Research report 78.

ARCA — A NOTATION FOR DISPLAYING AND
MANIPULATING COMBINATORIAL DIAGRAMS

by
Meurig Beynon

(RR78)

Abstract

ARCA is a programming notation which was originally developed with the
Computer animation of a class of diagrams studied by ARthur CAyley in mind.
It is presented here as an archetypal example of a "definitive notation", in a
sense explained in a previous paper by the author.

This paper is an informal introduction to the principles of ARCA and the
ARCA system, and includes some tutorial examples.

Department of Computer Science
University of Warwick
Coventry, CV4 7AL, England June 1986

ARCA - a notation for displaying and manipulating combinatorial
diagrams

Meurig Beynon.
Department of Computer Science, University of Warwick.

ABSTRACT

ARCA 35 a programming notation which was originally developed with the
compuser ammmacion of a class of diagrams studied by ARthur CAyley in mind. It is
presemsed heve as an archetypal example of a "definitive notation", in a sense explained in
a previoas paper by the author.

Ths paper 5 an informal introduction to the principles o?ARCA and the ARCA
svsiem. and mcimdes some tutorial examples.

Introduction.

In many contexts, geometrical diagrams have proved to be a powerful means of representing
information. Their importance in geometric design and modelling is self-evident, but they can also be
helpful in describing abstract concepts whose geometric nature is less apparent. Combinatorial graphs -
“comprising vertices (possibly labelled), together with edges (possibly directed, labelled or coloured) -
provide many examples of diagrams of the latter kind: circuit diagrams, transition diagrams for finite state
machines, and Hasse diagrams for partially ordered sets and lattices. Typically, the semantic content of
such a graph is imphicit in the incidence relations, but can be inspected only when an appropriate geometric
realisation is constracted. Appropriate computer-aided design tools can be used both to construct such
realisations, and w0 assist subsequent interaction and interpretation.

ARCA is 2 programming notation which was originally designed with the interactive display and
manipulation of "Caviey diagrams” - a particular class of combinatorial graphs - in mind. The chief
characteristics of Cavley diagrams (CDs), and the special problems posed by their representation are
outlined in §1 and §2 below. Though ARCA was designed for a specific application, the ARCA system
seems likely w0 prove wseful for a variety of purposes, and features of the design itself may have wider
interest. In partcular. in a sense explained in [2], ARCA is here presented as an archetypal (or even
ARCAtypal") example of "a definitive notation".

This paper skewches the principles which underlie the design of ARCA informally; for fuller details
the interested reader showld consult [1] and [2].

§1. Cayiey diagrams amd graphs.

Cayley diaerams were devised by Arthur Cayley (1821-1895) for representing group-theoretic
relations pictoriafiv. Simple examples of Cayley diagrams (CD) appear in Fig’s.1-4. (In interpreting these
diagrams, all oriensed edges are to be one colour [red], and all unoriented edges are to be bidirected edges
of another colowr "green].) It will be helpful to distinguish between a CD and the abstract graph - a "Cayley
graph™ (CG) - which & depicts. A brief sketch of some of the principal features of CD’s (as they relate to
the design of ARCA is given here; for further details, see [4]. In the sequel, a superficial understanding of
the relationship between groups and CD’s will suffice.

The relanonship between a CG and its associated group is most easily illustrated with reference to
Fig.1. It is a simple exarcise to the reader to label the vertices of Fig.1. with the six permutations of the set
{1,2,3} in such 2 way thart the vertex with label p is connected to the vertex with label p.(1,2,3) under a red
edge, and the vertex with label p.(1,2) under a green edge. If R and G respectively denote the permutations
(1,2,3) and (1.2 i is then trivial to compute any product of R’s and G’s by tracing a path of appropriately
coloured edges im Frg. 1.

It is eas¥ o verify that each of the three products

R}, G? and (R.G)?

represents the identity permutation. Indeed all relations between R and G (ie product of R’s and G’s
defining the identity) cam be derived from the 3 relations above simply by using the group axioms. For
instance:

RGR GR=RGR*GRG*=RGRRGG=RG)’ =1,
since G* = 1, and multiplication is associative.

Formally, the CG of Fig.1. is associated with the group freely generated by two generators r and g subject
to the relations:

r=g-=@g =
or equivalently, with the presemtarion:
<r,gl|lP=g=@gl=1> 1.1
of the symmetric group S;.

-9

In general, a CG is specified either by exhibiting a set of generators for a concretely presented finite
group (e.g. {R,G} for S;), or by giving a particular presentation for an abstract finite group (e.g. the
presentation (1.1) for S;). All vertices of a CG are equivalent under symmetry, and if one is selected as the
initial and unique final state the resulting finite state machine recognises relations over the alphabet of

- generators. This interpretation of a CG is useful when constructing a CD, since it provides an intrinsic
method of referencing one vertex relative to another by specifying an appropriate path via a string of
generators (or inverses of generators, which correspond to traversing directed edges in the opposite sense).

The group-theoretic information in a CD is captured in the incidence relations between vertices and
edges, which can be derived from an abstract group presentation (such as (1.1)) by the well-known
technique of "coset enumeration”. The specification of coordinates for the vertices of a CD has no purpose
other than to aid the apprehension of the relations between the generators, and to provide a visual image of
the group. The problem of realising an abstract CD effectively resembles that of laying out an abstract
circuit, in that the relevent criteria are aesthetic and pragmatic, and are not easy to specify precisely. It is
obviously desirable that a planar realisation should preserve symmetry as far as possible, that paths should
be easily traceable, and that edge-crossings should be introduced only if they enhance symmetry or assist
readability. Some pioneer work on the realisation of CDs was carried out by Maschke [6], who classified
and constructed realisations of CDs which can be embedded in the plane without crossings. Figd is a
"good" realisation (due to Maschke) of the CD associated with the presengation:

<xylX®=y=0y=1>
of the alternating group As.

The problem of constructing a good 2-dimensional realisation of a CG is clearly closely connected
with the underlying group structure, but has no simple general solution. Though coset enumeration can
determine the incidences of a CG, it generates a haphazard indexing of vertices which does not aid its
realisation as a CD. In special cases, there are group-theoretic methods of constructing symmetric
realisations of CGs, but these are generally in Euclidean spaces of dimension higher than 2. For instance,
there is a natural way to construct higher dimensional CDs for a direct or semi-direct product from CDs
representing its components. However, even if it were possible to devise effective methods of constructing
CDs automatically, a notation such as ARCA would still be very useful, as explained in §2.

§2. The background to ARCA.

Generalities.

In many applications, it is important to recognise that a visual image is of limited use when divorced
from the underlying conceptual model. In devising a graphics system for such an application, it is not
enough merely to provide for efficient display; it must be possible to specify the conceptual models
underlying images simply and systematically. This is the case for large CDs, where generation of a picture
is of little value without a medium for referencing vertices and edges for group-theoretic purposes. It is
helpful, for instance, to display paths of edges defining relations, products of group elements, or subgroups.
It is also interesting to examine the consequences of introducing a new generator (which is graphically
equivalent to replacing each instance of a particular sequence of directed and coloured edges by a single
edge of a new colour), or forming a quotient group (which entails identifying vertices lying in the same
coset of a normal subgroup).

ARCA is conceived as a medium to be used (possibly in conjunction with automated techniques) for
constructing computer representations of CDs to assist comprehension, display and manipulation. A CD
has considerable semantic content, and the data structure needed to represent it is correspondingly
complex. In view of this, the exclusive use of a graphics interface is inappropriate, and the ARCA system
has two interfaces with the user: a primary screen on which the text of an ARCA program is developed,
and an auxiliary screen for graphical display as and when required.

[e e Ny P N B B B B B BN 0 N |

ARCA as a "definitive notation”.

ARCA has been designed as a "definitive notation" in a sense explained fully in [2]. In developing a
definitive notation for a particular application, an appropriate underlying algebra of data types and
operations must first be chosen.

) When displaving and manipulating CDs, it is necessary to specify scalar, vector and incidence
information. In ARCA. such information is respectively represented by integers (of specified modulus),
vectors of meegers (of specified dimension), and perms i.e. permutations / partially defined permutations
(of speciiied degree:. The data types in the underlying algebra comprise these three primitive types,
together wxth 2 complex data type which is used to represent (partial) CDs. There are numerous algebraic
operators whnch refae imegers, vectors and perms (e.g. arithmetic operations on integers, vector operations
such a addimom. roamon and reflection, scalar product, and composition and superposition of perms),
which together defime the priminive data algebra. There are also special operators (such as are needed to
join subgrapis. or mdex sach a join).

Foliowmmg the principles described in [2], a definitive notation includes variables which denote
implicativ or expincity defined values in the underlying algebra. The values of variables are determined by
a sequence of defmumoms. each of which either assigns a formula or a specific value to a variable.

a = f(b,c,...,2), e
where f 15 2 formmia ower the underlying algebra in the variables b,c,...,z , asserts that (until redefinition
occurs) the vaime of dne variable a is to be determined as and when required by evaluating the formula
f(b,c,—-z; over the umderivimg algebra. The value of the variable a is then implicitly defined in terms of the
values of odner varuaivies. Im the particular case where the formula f is constant, such a definition specifies
an explica vaime for fhe varsable 2

In the abowe comez: @z may be used to denote the value of a subexpression g. Note that definitions

which lead © coraiarey. sach as:
a=b; b=c; c=a+2
are trapped 2 semmarme 2rrores. st that a definition such as
a = |a+c|]+b
which defimes 3 v the formriy:
b0 where a s the value of (a+c) current at the point of definition’
is permissibie.

A defimrrve motamcm s rmised 25 a "declarative” notation by the absence of recursive definition, and
as a “procedaral” mccamom v the absence of user-defined procedures. The natural way to seek to
compensate for s 5 w allow the user w enhance the basic data algebra by defining new operators and/or
new data tyvpes. Wihowr chear abstract principles to determine e.g. whether assignment to the components
of a variable of 2 mew merarcimcal data tvpe should be permitted, and how such variables should be
declared, the problem of exiending the data types is difficult (c.f. [2]). Making provision for user-defined
operators is more strangheforward. amd thes featare is incorporated in ARCA (c.f. §3, Example 3).

Representing CDs in ARCA.

The computer representation of 2 CD has 10 capture two aspects: the group-theoretic interpretation as
a CG, and the geomeuy of the diagram In ARCA, scalars, vectors, and perms are represented by
'primitive’ variables of tvpe imteger . weriex and colowr respectively. The type of a variable is specified on
declaration, and type of any alsebrax expression can be determined statically. To allow convenient
incremental specification of veriex and colowr valnes, as well as implicit definition of an entire vertex or
colour by a single formula of the appropriate tvpe. there are two kinds of vertex and colour variables:
composite and abstract. A composite veriex (resp. colowr) variable has a fixed dimension (resp. degree)
specified on declaration, and is semanticallv equivalent t0 an array of integer variables. Such variables
must be defined componentwise by a family of formulae of integer type. By contrast, an abstract vertex
(resp. colour) variable mast be defined by means of a formula of type vertex (resp. colour). (For a fuller
discussion, see [2].)

Note that an ARCA vertex variable, whether composite or abstract, represents an "abstract graph

-4-

vertex" rather than a geometrical point. There is no way of "equivalencing” a pair of vertex variables, and
distinct vertices, whether declared within a diagram or independently, serve as distinct names for abstract
vertices. By making appropriate assignments, it is nonetheless easy to ensure that two vertex variables
represent the same geometrical point. For instance, if u,v and w are declared abstract , the assignments

" W=W; Vi=W
will ensure that the coordinates of u and v coincide with those of w until such time as new formulae are
assigned touorv.

ARCA vertex variables provide a means of referencing vertices of an abstract graph which is
essential for satisfactory representation of a CG. As explained above, it is easy to generate the incidences
of a CG without having any coordinates for the vertices in mind, which makes direct means of reference
(e.g. via a mouse or light-pen) of limited use. In any case, even an array which supplies an index for each
abstract vertex of a CG may be unhelpful in group-theoretic terms. A satisfactory representation of a CG
requires an array of indices for abstract vertices together with the transition (a permutation of indices)
induced by each generator. In an ARCA program, this information is associated with a variable of type
diagram, as explained more fully in §3. The diagram syntax is designed to assist referencing of vertices
relative to each other via paths of edges (see §1). This mode of referencing can be used iteratively to
specify subgroups or subsets of vertices with special symmetries.

In describing the geometry of a CD, it is often necessary to specify geometrical relationships
between vertices. When seeking a good realisation of a particular CG, it may be helpful (for instance) to
constrain a subset of vertices to define a square, or to be collinear. The vertex array of an ARCA diagram
can consist of abstract or composite variables (depending on the mode of declaration), so that the
coordinates of vertices of diagrams can be constrained to satisfy vector relationships or scalar relationships
between components by making appropriate definitions.

Implicit definition can also be useful for specifying incidence information. For instance, it is often
possible to transform one CD to another by changing the orientation of a suitable subset of edges. By
defining incidences implicitly in such a case, a single ARCA diagram can be used to represent two or more
CDs (see §3 Example 2).

Comparison with SKETCHPAD.

The main principles which are used in ARCA to describe representations of CDs have been outlined
above. The problems of displaying and manipulating combinatorial graphs are of course relevant to most
graphics systems, and a brief comparison with the classical approach described in SKETCHPAD [7] may
be of interest. '

In this comparison, it is significant that SKETCHPAD, in common with many systems which use a
single graphics interface, combines two objectives:

(a) the interactive specification of computer representations of a visual image and its conceptual model
(b) the use of a graphical as opposed to a conventional textual interface for communication.

The practical advantages of (b) are clear: direct reference to the elements of the visual image, freedom
from the problems of coordinatisation, and the use of analogue methods for manipulating the image. The
chief limitation of (b) is that the conceptual model is not necessarily easily accessible via the visual image,
and that the semantic content of such a model is often too rich to be described without a formal notation.
Graphical systems which emphasise (b) may also be difficult to describe formally, and are best appreciated
through practical experience.

The case for the separation of concerns (a) and (b) (c.f. [3] p.211) is obvious, and accounts for the
emphasis on (a) in ARCA. Though an ARCA program may superficially resemble a source from which to
compile graphical output, it should be stressed that ARCA is by design a notation for interactive use. For
instance, the primary purpose of implicitly defined values is to allow geometrical relationships to be
partially specified pending complete specification by inspection or experiment. In a practical ARCA
system, it would be desirable to use the graphics interface less passively to relieve the heavy textual bias.

The counterpoint between declarative features (constraints) and procedural features (e.g. means of

updating coordinate and incidence information) is a common characteristic of ARCA and SKETCHPAD.
The use of functional rather than equational constraints in ARCA is a limitation which appears to have

-5-

certain advantages where dialogue is concerned. (For a fuller discussion of this point, see [2], where the
merits of definitive notations for interaction, and the case for regarding constraint-based programming as
adapted for "problem-solving” rather than "dialogue"” is considered.)
In SKETCHPAD, the concept of "points and lines subject to constraints” is faithful to geometric
“intuition. Points and kimes are visible geometric entities, and "constraining four points to lie at the vertices
of a square” genminelv defines an equational constraint upon four points. In ARCA, constraints apply to
conceptual rather than geometric points, but are restricted in that they are functionally rather than
equationallv specified. For instance, four points will lie at the vertices of a square because the coordinates
of three of the pounts are implicitly defined in terms of those of the fourth, but this constraint may be
abstract in that no coordinates for the latter have been specified. Such an approach has the advantage that
two concepmaly disanct but geometrically coincident points may be subject to independent constraints.

§3. Programminy im ARCA.

Some smmpue program fragments illustrating the main principles of ARCA are presented informally
below. The cosmmencaries on the programs which follow serve as a tutorial introduction to ARCA. For
formal details. see 17,

The most direct wzy of representing a CD in ARCA is to define a diagram which describes the
necessary modence and coordinate information explicitly. In such a dia@ram, coordinates and incidences
are respectively descrived tw a vertex array and a colour list. Example 1 is an ARCA program which
defines a diagram D w mpresent the CD depicted in Fig.1. The diagram D is declared at line 3, and the
colours and vertices of D are defined at lines 4-5 and 6-9 respectively.

g
&

vert > v
V= WL

‘ab-diag ivert 2. col 6) : D;
a D=7135%6% [264%6};
b D= 12%63 [3.4%6}1{5,6%6};
D1 = iL1%1]: D72 = [0,2%1];
withm3:1=23do
DY2*T) = rouD21-1,v);
Di2*T-1) = rot(D!1,1-1,v)

= \D 00 ~J O\ LA B) DN

]

od

Declaration of a weriex vanable is illustrated at line 1. By default (i.e. unless the keyword abst is
used), primitive variables are waken w be composite on declaration. A primitive variable may have an
associated non-negarive meeger wexghr : this is the modulus of an integer variable, the dimension of a
vertex variable, and the degree of a coisar variable. The weight of a variable gives information about the
values it can represent. and mast be specified when an composite variable is declared. As an example, the
variable v declared at line 1 has dimension 2. and is used to represent coordinates in the plane. A colour
variable of degree 1 represents aperm of the set { 1,2, ..., r } of residues modr. Aninteger variable of
modulus d represents a residee mod d if d > 2. and a traditional integer if d=0. An "integer of modulus 1"
has a special interpretation. and - m 2 sense explained in [1] - "1 modulo 1" represents "a suitable
geometric unit for purposes of displav.’

Many of the standard operasors m ARCA are intended to simplify the specification and manipulation
of constants of primitive tvpe. The operasor “%" is used when specifying integer constants modulo a base,
so that "8%3" and "2%3" both represent the residoe 2 modulo 3 (c.f. line 6). Cross-modulus arithmetic is
illegal in general, but an integer of modulus O may be coerced to a particular modulus in context. The
postfix operator " * ~, which returns the principal value - the unique representative in the range 1<r’<n of a
residue r modulo n, assists translation between moduli (c.f. lines 8-9). Though ’cyclic notation’ is an
excellent way of denoting traditional permutations, denoting perms which are partial functions poses some
problems. This is illustrated at line 4, where the RHS denotes the perm (1,3,5)(2,6,4) in conventional cycle
notation. In ARCA, this perm is most conveniently described as the superposition (\) of {1,3,5} - the perm

l\r

-6-

which maps 1,3,5 cyclically but is otherwise undefined - and {2,6,4}. Note that the degree of a perm such
as {1,3,5} is ambiguous, and suitable conventions for inferring weight information are needed if
expressions such as {1%6,3%6,5%6} are to be avoided (c.f. [1] §33).

The with-loop is semantically similar to a conventional for -loop, and incorporates a specification of

“a special "control variable”, which resembles an integer variable in a conventional procedural

programming language. The with-loop is in effect equivalent to the four definitions obtained by
substituting I=1 and I=2 into the definitions at lines 8 and 9. The operator rot(,,) is used at lines 8-9 to
denote planar rotation. An integer of modulus 2 or more is required as the second parameter, and is
interpreted as an angular measure; thus

rot(D!2,1%3,v)
represents "the vector obtained by rotating (the coordinate vectr of) D2 anti-clockwise through m/3
radians about [0,0]."

The diagram D declared at line 3 has two colours, denoted a_ D and b_ D, and six vertices, denoted
D!1, ..., D16. The vertices and colours are specified (by default) as composite (cf. Example 2 line 3), and
have dimension 2 and degree 6 respectively. Note that all vertices of D have the same dimension, and all
colours of D have the same degree , which is necessarily also the number of vernces in D.

In Example 1, all definitions specify explicit values for variables. The operators ([1. { }, %, \, *, +,
rot() etc.) which appear on the RHS’s of these definitions all belong to fe primitive data algebra (cf. §2
and [1] §2). By replacing line 3 of Example 1 by

3 *ab’-diag (abst vert , col 6) : D;

and deleting line 6, the definitions at line 8-9 specify the coordinates of the vertices D!3, ..,D'6 implicitly
in terms of D!1 and D!2, and a diagram to represent 2 family of realisations of the CG of Fig.1 is obtained.
In each realisation, the triples (D!1,D!3,D!5) and (D12,D!4,D!6) are at the vertices of equilateral triangles
centred on [0,0], but D!1 and D!2 are at points which can be independently specified. Thus the geometric
configuration could be completely specified by "D!1 = [0,3%1] ; D!2 = [0,4%1]" or "D!2=2.D!1;D!1 =
[0,2%1]". In the latter case, the coordinates of all the vertices of D would depend on the coordinates of
D!1.

The CD of Fig.1 is closely related to the CD for the presentation <X, y | x*=y®=1and xy = yx > of
the Abelian group C,x C; depicted in Fig.2. The geometrical relationship between the two reflects a
group-theoretic relationship; the group Dy is a “semi-direct’ product of C, and C; (see [S] p.88-90).
Example 2 below generates a diagram D which represents the abstract graph of Fig.1 or Fig.2 according to
whether the value of the infeger variable i is O or 1, and defines different planar realisations subject to the
current values of D!1 and D!2. For this purpose, both the vertices and colours of D are specified as
abstract at line 3. The "@" operator at line 5 denotes exponentiation of perms, and takes precedence over

superposition.

Example 2.
1 vert 2: v;
2 v=[0,0];
3 *ab’-diag (abst vert 2, abst col 6) : D;
4 int : i;
5 a_ D = {1,3,5%61\{2,4,6%6}@(1-2*i);
6 b_ D = {1,2%6}\{3,4%61\{5,6%6};
7 withint3:1=2,3do :
8 D!(2*D’) = rot(D!2,I-1,v);
9 D!(2*T’-1) = rot(D!1,I-1,v)
10 od

Examples 1 and 2 illustrate the use of composite diagram variables. To allow more powerful
methods of manipulating diagrams, ARCA includes operators which act on diagrams, and abstract
diagram variables. A composite diagram variable can only represent graphs of fixed size, unlike an
abstract diagram variable, to which "a formula defining a diagram implicitly" as opposed to "a family of
formulae defining the components of a diagram implicitly” can be assigned (see [1] §5). This is illustrated

-7-

in [1] §9, where an abstract diagram to represent a generic class of CDs including Fig.’s 1-3 is defined.

Example 3 below is an ARCA program defining a diagram T to represent the CD depicted in Fig.4,
and illustrates most ARCA features other than the abstract diagram. Lines 9-16 illustrate the definition of
an operator (see ;1. §%3; 51.82 and $3 being formal parameters. Clauses of the form "/ ... " are comments.

The requred diagram (*ab’-T) is constructed by first defining the skeletal subdiagram *a’-T (lines
17-26), then imserumg the edges of colour 'b’. The diagram *a’-T is synthesised from four components: the
innermost and owaermost pentagons (*a’-P and ’a’-S), and the two "pentagons of pentagons” (*a’-Q and
"a’-R) which enciose “a’-P and are enclosed in ’a’-S. The subdiagrams *a’-Q and ’a’-R are defined using
diagram prodmct <12 direct product of graphs) at lines 19-20.

The operasxr CS s used to define regular pentagons, appropriately scaled, oriented and centred.
Assignment W a composite diagram is used at lines 17-18 to specify the subdiagrams *a’-P and ’a’-S, and
at lines 23-24 m specifv the coordinates of Q and R, where "Q/<m..n>" denotes the restriction of the
diagram Q w the set of vertices with indices [jm|, jm+1}, ..., n]]. (By convention, implicit indices used to
reference componenes on the LHS of a definition are evaluated.) In all cases, coordinates of vertices are

The skedesm o the final diagram (’a’-T), comprising 12 regular pentagons whose edges are of
colour °a’. s deimed 2 the jomn (ie. disjoint union) of its four components at line 26. The coordinates of
the vertices of T are desimed implicitly by formulae depending on the inféger r, which serves as a ’scaling
parameter” far T.

The edges of coloer "> mcident with the innermost and outermost pentagons are defined in lines 27-
33, using the indexrmy operasx “**°, where

i%m ** j%n = (m@i’-1)+j’) % mn.
The use of coicer paths for verex referencing (c.f.§’s 1 and 2) is illustrated in lines 34-46. Note that the
RHS of line 37 & an abbwewviated form of
_ aT b_Ta T,
where "." and * " respecurvelv denote composition and inverse of perms.

Example 3.

1 abstint:r;

2 int60:x,y;

3 int25:m,n;

4 vert2:z;

5 z=1[0,0];

6 ’a’-diag (abst vert,col 5):P,S;

7 ’a’-diag (abst vert,col 25): Q,R;

8 ’ab’-diag (abst vert, col 60) : T;

9 op(vert2:$1,%2;int0: $3) -> "a’-diag (vert 2, col 5) : C5 is
10 withint 5:H=1..5do

11 CS'H = rot ($2, H-1, $1);

12 a_ C5{H}=H-1+2%*%$3

13 od

14 si;

15 // the above operator returns a regular pentagon with centre $1,
16 // first veriex at $2, and orientation specified by $3 (= 1 0r 0).
17 'a’-P="a’-C5(z, [r,0], O);

18 a-S="a-C5(@z,(4).P1,1);

19 ’a’-Q="-P**’a’-P;

20 'a’-R=""-P**’2’-P;

21 withint5:1=1..5do

22 m = [**1; n = [**5;

23 Q/<m..n>=C5 (2.P1, (3/2).P11,0) ;

24 R/<m..n> = C5 ((-3).P!1, (-7/2).P!I, 0)

25 od;

26 a-T="a-P::’a’-Q:’a’-S:’a-R;

27 withint5:J=1.5do

28 m=J**14+5;

29 with int 60: K = 0, 30 do

30 b_ T{K+J]’} =K+m’ ;

31 b_ T{K+m’} = K+J’

32 od

33 od;

4 with int 60: K = 0, 30 do

35 withint5:J=1..5do

36 x=ab_ T{K+I'};

37 y=a ba T {K+I'};

38 b_ T{x}=y;

39 b_ T{y}=x;

40 withcol 60: CC=la_ T|,la_ T |do
41 x=CC@2.b_ T{K+J'};

42 y = CC@2.b_ T.CC @2{K+30+J’};
43 b_ T{x} =y ‘
44 od

45 od

46 od

§4. Implementing an ARCA system.

In this secton. the features of the ARCA implementation currently under development are
discussed. Althoegh the creation of a sophisticated environment for developing ARCA programs is
envisaged, the central point of reference for the design is the basic definitive notation as described in §2.

“The use of such a simple framework appears to have several merits, ensuring clear semantics whilst
assisting modulariry and exiensibility.

The impiementasion of the definitive notation itself is conceptually simple, though there are some
technical difficairies. The large number of operators in the underlying algebra makes it convenient to use a
single token for distimcy operators (e.g. "+’ for both scalar and vector addition, ’.” for multiplication of a
vector by a scalar and perm product), and variable typing is used to allow syntactic disambiguation,
Because of the central role of algebraic expressions, a definitive notation is well-adapted for the automatic
construction of an LR-parser via a compiler-compiler. (See [1] for a YACC specification of the ARCA
expression parser.!

The routimes which are used in interpreting a definitive notation serve five main functions: compiling,
simplifying, evaluatime. wacing and displaying formulae. In the current implementation, the formula
appearing on the RHS of a definition is compiled into a tree representation, simplified (e.g. by constant
folding, or by evalsation of subexpressions where specified), traced to check for circularity, then associated
with an abstract vanabde or composite variable component. Note thae in the compilation phase it is
possible to distinguish berween formulae or subformulae which define explicit and implicit values. This is
significant when a defimmraoa of one component of a composite variable in terms of a second component is
to be interpreted. Thms if k is an imreger variable, and v is an composite vertex variable, then a definition
such as

v[1] = k.v[2]
is to be permitted. whilst the formally similar assignment

v{1] = 2.v[k]
must be deemed 2 semantic error. since it is potentially circular. This interpretation is achieved in the
current implementation by “exmracting explicitly indexed components of composite variables" in a suitable
fashion during the simplification phase.

Simplification of formulae may serve several functions: it can be used for "optimising" defining
formulae, which are in general frequently re-evaluated, or for the elimination of constructs which are
primarily used for notational convenience (such as "1..5" for the list "1,2,3,4,5", or "a~b@2.c_ D" for
"a_ D".b_ D@2.c_ D"). There is also scope for invoking axioms which apply to the underlying algebra,
though this may not be appropriate for ARCA. -

Evaluation of formulae is straightforward; it requires only a compendium of routines for evaluating
primary operators in the underlying algebra. Undefined values can be handled gracefully in a definitive
notation, and the evaluation routine should be adapted for this. For instance, when evaluating a composite
vertex variable, the ARCA interpreter may return a vector value of the appropriate dimension in which
some components are undefined. Efficient evaluation of standard operators can have a significant effect
upon the efficiency of the entire implementation; for this reason, the primary evaluation routines merit
"optimisation”, and, in some applications, might justify the provision of special hardware. Efficiency can
also be improved by storing the most recent evaluations of variables, and monitoring functional
dependencies so as to avoid unnecessary re-evaluation.

In a suspended ARCA dialogue, the current context is determined by the existing definitions of
variables. It is important that these definitions (which represent the “transient values” and "persistent
relations” alluded to in [2]), should be available for inspection. To this end, the ARCA interpreter includes
routines for reconstructing defining formulae from their compiled forms for display.

The above discussion deals with the implementation of the definitive notation upon which ARCA is
based, and addresses the issues which are most central to the entire system. At present, the development of
a suitable environment for exploiting ARCA fully is at an early stage, and it is only appropriate to outline
some of the features which are required for effective use.

The primary need is for high-level commands to allow basic semantic actions (such as displaying a
diagram, constructing the group table associated with a diagram, or highlighting the elements of a

-10-

subgroup within a displayed diagram) to be performed. Such actions have no side-effect upon the current
state of the ARCA dialogue, and are for the most part easy to implement since the relevant data is
conveniently stored and represented. There are some technical problems associated with the choice of
coordinate system for diagram display; these are simply solved by ensuring that the components of vectors

-as specified by the user are conceptually "units of length" (represented in ARCA by “integers of modulus
1"), and are scaled appropriately for purposes of display (cf [1]). In this context, the design of a
satisfactory format for the group-theoretic and graphical "command languages" is more problematical than
the implementation of commands. An interesting possible solution might be to interpret graphical and
group-theoretic commands within the framework of auxiliary definitive notations.

The design of the interface for the ARCA system is another important concern. In essence, the
process of defining and interrogating variables must be as convenient and transparent as possible. A
method of synthesising new definitions by editting previous definitions (or sequences of definitions within a
with-loop) might be useful Another possibility might be use a mouse or light pen for determining the
index of a vertex within a displayed diagram, or for re-defining the coordinates of a displayed vertex. As
explained in §2, these methods could have limitations if several abstract vertices were represented by the
same geometrical point.

Concluding remarks. -

The design of ARCA suggests a number of directions for further work. As discussed in [1] and [21,
definitive notations may be useful in other interactive applications, not necessarily concerned with
graphics. In the context of notations for graphics, the use of Cayley’s method of vertex referencing may
also find wider applications.

A system to display and manipulate CDs might appear to be only of educational or recreational
interest, but the possibility of applications cannot be dismissed. CDs implicitly occur wherever there is
symmetry, and their layout could be relevant (for instance) to certain problems of circuit design.

Acknowledgements.

I am grateful to Robin Milner for pointing out the "definitive" (i.e. definition-based) nature of ARCA,
and his valuable suggestions for simplifying the original form of the notation as described in [1]. I am also
indebted to Kevin Murray for developing an ARCA interpreter.

References.

(1] W.M.Beynon
A definition of the ARCA notation, TC report No.54, The University of Warwick, 1983.
2] WM.Beynon

Definitive notations for interaction, Proc. of hci’85 "People and Computers: Designing the Interface”,
CUP, 1985.

[3]1 E. W. Dijkstra
A discipline of programming, Prentice Hall, Englewood Cliffs, NJ, 1976.
[4] D.L.Johnson
Presentation of Groups, LMS Lecture Note Series 22, CUP 1976,
[5] Marshall Hall
The Theory of Groups, Macmillan, 1959,
[6] H.Maschke

-11-

The representation of finite groups, especially the rotation groups of the regular bodies in three- and
four-dimensional space, by Cayley’s colour diagrams, Amer.J Math. 18, 156-194, 1896.
[7] LE.Sutherland

SKETCHPAD: A Man-Machine Graphical Communication System, TR No.296, Lincoln
* Laboratory, MIT, 1963. .

[8) S.CJohnson
YACC: Yet Another Compiler-Compiler, CSTR No.32, Bell Labs., Murray Hill, New Jersey, 1975.

