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Abstract

A protocol specification technique that relates concurrent system
behaviour to agent activity and interaction at a high level of abstraction is
described. This exploits a concurrent programming technique based upon
a synthesis of two new programming paradigms: "agent-oriented" and
"definition-based" programming. Application of the method to modelling
and simulating activity at a railway station is described. Its potential for
concurrent systems software requirements specification is assessed.
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1. Introduction

1.1. Background

Protocol specification plays a central role in computer systems engineering.
Experience in designing distributed systems has shown the need for systematic
methods of specification and analysis to address all aspects of the interaction between
concurrently acting processes.

The models used for protocol specification are typically either state-based or
sequence-based [23]. A state-based model is described in terms of the states of the
interacting processes, as typically represented using finite state machines, Petri nets or
statecharts. A sequence-based model describes the required global behaviour of a
system in terms of admissible execution sequences, as typically represented using
notations subh as RSPL [23],.RPL [12] or CSP [13]. '

Protocol spcciﬁcation techniqﬁes have been most'sﬁccessfully applied'to specifié

subproblems of d1g1ta1 systems des1gn, such as descnbmg the interaction between two

| components commumcatmg over an unrehable channel. With current tcchmqucs, 1t is
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sometimes possible to analyse the behaviour of small critical subsystems
comprehensively. When designing such subsystems, it is ideally useful to be able to
relate state-based and sequence-based views, so that the abstract behaviour of the
system can be understood in terms of the activity of its components.

The potential scope for applications of protocol design and specification has been
progressively enhanced as distributed processing applications have increased in
significance and complexity. At every level of abstraction, it is the protocols for
interaction between processes that define the relationship between the global behaviour
of a concurrent system and that of its component parts. Conventional techniques for
protocol specification and analysis can describe this relationship at low levels of
abstraction on well-defined critical subsystems. This paper considers protocol
specification and analysis techniques to support the designer at a higher level of
abstraction as is required, for instance, in the development of a specification for

complex concurrent system software.

1.2. Protocols and the Specification of Concurrent Systems Software

The phases involved in the development of large software systems are traditionally
conceived in terms of the waterfall model [21]. This paper is concerned with the initial
phases of the development life-cycle, viz:

« Software Requirements Specification: the activity that leads from an analysis of
the software problem to a complete specification of the external behaviour of the
system to be built, and

o Design: the activity that leads first to the decomposition of the software system
into its architectural components and then to the specification of their
computational roles.

Where concurrent systems software is concerned, these two phases are respectively
intended to producé an abstract characterisation-of global system behaviour (such as is
| typically expressed in a sequencejbased ‘protocol specification model) and ‘a

compiementary explicit description of the activity and interaction of system components
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(such as is typically represented in a state-based protocol model).
The objective of the requirements capture and design phases for concurrent system
software is a synthesis of state-based and sequence-based views similar to that arising
at a different level of abstraction in the detailed design of a specific subsystem. It is
natural to seek ways of enhancing traditional protocol specification techniques so that
they can be applied to Software Requirements Specification. The techniques for
specification of external system behaviour described in [12] include several state-based
modelling techniques originally developed for specification at a low-level of
abstraction, for instance. The nature of the modelling required in the early phases of
software design differs in several significant respects, however:
« size: building a state-transition model that captures the behavioural requirement of
a complex system is infeasible with techniques developed for small subsystems

« comprehensibility: it is essential that the models of software developed in the
requirements specification and design phases are intelligible to the designer and
correspond closely to the system as conceived at a high level of abstraction

« modifiability: there is essential interaction between the requirements specification

and design phases in developing specifications for large systems so that the

system models can be incomplete and must be easy to enhance or revise.

1.3. Nature and Orientation of our Approach: an Overview

In this paper, the initial phases of concurrent system software development are
viewed as a form of protocol specification. The concept of protocol differs in some
respects from what is appropriate when considering interaction between components at
a low level of abstraction. Following established practice in requirements specification,
the behaviour of a concurrent system is related to the actions of agents (see for example
[15). Whereas it is common to consider a low level protocol as operating between

processes, the distinction between a computational process and the agent performing

* the computation becomes sighiﬁca_nt at a highcr level of abstraction. Making this

distinction will enable us to treat as separate concerns synchronisation based upon
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communication between agents and synchronisation determined by the relationship
between agents - such as their relative speed of execution.

Our specification method exploits an unconventional form of high-level
programming. Informally, it may be regarded as a style of programming with two
different manifestations, for which the designations Jekyll and Hyde are not
inappropriate. The part of Mr Hyde is played by agent-oriented programming (a distant
relative of object-oriented programming) and that of Dr Jekyll by definition-based or
definitive programming (a distant relative of functional programming). Agent-oriented
programming involves identifying the agents in a system and describing the interactions
between them in terms that are easy to relate to the requirements of the application. The
language LSD is introduced to express agent-oriented programs; LSD programs, like
object-oriented programs, invite concurrent interpretation but have a quite ambiguous
operational semantics. To derive a formal operational model, an agent-oriented program
has first to be transfomed into a definitive program. This transformation process
invokes additional application-oriented information about the scenario for agent action.
The result is a simulation program executable on the Abstract Definitive Machine. The
most significant feature of this style of programming is that all control over the changes
of state in the simulation model is derived with direct reference to the application.

The paper is in three main sections. §2 examines the motivation for our protocol
specification method with reference to object-oriented programming and describes the
principles underlying its state-transition model. §3 explains the role of the tools we
introduce and sketches their application to modelling and simulating a concurrent
system. §4 reviews our approach in relation to the classification of protocol
specification methods, current trends in software requirements specification and
broader issues concerning modelling, computation and cognition.

The ideas tiescribed in this paper have been developed as part of a broad
_programme of research into definitive (deﬁnition-based) programming [5,6,7,8,9,10].
Because of the scope of thlS paper, the background supplied by this related work could

not be descnbed in detail. Though the paper is intended to be self-contamed much
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useful supporting material can be found in other references. Of particular relevance are
[6,7,8] which respectively consider the specification notation LSD, the abstréct
definitive machine model, and concurrent programming in a definitive programming
framework. Some aspects of the method described in this paper are considered in

greater detail in [9]; these are illustrated with reference to a telephone specification.

2. Principles for Protocol Sypeciﬁcation at a High Level of Abstraction

2.1. Protocols, Processes and Agents
The traditional concept of protocol is well expressed by the following definition,

taken from Merlin [18]:

"Given a system of cooperating processes such that cooperation is done through the
exchange of messages, a protocol is the set of rules which governs this exchange".
This concept is suited to a particular type of concurrent system: a totally distributed
system, in which the only way for one component to influence the behaviour of another
is to send a message. In practice, most research on formal specification and verification
of protocols has focussed on cooperation of a quite restricted - though fundamental -
nature. For instance, cooperation has typically been concerned with reliable
transmission of data or the distributed detection of termination - issues so primitive that

the significance of the transmitted data or the terminating algorithm is irrelevant.

A significant step towards relating the above concept of protocol to computation at a
higher level of abstraction is represented by concurrent object-oriented programming
(OOP). In concurrent OOP, the protocols for exchanging messages between objects
typically have greater algorithmic significance - they determine whether a distributed
algorithm is being correctly executed. Specifying the concurrent behaviour of object-

oriented programs raises complex issues beyond the scope of protocol specification

- methods that have been successfully applied at lower levels of abstraction [1].

Where concurrent systems modelling for requirements specification and design is

“concerned, we must adopt a concept of protocol that is well-suited to the way in which

communication and interaction is informally conceived. Where Merlin refers to
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cooperating processes, it is commonplace in requirements analysis to think in terms of
cooperation between agents [15,17]. By way of clarification, a process is here to be
understood as "the execution of a sequential program" [2], and an agent as "that which
performs this execution". In our development, this distinction between the
computational agent and the computational process associated with it - to be further
explained and developed below - becomes significant. In particular, whilst it may be
possible to ignore the distinction where the role of the agent is narrowly prescribed (as
for instance in identifying the reader with the reading process), it is apparent that
protocols do not relate in the same way to agents as to processes at higher levels of
abstraction.

In OOP, the role of agents is to an extent played by active objects that change state
or send messages autonomously. Conventional OOP is unsuitable for concurrent
interpretation; it does not make explicit provision for protocols between objects, so that
the synchronisation of messages is unspecified. The motivation for our approach is
similar to that behind extensions to OOP that have been designed for concurrent
execution, such as the actor model of computation [16] .

Our approach resembles an actor model in that the state of a concurrent system is
recorded by variables bound to agent instances that are dynamically created and
destroyed. In other respects it deviates from an OOP paradigm:

* no concept of information hiding is presumed

* message passing is only one of the ways in which agents interact.

Examples to illustrate modes of interaction outside the scope of the OOP paradigm are
given below. The principal motivating ideas are:

» direct action of one agent upon another is sometimes appropriate: cf the distinction

between requesting a child not to step into the road and physically restraining it

* there are commonly situations in which a singlé action on the part of an agent

leads in one indivisible transition to simultaneous state changes in several objects.

It is Someﬁmes. argued that a totally distributed computational model, in which all

communiéafion is by message passing, is the only model directly relevant to digital
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system design. It is true that at some level of abstraction all interaction between
electronic components can be regarded as a communication of values, but there are
other considerations:

* In the development of a specification, it may be helpful to presume that an agent
has direct control over values bound to another (cf the manipulation of aircraft
positions by an air traffic controller, as discussed in [15]).

» Embedded systems require good models of their environment if they are to
operate effectively and this environment may incorporate elements (for example
mechanical components) whose interaction is not most effectively modelled using
message passing.

+ The capabilities of computer-based systems increasingly resemble those of real-
world agents that can directly perceive changes of state in their environment (for
example through sensory input) and act directly to change the state of objects in
their environment (for example by performing physical actions).

These considerations justify our interest in applying our protocol specification methods

to modelling and simulating general concurrent systems.

2.2, Object-oriented, Agent-oriented and Definitive Programming

The above discussion motivates a variant of object-oriented programming that can
appropriately be called agent-oriented programming. In object-oriented programming,
the representation of computational state is simplified through the identification of
generic pieces of local state. The problem in concurrent interpretation is then to
represent synchronised changes that occur in independent pieces of local state in a
conceptually indivisible action. In agent-oriented programming, the emphasis is upon
faithful modelling of indivisible transitions irrespective of what pieces of local state they
affect. The implementation of this style of programming requires new techniques for
representing states and transitions. |

Our approach to protocol :specification ét a high-leVel of abstractibn_ will be

introduced and illustrated informally with reference to modelling and simulaﬁng the
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activity surrounding the departure of a train from a station. The state of the model will
be represented by variables bound to a set of agent instances. Agents are of two kinds:

* active agents that can perform automonous actions to change the system state

« passive agents that serve to record state information but cannot perform actions.
The driver, the guard, the station master and the passengers are active agents: they are
able to change the system state, fot example by releasing a brake, or opening a door.
The doors of the carriages are passive agents: the state of the system is in part
determined by whether doors are open or closed. (The term "object" would perhaps be
more appropriate than "passive agent", but for its technical meaning in OOP.)

The distinction between agents and OOP objects reflects a different approach to
modelling state-transitions. In an object-oriented system, each object is responsible for
changing its state: thus a door object "opens itself" by performing an internal action or
method. To simulate a passenger opening a door, a passenger object sends a message
to a door object that invokes the appropriate method. Such an action may occur whilst
the station-master is monitoring the train to confirm that all doors are closed. In that
case, the fact that a door has been opened will have to be relayed to the station-master,
who must register that there is now a door open. This must be implemented by
programming the door object to send a message to the station-master object to invoke
the appropriate change of state.

It is possible to interpret the activity in the OOP model in terms of actual system
behaviour. The message passing paradigm is particularly appropriate if the carriage
doors are semi-automatic and respond to passengers pressing a button. In that case,
there is a point in time when the passenger has invoked opening of the door but it is not
yet open. In much the same way, though a door has been opened, there is a point in
time before this fact is registered by the station-master, who then imagines that all doors
are still closed. W1th such mterpretatlon OOP potentially leads to very subtle models of
system state, but it is 1mposs1ble to reason about concurrent behav1our in the system -
without additional information abqut hOw sending, rcccivm_g ar_xd responding to

- messages is synchronised:




In the agent-oriented approach, priority is given to modelling the desired global
state-transitions in a system as faithfully as possible without regard for information
hiding. It may not be realistic to suppose that the station-master instantaneously
registers the fact that a door is opened, but for many practical purposes it is convenient
to assume this. It may be both realistic and convenient to suppose that a passenger can
directly act to change the state of a door. An agent differs from an object in this respect:
the actions of one agent can directly effect changes of state in another. Where an agent
action results in a conceptually indivisible propagation of state changes involving
several agents, as typically occurs in a mechanical system, this is to be modelled as a
single transition.

Providing an appropriate computational framework for the representation of
indivisible state-changes in a concurrent system requires an additional concept. In our
approach, this is supplied by exploiting the essential mechanism that underlies the
spreadsheet, in which changing a single value simultaneously changes all dependent
values as if in one indivisible transition. The station-master's knowledge of whether all
doors are closed is expressed by a definition:

all_doofs_closed = —~open_door, A —open_door, A ...A —open_doory
that is to be interpreted as asserting that the value of the variable all_doors_closed is
defined by the formula on the RHS. (The definition concept resembles the
combinational function of the protocol specification language SAN [23], though a
different kind of useage is envisaged, as will become clear below.)

In the computational model used to represent system state, the variables associated
with agents may have their values defined by formulae in this fashion. In effect, the
entire system state is represented by a set of definitions of variables. A typical agent
action is represented by the redefinition of a variable. Opening the first door becomes

open_door, = true |
for instaﬁcé; A significant feature of the computational model is fhat this fcdcﬁnition '
may or may not change the value of the variable all_doors_closed in one and the

same indivisible transition, according to whether another door is already open. This is a
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powerful means of modelling the fact that the indivisible transition from one system
state to another associated with a particular action is context dependent.

The ideas outlined above derive from an extended programme of research into a
"definitive" (definition-based) programming paradigm [5,6,7,8,9,10]. In this style of
programming, computation is represented using definitive state-transition (DST)
models, in which

« computational state is represented by a set of definitions

- transition from one state to another is represented by one or more redefinitions.

DST models have great expressive power. Redefining a variable in the context of a
set of definitions can resemble supplying a different parameter to a function defined by
a functional programming script, or perhaps even modifying the script [24]. The
discussion of protocols below is to be interpreted with reference to a computational
framework in which a concurrent system is modelled in the following way:

« the entire system state is represented by a set of definitions of variables

- an agent action is represented by the redefinition of a variable

« transition from one system state to another is modelled by parallel redefinition

associated with concurrent action by one or more agents.
As a simple illustration, a scenario in which two doors are opened concurrently is
represented by the performing the pair of definitions:
open_door; = true, open_door, = true
in parallel. These ideas will be further developed in connection with simulation

techniques to be described below.

3, Protocol Specification using LSD and the ADM

3.1. Introducing LSD and the ADM

The behaviour of a concurrent system is to be related to the protocols adopted by
the agents and the context in which these are executcd. In concurrent OOP it is not
sufficient to spe01fy how obJects act but also how their actions are synchronised

through message processing. Agent-onented programmmg 1ntroduces more powerful
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abstractions to represent communication and synchronised interaction between agents.
It is still typically necessary to complement agent descriptions with information about
relationships between agents, but the hypothesis that must be made regarding
interprocess synchronisation are weaker and more easily comprehended in application-
oriented terms.
In justifying a high-level protocol, there are two separable concerns:
» the abstract characteristics of the agents, and how they act in isolation
By way of illustration, the station-master must be able to detect whether a door is
open and be able to close an open door. When the station-master sees that all the
doors are closed and the train is due to depart, he will blow a whistle. The role of
the station-master can be described in such terms with reference to conditions he
can perceive and actions he can perform - independently of the context for action.
+ what assumptions must be made about the context for interaction.
The consequences of executing the protocol cannot be predicted without
additional assumptions. Issues such as the reliability of the station-master's
perceptions and the appropriateness of his actions depend upon the speed of his
responses relative to other agents, the nature of the communication between
agents and the scenario governing the selection of agent actions. A typical
departure protocol will prove unsatisfactory if a passenger decides to disembark
‘and board the train repeatedly, for instance. Conflicts may also arise, as when the
station-master attempts to close a door as it is being opened by a passenger, or
two passengers attempt to pass through a single door simultaneously.
The abstract characteristics of an agent will be specified using a special-purpose
notation called LSD. An LSD specification for an agent describes
_ the aspects of the system state to which it can respond — its oracle variables
« those aspects it can conditionally change — its state vanables
. the cucumstances under which state-changing actions can be performed its
protocol, consisting of a set of guarded possible sequences of redefinitions.

It also includes definitions — rep_resénted by derivate variables (such as the definition |
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all_doors_closed = —-open_ddorl A —open_door; A ...A —open_doory
discussed above) that can express the different ways in which agent actions are to be
interpreted in state-transition terms according to context.

An LSD specification correlates possible actions of an agent with perceived states of
the system and provides the basis for simulations of the behaviour that exploit DST
computational models. It constrains the behaviour of the system model so that

» all state-transitions are associated with action on the part of one or more agents

* every agent action is consistent with its perceived knowledge of the system state.
The limitations of such a specification as an operational model are readily apparent
[6,9]: it does not specify how accurately an agent perceives values, when it chooses to
act, or its speed of execution relative to other agents. (The aspects of agent behaviour
described by an LSD specification in some respects resemble those described using
deontic logic in [17].)

To provide an operational interpretation of an LSD specification requires simulation
under suitable hypotheses about the mode of execution. The identification of these
hypotheses is an auxiliary part of the specification process. It is not important for the
station-master to register every time a door is opened whilst a train is at the station, but
it is important that he correctly perceives that all doors are closed as the train departs.
Guaranteeing correct perception presumes facts about the context for interaction that
may appear self-evident but are beyond the scope of the LSD specification. For
instance, the fact that the station-master has continuous visual access to the state of the
doors is significant and must be reflected in the manner in which their perceived state is
maintained in the model.

The simulations of system behaviour associated with an LSD specification exploit a

newly developed computational 'modelz the Abstract Definitive Machine (ADM) [7,8].

In the ADM, computational state is represented by a set of definitions that changes -

dynamically as redefinitions are performed. The state information required to determine
when a redeﬁhition is to be perfoimed is itself encoded within the set of definitions. An

ADM program is 'speciﬁcd bya sé.t of entities. An ehti_ty comprises a set of definitions
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and a set of actions. A typical action is a guarded sequence of redefinitions. In
execution, the definitions and actions associated with currently instantiated entities
determine the contents of definition and action stores D and A. In each machine cycle,
actions in A whose enabling conditions are true in the state specified by the definitions

in D are performed in parallel.

3.2, Illustrative examples
In this section we illustrate how LSD and the ADM can be used

* to formulate a possible protocol for the departure of a train from a station

* to simulate passengers boarding and leaving a train.
The specifications are not entirely independent but their inter-relationship is easily
understood by inspecting the common variables.

The departure protocol takes the following form:
as the train approaches the station
the guard applies the brake to stop the engine
after the train has waited at the station for an appropriate interval of time
the station-master checks and shuts the doors
when all doors are closed
the station-master whistles to call the attention of driver and guard
the guard waits for the station-master to raise his flag
to signal the release of the brake
the driver gives the ready signal to the station-master who raises his flag
after the brake is released
the guard signals the station-master by raising a flag
the station-master signals the driver to start the engine.

LSD specifications for the Station-Master (SM), guard, driver and train agents
appear in Figure 1. A "#" symbol before an identifier designates a variable that is
owned by the agent. The status of the SM's flag sm flag is bound to the SM. The SM
specification is annotated to show the significance of the states and oracles. The oracles
for an agent typically represent perceived values of valiables whose "authentic value" is
bound to another agent. The status of a door for instance is not nécéssarily what the SM

"imaginc's it to be. A state variable that is subject to change by another agent is
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designated as a state-oracle. A state variable is normally treated as an oracle; when it is
necessary to distinguish between the perceived value and the authentic value of a
variable that is under the control of an agent (as when the SM cannot remember whether
he has whistled) it may appear both as an oracle and a state.

The LSD specification can be given an informal operational interpretation by
imagining that each agent acts asynchronously, repeatedly checking the enabling
conditions for actions and then non-deterministically selecting an enabled action to be
performed sequentially. Since the real departure protocol is designed to operate in just
such a fashion, it is easy to simulate by animating the specification in Figure 1. The
LSD specification effectively describes the way in which communication is used to
transfer control between the agents.

The LSD specifications required to simulate passengers boarding and leaving the
train appear in Figure 2. The oracles to the passenger include knowledge of travel
status: a passenger responds to arrival at the destination by following an alighting
protocol. The derivate LIVE designates that passenger agents cease to be passengers
when they have left their destination station. A derivate such as alighting has a significant
role in specifying the activity of the passenger agent, it represents a boolean condition
that is monitored continuously and of which the passenger has instant and accurate
knowledge. This aspect of the specification is relevant for instance in building a robot
to emulate a passenger.

For simplicity, each passenger agent has been associated with a particular door. The
door is specified so that passengers pass through the door one at a time: the protocol of
the door agent non-deterministically selects a passenger from the set of passengers
queuing to pass through it. It may be observed that the use of definitions enables the
position of passenger p, represented by the variable posfp], to be interpreted in many
ways. The posiﬁon ofa passeriger may signify to thc; guard -th.at there is a queue at a

‘particular door, for -instaﬁce._ For purposes of the simﬁiaﬁion, such a process of
interpretation may be deemed to rcqﬁii'c no time. This use of definitions aiso serves to

syhchronisc a passenger's passage through the door with another's entitlement to

—14-




occupy the door.

It is noteworthy that the specifications in Figure 1 and 2, though related, are easy to
develop separately and link together. The role of the station-master can be defined first
with reference to whether doors are open, without regard for the agents responsible for
opening and closing them. The additional requirement that the departure protocol
should take account of whether there are passengers queuing can be added
subsequently. Such considerations are significant for the incremental development of a
specification. A further stage of refinement might involve reconsideration of the choice
of around[d] as an oracle for the station-master, who is not in a position to detect
passengers about to disembark.

A formal operational interpretation of LSD specifications is given by simulation
using the ADM. Full details of how such a simulation is described are beyond the scope
of this paper; only the essential ideas will be outlined (cf [9]). In the transformation of
an LSD specification into an ADM program, each agent is modelled by an entity that is
specified using the set of oracles, states and derivates to which the agent refers:

* derivates are transformed into definitions

« the agent protocol is transformed into a set of mutually exclusive guarded actions

to be performed with delays between commitment to action and successive

redefinitions that reflect the semantics of the associated agent actions.
Communication between agents is modelled using additional entities so that either an
oracle is defined to have its authentic value or is updated by appropriate actions.
Devising the ADM program corresponds to specifying a scenario within which to
perform simulation taking account of assumptions concerning the relative performance
of agents and the nature of the communication between them.

Simulation in the ADM can make use of probabilistic methods to generate random

delays, but it also possible to reflect the truly non-deterministic nature of the agent

specifications by allowing the designer to select the sequence of parallel actions to be _
performed in s1mu1at10n [9]. The close correspondence between statc-transmons inan

‘ADM s1mu1at10n program and state-transitions in the system bemg modellcd makes it
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easy for the designer to interpret and intervene. The ADM can detect interference
between actions associated with multiple redefinition of variables, such as occurs when
two passengers open a door simultaneously. More interesting forms of interference,
such as occur when two agent actions require conflicting contexts of definitions for
their articulation, can also be detected. Such conflicts can be resolved by elaborating the
model or dealt with by the designer as they arise during simulation [9].

The specification in Figure 2 illustrates how the requirement that passengers pass
through a door one at a time can be enforced. Another kind of conflict arises when a
passenger alighting from the train delays shutting the door until such a time as the next
passenger alights. Only by assuming unrealistically prompt closing of the door after
alighting and slowing up the activity preparatory to alighting is it possible to avoid this
problem with the current specification. This conflict can be resolved by elaborating the
specification in one of two ways:

« enhancing the sensitivities of passenger agents so that they never rush through
doors nor close doors without first checking there is no-one in the way. (This
involves a strong but unquantifiable commitment to prompt closing of doors
when it is perceived to be safe: in practice, it is impossible to guarantee that this
response is sufficiently fast to eliminate conflict without specifying a scenario.)

« enhancing the model to reflect the physical impossibility of a door passing
through a person in transit. Conflicts of this kind have been considered in
connection with interference in mechanical systems in [10].

As the above example suggests, the role of LSD in requirements specification is
more closely linked to the identification and interpretation of conflict than to its
resolution. In simulation using the ADM, the problems of recovery encountered in
many conventional simulation systems are eliminated since the computational state is
relatively stable and transparcnt..tb tﬁe vprogram designer. .O‘ur diséussioh of the
éXarriples above is intended to illustrate the different wayS in §vhich the use of LSD and
the ADM can assist in clarifying "why the execution of a protocol may lead to conflict.

Imagmary scenarios in which real agchté and objeéts have bizarre characte_ristics play an

—-16-




important role in this process of clarification. Analysing the specifications in Figure 1
and 2 leads us to consider doors that can pass through passengers, passengers who can
move at the speed of light or station-masters who can see through carriages. Our
approach offers some formal support for this common informal process of analysis by

proof and counter-example.

4, Concurrent Systems Software Requirements Specification as Protocol Specification

In this paper, software requirements specification for concurrent systems software
has been viewed as a generalised form of protocol specification. This generalisation
depends upon adopting a perspective upon protocols in which synchronisation due to
communication between agents and that due to characteristics of the system of agents as
a whole are treated as separate concerns.

In [23], Venkatraman and Piatkowski classify protocol specification methods.
Under this classification, the approach considered above has:

* a state-based orientation

+ a multi-component structure

* a specification philosophy that can be either meta-implementation or monitor.

As a state-based technique, it supports concurrent execution. Component
connectivity is integral to component specification in so far as state-oracle pairs are
identified in the LSD specification, but the nature of communication between
components is determined with reference to ADM simulations. Combinational functions
and discrete state-machine components are built-in in LSD, but more sophisticated
component types, such as programmable clocks, have to be programmed for the ADM.
Other issues raised in [23], such as the comprehensibility and operational nature of the
specifications will be discussed in detail below.

Software requirements specification aims at rigorous description of the intended
external behaviour of a concurrent system. For relatively small conventional systems,
an approach such as thét discussed byA Danthine in [11] is effcétive. The system.

désigncr identifies the list of acceptable message sequences through the simulation of a
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basic scenario and error recovery scenarios. This behaviour is then directly described
using a formal protocol model that becomes the basis for the detailed design and
implementation. The list of acceptable message sequences is typically described using a
sequence-based model that is realised by a state-based model reflecting the architectural
components of the system.

Direct characterisation of the behaviour of a large concurrent system in sequence-
based terms is unrealistic. The development of such a specification demands a detailed
knowledge of the required behaviour of the system that can only be acquired through an
iterative process of preliminary design, simulation, analysis and revision. The size of a
system is not the only consideration in this respect; for embedded systems, where there
is interaction with external objects, devices or people, the required behaviour is
developed in conjunction with assumptions about the manner in which free agents in
the system are liable or entitled to act.

The techniques described in this paper are well-matched to a philosophy for
software development in which software requirements specification and design are seen
as inseparably linked [15]. Characterising the external system of behaviour of the
system proceeds in parallel with decomposition of the software system into its
architectural components and the specification of their computational roles. This
requires the development of a state-based (ie operational) model for the system that:

» can be interpreted by the designer in terms of agents acting in the application

« can be used for simulating and analysing system behaviour.

The more strictly a state-based model fulfils these conditions, the better. Ideally all
aspects of the state-transition behaviour of the model should be interpretable in
application-oriented terms. The state-based models that are amenable to analysis in
restricted contexts do not have the expressive power to represent large systems in ways
intelligible to the designef; those, such as concurrent OOP, that are most casily
interpreted in applicationaorientéd terms presént fomiidablc problems in simulatioh and

analysis.

‘The state-based Approachadvocat_ed in this paper has promising characteristics. An»' '
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agent-oriented model is well-suited to the way in which a designer initially conceives
the requirements specification for a concurrent system (cf [12] and [15]). The DST
models upon which the ADM relies can represent exceedingly complex state-transition
systems. They also have characteristics that are useful in simulation [9] and may be
amenable to analysis. The relationship between an LSD specification and an associated
ADM simulation is based upon perceived characteristics of scenarios for execution.
This establishes a correspondence between the behaviour of the system model in
simulation and the parameters that the designer must either choose or identify in the
application, such as what agents can do and when, how fast they act, and how fast and
reliably messages are communicated.

The modelling techniques discussed in this paper relate to several interesting

philosophical issues:

* The use of LSD and the ADM is concerned with distinguishing that part of system
behaviour that depends upon the actions of agents in isolation from that dependent
upon their inter-relationship in context. This relates to sequence-based and state-
based views in protocol specification [23], event-oriented and activity-oriented
views in simulation [19] and holistic and reductionist theories [14].

* LSD uses agents as an essential means of developing a specification of system
behaviour: all state changes are attributable to the actions of agents. The relevance
of causality has been questioned in connection with event-oriented modelling
using CSP [13] and with relativistic mechanics [22].

* The usefulness of LSD and the ADM in requirements specification is related to the
validity of a cognitive thesis: that the consequences of agent actions can be
effectively represented using DST models. Other issues, such as modelling the
perceptions and capabilities of agents, also establish connections with research on

cogniu'on_ and computation [20].

3. Conclusion , |
The protocol spcciﬁcatiori_ techniques introduced in this paper address issues that lie
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at the focus of many strands of current software research. We believe that our approach
represents a promising new direction of development of particular relevance to the
search for better general-purpose concurrent programming techniques [3].

Experience with our present prototypes proves that our approach can serve a useful
function in the preliminary stages of system design, prompting the designer to probe
the qualities and limitations of protocols through specification and simulation. Of
particular importance is the way in which the validity of a protocol can be related to the
perceptions and capabilities of the participating agents and the characteristics of the
environment in which they operate. To exploit these qualities fully, our present
prototypes must be developed into more powerful and versatile software tools. This
requires a better environment for the development and execution of ADM programs, to
include techniques for semi-automatic generation of programs from an LSD
specification.

Future work must address the formal representation and analysis of concurrent
system behaviour and consider the issues involved in the implementation of system

components.
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agent sm() { /! The station master:

oracle (time) Limit, time; /1 knows the time to elapse before departure due
(bool) guard_raised_flag; Il knows whether the guard has raised his flag
(bool) driver_ready; {/ knows the driver is ready

(bool) around[d]; (d = 1 .. number_of_doors)
Il knows whether there's anybody around doorway

state (time) #tarrive = Itimel; I registers time of arrival
(bool) #can_move; // determines whether the driver can start the engine
(bool) #whistle = false; /1 controls the whistle
(bool) #whistled = false; /| remembers whether he has blown the whistle
(bool) #sm_flag = false; // controls the flag
(bool) #sm_raised_flag = false; {/ remembers whether he has raised the flag

state-oracle
(bool) door_open[d]; (d = 1 .. number_of_doors) // partially controls the doors

derivate (bool) #ready = A (—~door_open[d]) | d = 1 .. number_of_doors);
{1 monitors whether all doors are shut
(bool) #timeout = (time — tarrive) > Limit; {/ monitors whether departure is due
protocol door_open[d] A —around[d] —> door_open[d] = false; (d=1.. number_of_doors)
ready A timeout A —whistled -> whistle = true; whistled = true; guard(); whistle = false;
ready A whistled A —sm_raised_flag —> sm_flag = true; sm_raised_flag = true;
sm_flag A guard_raised_flag > sm_flag = false;
ready A guard_raised_flag A driver_ready ” engaged A —can_move —> can_move = true;
}

agent guard() {
oracle (bool) whistled, sm_raised_flag;
state (bool) #guard_raised_flag = false; #guard_flag = false;
state—oracle
(bool) brake;
derivate LIVE = engaging Il whistled;
protocol engaging A —brake —> brake = true;
sm_raised_flag A brake —> brake = false; guard_flag = true; guard_raised_flag = true;
} guard_flag A —sm_flag —> guard_flag = false;

agent driver() {
oracle (bool) can_move, engaged, whistled;
(position) at;
state (position) to;
(bool) running; #driver_ready = false;
state—oracle
(position) from;
protocol engaged A whistled A —driver_ready —> driver_ready = true;
engaged A from <> at —> from =l atl; to = | next_station_after(at) I;
engaged A can_move —> driver_ready = false; running = true;

)

agent train() {
state (bool) #running = true; #brake = false;
(bool) #door_open[d] = false; (d = 1 .. number_of_doors)
(position) #from = stationl; #to = station2;
(position) #at = some_position;
derivate (bool) #engaging = running A to == at; #leaving = running A from == at;
, (bool) #engaged = —running;
protocol engaging A —alarm —> alarm = true; guardQ; smQ;
o leaving A alarm —> alarm = false; delete guard(), smQ);
brake A running —> running = false;

_Figure 1



agent passenger((int) p, (int) d, (position) _from, (position) _to) {
/1 passenger p is intending to travel from station _from to station _to
/I and he will access through door d of the train
oracle (position) at;
(bool) queueing[d];
state (position) #from[p] = _from;
(position) #to[p] = _to;
(int) #door[p] =d;
(bool) #pos[p] = 1;
state—oracle
(bool) door_open{d];
derivate #alighting[p] = at == to[p] A -2 < pos[p] < 0 A engaged;
#boarding[p] = at == from[p] * 0 < pos([p] < 2 A engaged;
#join_queuefp,d] = door_open(d] A
(alighting[p] A pos[p] == -1) Il (boarding[p] * pos[p] == 1);
LIVE = —(at = to[p] * pos[p] = 2);
protocol at==to[p] » pos[p] == -2 —> pos[p] =-1;
alighting([p] A —~door_open[d] —> door_open[d] = true;
alighting[p] » pos[p] == 0 A door_open[d] » queuing[d] —> pos[p] = 1; pos[p] = 2;
alighting{p] * pos[p] == 0 A door_open[d] * —~queuing[d]
—> pos[p] = 1; door_open[d] = false; pos[p] = 2;
boarding[p] A —~door_open[d] —> door_open[d] = true;
boarding[p] A pos[p] == 0 A door_open(d] A queuing[d] —> pos[p] = -1; pos[p] =-2;
boarding[p] * pos[p] == 0 » door_open([d] A —queuing[d]
-> pos[p] = -1; door_open[d] = false; pos[p] = -2;
}

agent door((int) d) {
oracle (int) pos[pl, door[p]; (p =1 .. number_of_passengers)
derivate #queuing[d] = there exists p such that join_queue[p,d] == true;
#occupied{d] = there exists p such that (pos[p] = 0 A door{p] == d)
#around[d] = there exists p such that (door[p] == d * -1 < pos[p] < 1)
protocol queuing[d] A —occupied[d] * join_queue[p.d] —> pos[p] =0; (p =1 .. number_of_passengers)
}

Carriage
pos(p] == - ~ pos[p] ==-2
{ pos[p] ==
pos[p] = N Edge of Platform
pos[p] = Platform
Figure 2




