OP NUMBER LETTER
%token AND OR symTRUE symFALSE

%token EQ GE LE NE DOTDOT MODMOD PRIME SMASH JOIN ROT REF STRING
Zleft AND OR '~

Zleft '+’ '~

Zleft JOIN SMASH '+

Zleft '$’

Znonassoc MODMOD DOTDOT

Znonassoc ‘[’

Zleft '’ ' /" STRING

Znonassoc '@’

Zleft " '# ' "' PRIME

Znonassoc ' __''''%’

Zstart exp

7%

exp :1_exp | V_exp | C_exp | D_exp | rel ;

expl :exp | expl ', exp ;

I_expl :l.exp|I_expl', I_exp;

I_exp (" I-exp ') || 1_exp '|' | NUMBER |1_1D
I_OP '(’ expl)’

I_exp '# | V_exp '# | C_exp '# | D_exp '#'
I_exp '+' l_exp |I_exp '-' I_exp | I_exp '* I_exp
Iexp "’ |I_exp '%" I_exp | I_exp PRIME
I_exp MODMOD V_exp | I_exp SMASH I_exp
V_exp '[' I_exp '] | C_exp '{’' I_exp '}’
'<"V_exp ', V_exp '>'|I_exp '"";
V_exp (" V_exp ') | '|' V_exp '|' | V_ID
"I_expl']' | I_exp DOTDOT I_exp
OP ‘(" expl ')’
exp '+’ V_exp | I_exp '.' V_exp | V_exp SMASH V_exp
(" Veexp '’ I_exp ', V_exp ')'
'(' Veexp '’ V_exp ‘.’ V_exp ')’

N

-exp '/'I_exp ') '’ V_exp
xp '!" I_exp;
-exp ')’ |'' Cexp '|' | C_ID
expl '}’ | '{' V_exp '}’
-OP '(" expl ')’
'— " D_exp | C_seq LETTER ' __ ' D_exp inv_o at_o
~exp '’ C_exp | C_exp "™ | C_exp '@ I_exp
~exp '$’' C_exp | C_exp JOIN C_exp ;
C_seq :LETTER inv_o at_o '’ | C_seq LETTER inv._o at_o '’ ;
inv_o : Zprec'.|™;
at_o : Zprec''|'® I_exp;
D_exp :'('D_exp') |'| D_exp'|' | D_ID
D_OP ‘(' expl *)’
D_exp '/ V_exp | STRING D_exp
D_exp JOIN D_exp | D_exp SMASH D_exp ;
rel : (" rel’)’ | I.exp relop I_exp :
I_exp EQ I_exp | V_exp EQ V_exp | C_exp EQ C_exp | D_exp EQ D_exp
I_exp NE I_exp | V_exp NE V_exp | C_exp NE C_exp | D_exp NE D_exp
rel AND rel | rel OR rel | rel *~' | symTRUE | symFAISE ;
relop :'>'|GE|'<'|LE;

=

C_exp

g"f

Qo

-32-

Epilogue.

The ARCA notation is neither purely procedural nor purely declarative, but
combines features of both varieties of programming notation. The essential
principles on which it is based are simple, and can be generalised. Given any
algebra A, it is possible to define 'actual’ and 'abstract’ expressions over A, and
develop a notation in which variables either have explicit values or values
implicitly defined by formulae. The primary aim of this report is to indicate
informally how such an "algebraic notation”" might be designed and adapted for
practical use, and prepare the way for a thorough evaluation of the merits and
limitations of this approach. 5

The present work suggests both theoretical and practical issues for further
investigation.

From a theoretical viewpoint, it would be helpful to formulate the concept
of "an algebraic notation" more precisely. If a conventional form for composite
actions is assumed, there are two principal considerations: how the underlying
algebra should be specified, and what variables should be defined. Ideally,
specification of the underlying algebra should perhaps be enough to determine
the precise form of the associated notation, but this is not easy to ensure. For
instance, the ARCA notation may be regarded as a tentative design for an
algebraic notation based upon a concretely presented algebra whose data
objects include integers, vectors, perms and diagrams. In that context, the fact
that vectors and perms are arrays of integers prompts the introduction of
variables to represent components of actual vertex and colour variables. Such
component variables can be omitted only at the cost of practical inconvenience,
as it is very often desirable to be able (for example) to specify incidence
information incrementally. The hierarchical relationship between a diagram and
its constituent vertices and colours leads to additional complications, as the
component variables in this case may be of abstract kind. It is significant that
the definition of a convenient practical notation (apparently) depends on
knowledge of concrete data representations; it is not clear that a satisfactory
characterisation of l-values in the algebraic notation can be inferred from a
fully abstract specification of the algebraic operators relating integers, vertices,
colours and diagrams. Perhaps the proper specification of the underlying
algebra should comprise an abstract axiomatic algebraic specification together
with information about data representations in the concrete algebras used for
evaluation. This would combine the advantages of an abstract specification (e.g.
enabling evaluation procedures to operate in conjunction with formula
manipulation routines) with those of precisely defined data representations (e.g.
means to define 'derived data-types’ as well as derived operators).

From a practical viewpoint, experiment is needed to evaluate the merits of
algebraic notations, and to explore potential further applications.

Superficially, at least, an algebraic notation is too restricted to provide the
basis of a general purpose programming language. Recursive definition does not
fit naturally into the semantic framework of value or formula assignment, and it
is questionable whether a convenient formalism for handling values and
relationships between values is adequate for general applications. Whatever the
application, it may be argued that an algebraic notation is so constrained by its
hybrid nature that it lacks the best features of both procedural languages
(general data types and subroutines) and functional languages (clear semantics
and higher order functions). Certainly, such a notation is very easily abused
(e.g. by frequent re-assignment of formulae to an abstract variable). On the
other hand, our conceptual models of our environment are rarely purely
procedural or purely declarative in nature, and generally combine elements of

-33-

both kinds. It may even be that the clarity of such models derives from our
ability to abstract functional and procedural aspects.

ARCA is intended to provide one context in which to examine and evaluate
these arguments. It is based primarily upon the thesis that in conceiving
combinatorial diagrams and developing geometric realisations interactively, it is
convenient to imagine fixed relationships between points whose geometric
locations are subject to change. In a 'good' ARCA program, it is to be expected
that the relationships between values established by formula assignment are
. transparent, and not subject to frequent revision. It is significant here that the
ARCA notation has been designed with an interactive environment in mind, and
an implementation is essential to assess any advantages it may have over
alternative notations as an interactive tool. This implementation may itself be
of incidental practical interest, and might incorporate ways of avoiding
redundant re-evaluation, and of presenting current information about variable
dependences.

In any event, it may be worth seeking other applications for algebraic
notations. Though ARCA itself is directed towards a specialised (perhaps
esoteric) graphics application, the counterpoint between values and relations
upon which it is based may have wider applicability. For instance, it is well-
recognised that the dependencies within a data-base are conveniently described
by means of functional relationships. If these are expressed in terms of
algebraic operators appropriate to the particular type of data-base, the
associated algebraic notation may provide the basis of a query language. As a
clichéd example, it may be reasonable to define an "abstract algebra” based on
the primitive relations of a library data-base, and to use concrete algebras for
interrogation and manipulation associated with particular libraries.
Conceptually, at least, axiomatisation of the basic algebra might be helpful in
checking data integrity, and the distinction between value and formula
assignment might assist security.

The complex problems of managing systems of files generated during
project development might also be ameliorated by synthesising actual and
abstract file definitions in an appropriate algebraic notation. This is obliquely
illustrated by the UNIX 'make’ utility: a procedural mechanism which in eflect
carries out the evaluations of abstractly defined files needed to maintain
compatibility between versions. The relationships between files required by
'make’ are important in the user's conception of the file system, and might be
more conveniently manipulated by means of an algebraic notation implemented
so as to allow inspection of abstract file definitions.

Acknowledgements.

1 am much indebted to Nader Fahranak for his patience and persistence in
systematically recording and collating ideas during the initial phase of the
development of ARCA. But for his third-year project [NF], this design would not
have been attempted. '

1 am also grateful to Graham Exley for helping to identify some of the
inadequacies of the design at intermediate stages, and for developing an
interpreter for an ARCA subset [GE]. -

-34-

References.

[DJ] D.L.Johnson

Presentation of Groups, LMS Lecture Note Series 22, CUP 1978.
[MH] Marshall Hall

The Theory of Groups, Macmillan, 1959.

[JB] John Buckle

Cayley diagrams by computer, 3rd year CS project, 1983.
[GE] Graham Exley)

An ARCA interpreter, 3rd year CS project, 1983.
[NF] Nader Farahnak

The ARCA language, 3rd year CS project, 1982.

