Programming Principles for the Semantics of the Semantics of Programs

Meurig Beynon

Dept of Computer Science
University of Warwick
Coventry CV4 7AL, UK

Abstract

Fundamental concerns of relevance to programming are raised by Brian
Smith in [19]. These focus on the relation that holds between a program
and the world outside — the semantics of what is referred to by computer
scientists as the semantics of the program. This paper explains how pro-
gramming concepts developed by the author in collaboration with others
may contribute to "a theoretical framework that does justice to practice"
such as is discussed in [19].

Introduction

The role of logic in Al is the subject of a longstanding controversy dating from McCar-
thy's Advice Taker (1958). A rich context for the modern debate is provided by the
commentaries on a celebrated paper by McDermott [15], in which he explains his rea-
sons for renouncing "logicism". McDermott's paper can be seen as a challenge for pro-
gramming language theory. It indicates that neither logic nor programming methods
that are based upon conventional logical foundations can adequately meet the needs of
Al This sobering conclusion suggests the theme of this paper: what are the limitations
of formally-based methods of computer programming, and how can they be remedied
in a principled manner outside the conventional formal framework?

The significant implications of the logicism debate for the theoretical foundations of
computer programming are brilliantly analysed by Brian Cantwell Smith in [19]. Smith
highlights a fundamental distinction between the semantics of a program as it is under-
stood in theoretical computer science and the content relation that Al needs to study,
viz the relationship between the computational process and the external world. He ex-
plicitly identifies tenets of traditional formal logic that make it unsuitable for describing
this relationship. He also makes prescriptive suggestions for an alternative foundation
for programming consistent with two "lessons of logic".

This paper reviews, in the light of Smith's analysis, an approach to programming that
has been developed under the direction the author over several years. A particular focus
is the need identified in [19] for appropriate alternative foundations for programming.
The sources for our work [3,4,5,6] include a variety of papers on interactive graphics
and visualisation, on the use and development of variables in mathematics and comput-



er science, on modelling and simulating concurrent systems and on software specifica-
tion. A common theme in these papers is the representation of state information by a
family of definitions of variables (a definitive — for definition-based — script, such as is
used to define the cells in a spreadsheet). The principal motivating ideas are sum-
marised in [3].

Our prescription for programming, as represented by [3], resembles that expounded by
Smith in [18] and [19] in many respects. This is especially interesting because it has
been derived independently. Characteristic ideas relevant to [19] include:
» the representations we have used in specifying interaction serve as models of
external entities as observed by the user (cf the spreadsheet)
* definitive scripts represent indivisible propagation of state change and can spec-
ify content relations such as are discussed in [19]
* definitive scripts are the basis for a new theory of reference in which variables
can designate different values in a way that is "formal" in the sense of [19]
* general-purpose programming using definitive representations of computation-
al state is intimately linked with the introduction of agents and agent views.

The first two sections of the paper loosely take the form of a commentary on Smith [19].
A digest of reference [19] is included as an Appendix: this includes three tenets of tra-
ditional formal logic (t1, t2, t3) that — according to Smith's thesis — require reconstruc-
tion in an adequate theoretical framework for modern programming. All subsequent
references to Smith should be understood as citing [19].

The paper is in three sections. §1 discusses the connection between logicism in Al and
formal methods of programming based upon traditional logical foundations. §2 will ex-
amine the methods we have applied to "1-agent programming" that is an essential in-
gredient of interaction and design activity. §3 will discuss the application of our
methods of representation to multi-agent programming.

1. Applying the Lessons of Logic to programming
1.1. Logicism in the theory of programming

Following Smith, we can view a programming system as having two factors. "The first
factor is the representational system's mechanics ... what must be directly realised in a
physical substrate if the system is to do any work." In a programming system, the first
factor is specified by the computational model. Theoretical computer science has fo-
cussed on giving a formal account of the first factor aspect of programs; this is what is
meant by programming language semantics.

The second factor is concerned with what the symbols are about, with their interpreta-
tion in the logician's sense. "EVALUATE X R; - X C;" describes and prescribes an ab-



stract computation that can be specified and performed without knowing that we are
finding the profit from a sale by summing receipts and subtracting costs. The meaning
of the program in its relation to the external world is the semantics of the semantics of
the program in the terminology of computer science.

The science of programming can be seen as sanctioning as formal a particular kind of
computer use that is "programming" in its narrowest sense. To program is to precon-
ceive and prescribe an unambiguous behaviour. This interpretation of programming is
defined with reference to the first factor, as in "prescribing the sequence of actions to
be performed by an electronic computer” (cf [9]). Specifying a program formally en-
tails preconceiving its execution to such an extent that its behaviour can be described
declaratively, that is, using only non-procedural mathematical variables [6].

In formal specification of programs of this nature, the relationship between the program
and the external world — its second-factor aspect — is treated as a separate concern. The
programmer's task is to organise and represent knowledge of this relationship in the ab-
sence of a formal framework. In practice, all programming activity involves the solu-
tion of this knowledge representation task. Capturing the semantics of the semantics of
programs is what makes programming problems hard.

Smith's insights into formal systems are a useful way to understand historical develop-
ments in programming. The idea that a formal account of programming must necessar-
ily be based upon the same foundations as mathematical logic has influenced
programming as logicism has influenced Al. "Logicism" in programming is associated
with the representation of ever more sophisticated forms of preconceived knowledge
about program execution. By way of illustration, ingenious functions can be devised to
specify programs with preconceived patterns of interaction (as in the pure functional
programming language Haskell [13] §7). Developments of this nature can be viewed as
enhancing the computational system the programmer uses. This approach works well
when the program requirement is simple and the underlying computational model is or-
thodox, e.g. when realising a particular input-output relation using a sequential Von
Neumann architecture. It is less useful in complex programming applications, e.g.
when considering real-time and non-functional requirements for the class of embedded,
concurrent and real-time systems described by Pnueli [17] as reactive.

Since the early days of programming, describing the first-factor aspect of a program —
its operational interpretation — has been simplified out of all recognition by declarative
programming techniques directly inspired by the study of programming language se-
mantics. More recently similar techniques have been promoted as a way of simplifying
the knowledge representation task for more complex programming applications. Ac-
cording to Smith's thesis, this is a conceptual error: a specification medium formally
based on traditional logic can not achieve the essential dependence between first and
second factors (cf tenet t2).



1.2. Programming from a post-logicist perspective

Accepting Smith's thesis has important implications for the future of programming. It
focusses attention upon the semantics of semantics of programs and upon the need for
a new theoretical framework within which to give an account of the second factor as-
pects of programming. A reappraisal of prejudices that have been established by exist-
ing programming theory is in order. As Smith observes, present theories do not do
justice to computational practice.

The current theory of semantics of programming languages is biased towards first-fac-
tor concerns. This has been a powerful influence over trends in programming language
design. The complexity of the semantics of procedural programming systems has been
a strong argument against their dominance in the long-term. The semantics of PASCAL
is hard to define because things that resemble valid programs have an ambiguous com-
putational interpretation. In contrast, the semantics of Miranda can be described using
relatively few mathematical concepts by appealing to a logical theory of higher-order
functions for which a generic method of evaluation can be prescribed.

As Smith's analysis makes clear, knowing the semantics of a program and knowing how
to deal with the semantics of the semantics of a program are quite different issues. They
are commonly confused. Tenet t1 indicates that referential transparency is no virtue
where the representation of program content is concerned, but it is frequently cited as
a quality that makes programs more intelligible. Procedural programming is deemed
unsatisfactory because its semantics are too complex, as if PASCAL programmers were
in the habit of writing programs with an obscure operational interpretation.

Smith's first lesson of logic stresses that knowledge of the content relation can not be
reduced to issues of form. When contrasting Miranda and PASCAL it is misleading to
pretend that intelligibility of programs is the arbiter. For a complex program, (e.g. one
that involves a complicated pattern of interaction with the user) inferring what the pro-
gram is about from its form is typically hard in either case. A related misconception is
that a formal notation is to be preferred because automatic reasoning can magically en-
hance its content.

Computational practice holds many clues to the defects of current theory. In view of
tenet t2, it is unsurprising that research problems involving rich interplay between first
and second factors are amongst the most challenging open problems:

* how can we write programs that are easy to interpret?

* how do we write interactive programs that adapt to the user?

* how do we integrate requirements analysis and specification?

* how do we classify computer-aided design, where the user introduces knowl-

edge incrementally?



* how do we program a robot to establish a correspondence between the state of
an internal program and sensory input?

The ways in which mathematically-based programming languages have been applied
in practice are themselves instructive. The interpretative techniques used to execute
logic and functional programs invoke concepts that lie outside the scope of classical
formal foundations. Two examples are particularly relevant to this paper. The search
process of a standard sequential Prolog interpreter interleaves procedural action with
dynamic reconfiguration of dependencies between variables. The development of func-
tional programs involves the editing of scripts of definitions of variables representing
functions. Both these mechanisms are practically useful ways of linking the execution
of a program to the semantics of its semantics.

Some applications have proved difficult to address using declarative methods. These
include applications in which human interpretation plays a significant role, such as pro-
gramming for interactive graphics and user-interfaces, and those that involve commu-
nicating state between agents in a variety of ways, such as reactive systems engineering.
Because of their declarative nature, conventional formal specification methods define
many procedural aspects by default. This is advantageous where the form of the pro-
gram is immaterial and only its gross behaviour matters. But, as tenet t3 suggests, the
challenge of programming for the second factor lies elsewhere — in finding principles
to specify a program in a way that reflects its distinctive context.

The history of object-oriented programming is a most interesting case study in the con-
text of Smith's analysis. The original concept, as first conceived in the language Simula
in 1967, was that of programming as a restricted form of system description (cf [8]
p61). In contrast to other approaches, object-oriented programming in the Simula tra-
dition was motivated by issues intimately connected with the second-factor account of
a program. Its technical contribution was the introduction of objects: entities within the
program whose external content was explicitly identified in the design process.

The original vision of object-oriented programming — that programming is concerned
primarily with the relation between objects in the application domain — in principle
gives much more insight into the nature of programming in its full generality than the
products of the formal programming tradition. In justifying the method, the difficult
problem was to sustain the connection between application and program in a principled
manner. This paper argues that basic abstractions other than the object are necessary for
this purpose.

As it was, the credibility of object-oriented programming as a second factor modelling
tool could only be demonstrated imperfectly. In the 1970s, the work of Parnas and oth-
ers [16] subverted objects from their second-factor role to become vehicles for modu-
larisation and information hiding in first-factor accounts of programming. The concepts



of classes and inheritance were subsequently added. The end-result was a new idiom of
object-oriented programming, as in Smalltalk: a medium with an ambiguous orienta-
tion towards both first and second-factors without any clearly defined principle for their
association.

The lack of principle in object-oriented programming, as it developed in the 1980s,
could not disguise its expressive power. The commercial success of object-oriented de-
sign has vindicated the original concept of Simula that developing programs so that
their structure reflects second-factor concerns is a powerful principle. But where ana-
logues of naturally occurring mechanisms for interaction in concurrent systems might
have been expected to evolve in the philosophical framework of Simula, concurrency
in Smalltalk is confounded by the arbitrary nature of the first-factor communication
mechanisms. The task of patching this problem for parallel object-oriented languages
has fallen to formal semanticists [1] — experts in remedying first-factor defects in pro-
gramming language design. According to Smith, the first-factor may be recovered in
this process, but the marriage of first and second-factor concerns will not survive.

2. Reconstructing the foundations of programming: a proposal

The history of object-oriented programming has an important moral. To deal effective-
ly with the semantics of semantics of programs, it is not enough to build powerful pro-
gramming systems. Second-factor concepts can not be introduced in an ad hoc way. If
a programming paradigm is not to degenerate into an obscure mix of first and second-
factor modelling techniques, it must be based on principles that are sufficiently clear
and prescriptive.

Smith's tenets complement the picture. Principled methods are needed, but these can
not be formal in the conventional sense. The development of programs must be more
rigorously constrained by the semantics of their semantics: behavioural equivalence is
not discriminating enough. This analysis suggests general guidelines to be observed in
the programming models we propose:
* aprogram must be conceived as an ingredient in a larger context. Our assump-
tions about the context must be represented in the program model.
* there has to be a criterion for determining what is the right program model for
a particular context.
* it will not be possible to describe the semantics of semantics of our programs
declaratively. An adequate description must involve state.

* intuitions other than those to which conventional foundations appeal must be in-
voked.

These guidelines are a working hypothesis. The idea that a program may be prescribed
by its context should not be seen as violating the first lesson of logic: the irreducibility
of content to form. Our program model will be part mechanism, part description of per-



ceived relation to context. Developing a program will correspond to building a model
of its context that is faithful to observation subject to abstraction.

2.1. The second factor in user-computer interaction: definitive scripts

Our approach to programming reflects the guidelines set out above. The simple exam-
ples below do not illustrate the scope and power of our programming methods — an is-
sue addressed elsewhere [3,4,5]. The aim is to outline the fundamental ideas and
explain how it may be possible to develop them in a principled manner. The research
we shall review relates programming activity in its broad sense — as it applies for in-
stance to reactive systems development — to "modelling the relation between each pro-
grammable component and its environment". This modelling activity is state-based.: it
describes the state of the total system of which the programs form a part. It is also agent-
oriented: it describes the roles of the agents in the system, i.e. the components that can
potentially effect a change of system state. In his discussion of the second factor, Smith
asserts that "agents are what matter for semantical connection". This section considers
"1-agent modelling" within our paradigm, as defined below.

In the theory of programming, the term "state", like "semantics", is used in its first-fac-
tor meaning to refer to the state of an executing program. In contrast, the states we shall
consider are external states associated with second-factor concerns. Such a concept of
state can not be dissociated from an agent concept: a state is informally defined with
reference to simultaneous observations made by an agent. In the sequel, the term "state"
will refer to agent-oriented state. State will be represented by variables whose values
are to be interpreted as results of observations.

User-computer interaction is a most appropriate setting for a preliminary investigation
of state. The principles reviewed below stem from an attempt to reconcile declarative
methods of programming with the representation of states such as arise in interactive
design. This problem recalls Backus' concern about the lack of history-sensitivity in
functional programming [2]; from the perspective of this paper, it has no satisfactory
solution.

State-based activities can be classified in a hierarchy according to the number of agents
that are privileged to change the system state. In a 0-agent system, the variables define
observations that are not subject to change. Conventional formal systems fall into this
category. Examples of 0-agent systems include: a pure functional programming system
— where evaluating a function is observation without side-effect, and a static picture.
The next simplest are 1-agent systems, where one agent is responsible for all the state-
changing activity. Examples include: interactive design, conventional single-step de-
bugging, use of a spreadsheet or single-user data-base interaction. More generally, in-
teraction with a deterministic system can be regarded in this way. Multi-agent systems
are those in which concurrent change by many agents is possible. Needless to say, the



classification of a system is itself dependent upon the perspective of the human inter-
preter, but this generalisation is beyond the scope of our present concern.

The spreadsheet illustrates the essential principles we abstract and generalise. Interac-
tion with a spreadsheet establishes states that persist so long as the user is passive: in
this sense, the user is the only state-changing agent. The state of the spreadsheet here
refers to the values that are displayed to the user to interpret after updating; not to the
first-factor computational states associated with the mechanisms of the spreadsheet,
such as storing and updating values. For instance, we may imagine that the spreadsheet
records the explicit values of variables R — representing a resistance and V — represent-
ing a voltage, together with a variable I = V/R that denotes a current. We may suppose
also that alongside we have a simple circuit comprising a battery and a variable resistor
in series.

The spreadsheet provides the user with a state-based model. It should be noted that the
variables R, V and I are not logical variables; they can designate more than one value.
This concept of having an identity yet being capable of attaining different values ac-
cording to context is a distinctive ingredient of variables outside the scope of traditional
formal logic (cf [20] and [6]). The variables R, V and I have a special status because
the user agent can interpret them as physical variables observable in the electrical cir-
cuit.

Consider simple experiments that can be performed on the electrical circuit. We can
measure the resistance r of the resistor, the current i passing through it, the voltage v
supplied by the battery. The experimentor will naturally associate different values with
the single variable r according to how the resistor is adjusted. In some "mysterious sec-
ond-factor" sense, it is the same resistance that is being measured in different contexts,
though its value may change.

Both the spreadsheet and the circuit can be used to generate triples of values (R,V,I)
and (r,v,i). There is an intimate relationship between the variables in the spreadsheet
and the corresponding attributes of the circuit. This relationship is defined by the cor-
respondence between observations of the spreadsheet and observations of the circuit.
To make this precise, we should constrain the user to interact with the spreadsheet in a
manner that is consistent with experimentation with the circuit. Changing R is accept-
able, for instance, but redefining I as V.R is "meaningless". It is this concept of meaning
we propose to use in defining the semantics of semantics of programs.

The nature of "formality" is an issue here. Smith's thesis indicates that the conventional
notion of formality can not encompass the semantic relation we hope to define. There
are clues to what Smith regards as an appropriate notion of formality (as referenced in
cryptic footnotes to [18] and [19]): "formality, in the end, reduces to first-factor notions
of physical realisibility". This is entirely consistent with our proposal: that the circuit



be seen as a model certifying a "formal" status for the non-logical variables in the
spreadsheet. In understanding this concept of a model, it is important to distinguish be-
tween substituting values for a set of variables to satisfy some logical relations (as in
traditional model theory) and identifying attributes that have both identity and value
and are observed to change values subject to specified functional relationships.

The family of definitions that underlies a spreadsheet is a simple example of a definitive
script. More general scripts are specified using a definitive notation based upon a richer
algebra of values (scalars in the spreadsheet) and operators (arithmetic in the spread-
sheet) for the defining formulae. Examples of values for appropriate underlying alge-
bras include lines, points, and sets of points and lines (as in the definitive notation for
line-drawing DoNaLD [5]), or windows, locations, display attributes and character
strings (as in the definitive notation for screen layout SCOUT [5]).

There is an important distinction between the data types used in underlying algebras
and the traditional data types of procedural programming. For meaningful user-com-
puter interaction, the values that variables in the script designate have to relate to an ex-
ternal state-based model that can be observed or conceived by the user. This is quite
unlike conventional programming, where the variables typically designate internal val-
ues beyond the user's knowledge or concern, that serve to describe the first-factor as-
pects of the computation.

The choice of underlying algebra can be seen as defining the boundary between first
and second factor concerns. In specifying a state-change, the user assumes that — at
some level of abstraction — primitive state changing activities will be performed in a
way that can not be more explicitly specified. The evaluation of operators in the under-
lying algebra that is involved in maintaining definitions is computation of this nature.
The script itself is a bridge between this (first-factor) internal computation and the us-
er's (second-factor) external interpretation.

The influence of choosing different underlying algebras can be viewed in two ways. It
affects what computation can be visible to the user, and what interpretation must be left
to the user's imagination. For instance, when we specify a spreadsheet without its tab-
ular interface using a script of scalar definitions, we may take it for granted that the user
knows the current values of scalars, without specifying how this knowledge is con-
veyed through changes in the state of the screen. If instead we adopt a definitive nota-
tion such as SCOUT, we can refine the specification of the interface, to express the
precise relationship between internal scalar values and the external screen layout.

I-agent modelling with definitive scripts is as an expressive paradigm for specifying
user-computer interaction that has been applied to interactive graphics, user-interface
specification and visualisation [5]. It has interesting abstract characteristics relating to
second-factor concerns mentioned in [19]. These include:



* amore coherent framework for reference and representation
The relation between language and model is much tighter than in traditional for-
mal logic —cf tenet t3. Definitive variables provide references that are more use-
ful than declarative variables — which only designate a single value, and are
more persistent than conventional procedural variables.

* powerful means of modelling non-computable content relations
The computation that maintains relationships between spreadsheet values is in-
visible in our programming paradigm. Conceptually, these relationships are
"not computed" and propagate instantaneously as indivisible updates of values.
Non-computable relationships in the application can be modelled if the current
value of a defined variable is always calculated from its defining formulae.

e appropriate methods of representing context-dependence
Each new definition or redefinition is interpreted with reference to the existing
script. Introducing the additional definitions:

light_white = (I > 0.5); light_red = (0.5 >1>0.2)

to the spreadsheet enhances the semantics of the variables (R,I,V) to reflect a
new interpretation of the circuit. In this way, "dynamic and contextual factors
contribute to the content" — cf tenet t1.

2.2. The second factor in multi-agent systems: agents and privileges

I-agent modelling is a powerful technique for describing the relation between an agent
and its environment. As has been illustrated in §2, it represents second-factor concerns
by establishing a correspondence between two independent state-based models: one de-
rived from observations of a physical system (e.g. the electrical circuit), the other de-
fined by a definitive script with a protocol for redefinition.

The modelling process can be interpreted as describing certain physical attributes of an
object in a way that reflects the result of experiment and observation. In some cases, it
can also be seen as expressing how an object can be used as a computational device. As
a simple example, consider a script whose definitions represent the relations between
the inputs and outputs of gates in a boolean adder. When the user redefines the values
at the input gates in the script, the values of the output gates are updated appropriately,
so that the script serves as a program to add two numbers.

A definitive model of an adder has more content than a conventional program. By cor-
relating the values of variables in the script with observations of the gates of the adder,
the script can be interpreted as representing the physical computation performed by the
circuit. The script is not merely a program to add two numbers — relative to some con-
vention for observation, it is the appropriate model of a particular physical computa-
tion.

For the boolean adder, the correspondence between its physical characteristics and its



computational interpretation is relatively easy to establish. When the values of the input
gates to the adder are changed, there is a point in time after which it is appropriate to
observe the values of the remaining gates — when the electrical effects have propagated
fully. Identifying the appropriate observations of the adder can also be viewed as mak-
ing an assertion about the context in which the adder is used in computation: it is inap-
propriate to observe the values of gates whilst the electrical state is unstable. All the
electrical activity that accompanies a change in the value of an input gate constitutes
one indivisible machine operation for the adder as a computational device.

All computation is defined by interpreting observations of physical systems. In conven-
tional user-computer programming, the relation between first-factor activity — the exe-
cution of the program — and interpretable observation of its behaviour is described in
indirect and implicit ways. In the programmer's view, the form of the indivisible ma-
chine operations is rigidly prespecified by the programming language. The programmer
conceives indivisible operations at a higher-level of abstraction but can convey this to
the user only by restricting the mode of interaction to hide transient inconsistent states.
The visible component of the system state is typically described obliquely. For in-
stance, an interactive PASCAL program specifies the current state of the screen as a
side-effect of a sequence of write statements. The end-product is a program that must
be accompanied, whether explicitly or implicitly, by complex conventions about sec-
ond-factor interpretation.

Such conventions are inadequate for more complex programming applications. In a re-
active system, the computational devices are themselves to be designed and pro-
grammed; the interaction between agents demands more explicit methods of expressing
indivisibility; the nature of the states and observations to be represented is quite differ-
ent; the modes of communication between agents are more subtle. Principled methods
of relating first-factor and second-factor concerns are needed. Our proposal takes the
form of a theory of "programs as system descriptions", as in Simula, in which scripts
and agents are used to model observations. The definitive model of a boolean adder is
a simple example illustrating the principles we hope to generalise.

Smith's first lesson in logic states that content can not be reduced to form; declarative
abstractions can not adequately represent a program in relation to its context. Our long-
term goal is to show that a principled approach to program content can be based on a
suitable theory of observation that presumes procedural intuitions as primitive. In this
view, programming is concerned with constructing models of physical systems that de-
scribe the context for programmable components and prescribe their behaviour. The
primary task of the programmer is to determine what observations of the system need
to be analysed to this end; in our modelling framework, representing these observations
will entail prescribing the required programs at some level of abstraction. The model-
ling framework itself is still under development: it will be based upon specifying agent
actions using definitive representations of state. In the putative framework, it should be



possible to model observations of an appropriate physical system directly and faithfully
in a state-based manner in such a way that the correspondence between the model and
observations of the physical system can be verified systematically by experiment.

The primacy of observation is crucial here. Conventional state-based programming sys-
tems provide a toolkit from which rich first-factor behaviours can be constructed as co-
incidental carriers for a second-factor interpretation. The programmer has discretion
over the conventions that bind observation and execution. In contrast, in our approach,
the programmer is only free to decide what observations of programmable components
and their environment are required for specification: the programs are determined in so
far as these observations prescribe. Program development and refinement is implicit in
the process of modifying and enhancing the set of observations.

Both definitive scripts and agents are abstractions rooted in observation of systems.
Scripts specify perceived functional relationships between values that persist in transi-
tions from state to state. In the view of an agent, a state is defined by a set of simul-
tanous observations, and perceived transitions typically involve instantaneous changes
to many observations. Identifying what we deem to be appropriate transitions in an
agent view is part of the process of analysing the context within which the agent acts.
In modelling the opening of a door, we may think of changing the boolean status of
variable "open", or of changing the observed position of points on the door relative to
the hinge; at another level of abstraction, we may prefer to think not of an instantaneous
action upon the entire door, but of interactions between its constituent molecules that
propagate across its width. The role of script in this modelling process is to express
what, for the purposes of the computational model, most aptly represents the way in
which changes to external values impinge upon the agent. In effect, scripts are used to
define primitive machine operations in an agent view.

The role of the agent concept in modelling observation is complementary to that of the
script. Scripts specify perceived functional relationships between changing values that
describe the total effect of an agent action. There are typically other changes in values
that are beyond the control of an agent. To illustrate this, consider the electrical circuit
introduced in §2. Suppose that a second variable resistor of resistance s is placed in se-
ries with resistor r and that the value of s is under the control of an agent (A) indepen-
dent of our original experimentor (B). In this case, the kind of model that B can build
crucially depends upon how the value of s is manipulated by A, and whether B is aware
of its value. In the original circuit, as B changes the value of r, so i changes as in one
indivisible action subject to the relation i = v/r. In the modified circuit, B may — for in-
stance — be able to observe r and s, recognise that i = v/(r+s), but have no control over
the value of s. The observation that changing r has no predictable effect upon s, yet s is
subject to change, discloses the presence of another agent.

Faithful modelling of the interaction between state-changing agents in a system is the



fundamental principle behind our approach to programming [3,4]. Faithfulness entails
modelling the effect of agent action as we have modelled user-computer interaction: by
identifying the functional dependencies that bind together those variables whose values
change indivisibly. The nature of the model is also important. A comprehensive ab-
stract description of the behaviour of the system (e.g. in terms of CSP traces [12]) does
not serve the intended purpose of binding first and second-factor concerns. The model
we require must be constructed in an agent-oriented manner, so that the effect of one
agent upon the state of another is specified with reference to agent capabilities and per-
ceptions. Such modelling has both descriptive and prescriptive value — it subsumes pro-
gramming.

Multi-agent programming using definitive scripts for state representation involves
specifying the characteristics of the computational agents in a system. The LSD nota-
tion is introduced for this purpose. LSD is used to represent the relations between agent
observations and actions. An LSD specification declares what variables are bound to
agents, what values agents can perceive, what variables they are conditionally privi-
leged to redefine, and what functional relationships they expect to observe [3,4]. In gen-
eral, an LSD specification represents the potential for agent action without
consideration of synchronisation and communication constraints. Appropriate simula-
tions can be derived subject to adding such constraints to the model [3,4].

The importance of constructing a conceptual model for a reactive system is widely ac-
knowledged. Harel [11] vividly illustrates how such a model can be applied in the anal-
ysis of second-factor concerns. Though he stresses that a conceptual model should have
a formal mathematical basis from which to derive executable system specifications, his
paper is primarily concerned with the semantics of the semantics of such models. It is
in respect of the very issues that Harel addresses, such as visualisation, animation, test-
ing, incremental development, guidelines for refinement, that the themes and proposals
in this paper are most relevant.

The general principles of concurrent systems modelling and reactive systems prototyp-
ing described in this section have been applied in numerous practical examples. Case
studies so far prototyped include animations of a vehicle cruise control system and of
Harel's digital watch as described by the statechart in [11]. Our experience of agent-ori-
ented modelling with definitive representations of state has been encouraging, but
leaves many issues concerning observation and modelling unexplored. A theory of ob-
servation such as we have proposed can only be developed and evaluated in the long-
term; it can not be justified by citing a few examples. There is another motivation for
including such a bold unsubstantiated proposal in this paper: in view of Smith's thesis,
it is essential to propose a theory of comparable scope in conjunction with any new pro-
gramming method — there is otherwise no principled basis for its future development.

Informal confirmation of the quality of our approach comes from many sources. Our



experience shows that programs can be developed in a disciplined way by modelling
that is faithful to observation. Principles of program refinement have been demonstrat-
ed: behaviour forming part of the context for a computational agent, initially represent-
ed abstractly by a script of definitions, is subsequently replaced by systems of actions
associated with other agents. Program fragments can be combined simply and are con-
text-sensitive in ways that recall natural language rather than sequential programs.

Connections with other programming paradigms also suggest directions for future de-
velopment. Scripts are used as a program development tool in functional programming.
Powerful programming mechanisms are based upon compiling constraints into func-
tional dependencies, as in a traditional Prolog interpreter [10]. The integration of rule-
based and definitive mechanisms in LSD specifications is well-suited to representing
"belief revision" and "entailment" in a unified manner.

Conclusions

This paper amplifies Smith's critique of traditional formal logic as a basis for program-
ming, and proposes ideas that accord well with his views concerning an appropriate the-
oretical framework that does justice to practice. Definitive scripts help to resolve a
central difficulty: representing the way in which content propagates "at the speed of
logic". They also improve upon object-oriented abstractions in this respect, since con-
tent relations transcend object boundaries in extraordinary ways.

The reconstruction of formal logic is a timely task with ramifications beyond the logi-
cism debate. It is a fundamental problem bearing directly on the future development of
programming paradigms (cf [2]), data representation techniques (cf [14]) and reactive
systems engineering (cf [11]). Resolving the problems identified by Smith is difficult,
but will be essential in meeting the challenges posed by new applications and compu-
tational mechanisms.

References

1. P America OOP: a theoretician’s introduction EATCS Bull 29, 1986, 69-84

2.J Backus Can programming be liberated from the Von Neumann style? CACM 21(8),
pp.613-641, 1978

3. W M Beynon, S. B. Russ, M D Slade, Y P Yung Programming as modelling: new
concepts & techniques Proc ISLIP'90, Queen's Univ. Kingston, 1990

4. W M Beynon, M T Norris, R A Orr, M D Slade Definitive specification of concurrent
systems Proc UKIT'90, IEE Conf Publications 316, 1990, 52-57

5. W M Beynon, Y P Yung Definitive Interfaces as a Visualisation Mechanism Proc
GI'90, Canadian Inf Proc Soc, 1990, 285-292

6. W M Beynon, S B Russ The development and use of variables in mathematics and
computer science IMA Conf Series 30, OUP, 1991

7. W M Beynon, S B Russ The Interpretation of States: a New Foundation for Compu-



tation? Computer Science RR#207, Warwick University 1992

8. G Birtwistle, O-J Dahl, B Myrhaug, K Nygaard Simula Begin 2nd ed., Studentliter-
atur, Lund, Sweden, 1979

9. Chambers 20th Century Dictionary, 1972 edition

10. W F Clocksin, C S Mellish Programming in Prolog Springer-Verlag 1981

11. D Harel Biting the Silver Bullet: Towards a Brighter Future for System Develop-
ment IEEE Computer (to appear Jan 1992)

12. C A R Hoare Communicating Sequential Processes Prentice-Hall Int. 1984

13. P Hudak et al Haskell: A Non-strict, Purely Functional Language Report Version
1.1, Aug 1991

14. W Kent Data and Reality North-Holland, 1978

15. D McDermott A critique of pure reason Comput Intell 3 (1987) 151-160

16. D Parnas On the Criteria to be used in Decomposing Systems CACM 15 (1972),
1053-1058

17. A Pnueli Applications of Temporal Logic to the Specification and Verification of
Reactive Systems LNCS 224, Springer-Verlag 1986, 510-584

18. B. C. Smith The owl and the electric encyclopedia A 147 (1991) 251-288

19. B. C. Smith Two lessons of logic Comput Intell 3 (1987) 214-218

20. W. A. Woods Don't blame the tool ibid, 228-237

Appendix: A digest of Cantwell Smith's Lessons of Logic

This section reviews the fundamental concepts and ideas introduced in Smith’s paper
on “lessons of logic” [20]. It is largely composed of edited extracts from [20].

We can view a symbol system as having two factors. The first factor is the representa-
tional system's mechanics: what must be directly realised in a physical substrate if the
system is to do any work. The second factor is concerned with what the symbols are
about, with their interpretation in the logician's sense. In mathematical logic, proof the-
ory gives an account of the first factor, and model theory an account of the second.

The first factor account of a symbol system concerns the form of the symbols, the ways
in which they can be composed and decomposed and the operations defined upon them.
Every symbol system has a first factor aspect. What really matters about a symbol sys-
tem is the second factor aspect: the content of the symbols. The first lesson of logic is
that content can not be reduced to form. There is more to a symbol system than can be
gleaned from its rules and representations.

Second-factor properties of a symbol system are more mysterious than first-factor prop-
erties. The content of a symbol isn't in general an intrinsic property of it, but arises as a
relation between the system and some other domain. To appreciate the second factor
you have to go outside the system, to see how it is connected to, and used in, its envi-
ronment. Content relations aren't computed: the content relation just is, and doesn't



need physical realisibility. It seems that agents are what matter for semantical connec-
tion.

We don't know how reference and content work, but we know that they do work, and
that there is more to it than proof theory. The job of semantics is to explain, as system-
atically and rigorously as possible, the interplay between first factor properties and the
more elusive second-factor properties of meaning and content.

The second lesson of logic is that first and second factors must be related, despite being
conceptually distinct. In mathematical logic, this relationship is established by com-
pleteness proofs and by such notions as soundness and validity. A single unified theory
must take account of both factors.

Smith complements these lessons by claiming that in human thought processes "first
and second factors are constantly and intimately related". He then cites three tenets un-
derlying classical logic that are incompatible with computational practice [that is, with]
what are programs actually do, not what we say about them:
tl. use can be ignored. A sentence must represent its whole content explicitly.
t2. locally first and second factors can be treated independently, even though they
must ultimately be globally related. From step to step, in a formal proof, the
first-factor inference procedure can not depend on or affect second-factor se-
mantic interpretation.
t3. language and modelling are categorically distinct types of representation. The
linguistic reference relation is non-transitive, but modelling is transitive and
"free" in the sense that you are allowed to use a model of X in place of X itself.

In contrast to 1: in natural language, context may implicitly contribute to the content.
In contrast to 2: even war-horse programming languages are best understood in terms
of locally intertwined factors. With reference to 3: promiscuous modelling is unhelpful
in answering fine-grained questions about control, intensional identity, and the use of
finite resources. Moreover, current computational systems involve representational
structures of all kinds, ranging continuously from linguistic expressions to virtually
iconic isomorphisms like bit maps and simulation structures.



Being functionally dependent and being synchronised in time are independent con-
cepts: consider paper, stone, scissors. Where does causal connection fit in?



