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Abstract

The complexity of the interactions between programmable components and human agents in moderr
computing applications motivates new approaches to program comprehension. Understanding the role o
programs within a reactive system, for instance, involves not only input-output transformations, but alsc
communication and stimulus-response issues. This paper examines the prospects for constructing nove
computer-based interactive situation models to assist program comprehension. Such a model provides ar
environment within which the human interpreter can explore the data relationships and patterns o
behaviour generated by a computer program with particular reference to its external real-world semantics
The proposed method of construction exploits principles based upon observation, agency and dependenc)
("Empirical Modelling") that have been developed at the University of Warwick. Connections betweer
these principles and previous work on program comprehension are discussed. Some experimental studie:
in applying interactive situation models are reviewed, and conclusions about their potential future role ir
program comprehension and generation are drawn.

1. Introduction

A central problem in program comprehension is that of inferring dynamic behaviour from static texts. The
texts to be consulted include the program code and possibly other sources such as requirements
specification documents. The behaviour to be inferred concerns both the execution of the program ir
machine-oriented terms (how data is processed at some appropriate level of abstraction), and the
interpretation of the program execution in real-world terms (what input-output and stimulus-response
patterns are generated by the executing program, and what function these serve in the real-world
application). For many practical purposes, it is not enough simply to be able to give a plausible behavioural
account of a program; in maintenance, or adaptation to new requirements, it is essential to be able tc
identify in precise detail how the behaviour is related to program structure.

The task of the human interpreter of a program can usefully be regarded as dual to programming. R Brooks
[12], for instance, views program comprehension as the reconstruction of the domain knowledge used by
the initial developer. Good programming practice involves transforming a conception of the system intc
programs for its components; comprehension involves converting programs for components into &
conception of the system. The quality of the program development process is significant in this context; the
role of effective development techniques is to relate program construction to conception of the system. The
fact that the program performs in a certain way is not the most important issue in program comprehension
(in many contexts, it may be possible to observe the program execution directly), but the way this
performance has been contrived. Viewed in this way, program comprehension is intimately related ta
fundamental issues in program development, such as:

+ how does the programmer conceive the system?

+ how can this conception be best represented?

+ how does this conception inform the program construction?

As modern computing applications continue to become more sophisticated, the interactions between
computer, human agents, interfacing devices and other electronic devices such as sensors and actuators are
ever more significant. In archetypal sequential interactions between user and computer, the essence of
program development and comprehension may lie in identifying and correlating functional relationships at
many levels of detail, but such abstractions cannot do justice to the mental representations that are required
to address state-of-the-art computer applications. The need for new concepts and address modern software




development has been discussed at length by Fred Brooks [11] and Harel [16]. Reactive systems,
characterised (cf. Pnueli [20]) by embedded components, and concurrent real-time interaction, pose
particular challenges. In such systems, it is not possible to abstract the role of a program from its context.
Even very simple functional components can generate complex behaviour through concurrent interaction.

This paper examines the potential for applying Empirical Modelling (EM) principles, techniques and tools,
as developed at the University of Warwick, to program comprehension. Such application is suggested by
the fact that EM has already been used to construct models that give particular support to the early stages of
reactive system development [3,8,10], and that are explanatory, in that they express a causal account of a
concurrent system in terms of agents, observables and dependencies [6]. Background information on the
principles and tools applied, and the models constructed, can be found at the Empirical Modelling website:
http://www.dcs.warwick.ac.uk/pub/rcsearch/modelling.

The remainder of the paper is organised in two main sections. Section 2 is a general discussion of the
principles behind the application of EM to constructing interactive situation models. Section 3 outlines two
illustrative examples. Further issues and future research directions are examined in the concluding section.

2. Empirical Modelling Principles and Program Comprehension

2.1. Interactive Situation Models

Previous experience has demonstrated that EM can be used to construct complex and open-ended models of
concurrent systems. The character of these models is unusual. Rather than capturing system behaviour
within a closed world, in the manner of a logical or mathematical model, they are particularly well-suited to
representing specific real-world states. In effect, the computer serves as a cognitive artefact for the systems
analyst, supplying metaphorical representations for the system state in which conceivable state changes are
constrained only by the presumptions the analyst makes about plausible agency and dependency in the

world.

Pennington introduced the concept of a situation model for program comprehension [19] by analogy with
Kintsch and van Dijk's theory of text comprehension [17]. In [17], text comprehension is viewed as
developing a model of the situation decribed in a given text from an associated textbase, comprising "a
surface memory of the text, a microstructure of interrelations between text propositions, and a
macrostructure that organises the text representation”. In Pennington's model of program comprehension,
the procedural relationships implicit in the program structure play the role of the textbase. The functional
relationships between real-world objects that are reflected in the program then supply a situation model
analogous to the model of the situation which the text describes.

This paper proposes that EM principles can be used to construct a model that serves the same role as
Pennington's situation model, but has a different character. A situation is represented to the modeller as a
computer-generated environment for exploration. The current state of the computer model represents a
particular state of the system. There are many possible scenarios for transition to other states. The modeller
can explore these scenarios interactively through directly redefining observables and dependencies. The
modeller can also choose to introduce autonomous agents into the environment embodied in the model in
order to test hypothesis about the mechanisms that are operative.

There are several reasons to suppose that there are advantages in an interactive situation model:

The role of interactive tools for system development. In complex interactions within a reactive system,
communication of state is very significant (e.g. Deutsch's concern for stimulus-response patterns between
agents [14]). Harel [16] contends that visual formalisms are needed to apprehend the semantics of comple.
systems. Interaction is also an important feature of practical tools for debugging.




The importance of empirical elements in an engineering context: Reliable knowledge about the
interactions between agents in a system is an essential prerequisite to programming its components. An
engineer wishing to explain a product with a view to maintenance or modification typically has to make use
of artefacts to share the knowledge that informed the product development and the experimental activity
that led to particular design decisions and structural features.

The pragmatic nature of program comprehension: Research by Good and Brna [15] and others
indicates that program comprehension can have many different complementary interpretations. An
interactive situation model that can be subjective and is open to exploration, extension and revision is better
suited as a program comprehension model than a document such as a program summary.

2.2. EM and the Programmer's Conception of a System

Constructing models to represent the interactions between the agents in a reactive system has been a central
focus for research in the EM project [3,8,10]. In this context, an agent refers broadly to any component of
the system that can be responsible for changes of state: this may be (for example) a computer, a sensory
device, an actuator, a clock, a switch or a human agent. EM is most directly relevant to understanding the
interactions in a complex system prior to explicitly constructing or programming these components. The
essential idea behind EM is to construct a computer representation in which system state is represented
metaphorically (typically through a visual representation), and - by default - the simulation of system
behaviour is automated only to a limited degree. In effect, the current state of the computer model, as
apprehended by the modeller, represents a particular state of the system (as far as this has yet been
conceived or observed), and the mode of interaction with the model resembles the interaction between an
experimenter and her environment. Autonomous changes of state within the computer model occur only
under the discretionary control of the modeller. (A useful parallel may be drawn with interaction between a
user and a spreadsheet, where semantically interesting changes of state typically occur only as a result of
user actions, and the current state of the spreadsheet supplies a context for open-ended what-if?

experiments.)

EM supplies a framework for concurrent systems conception in which the basic abstractions are
observables, dependencies between observables, and agents that act through changing observables and
dependencies. It makes use of a special-purpose interpreter in which observables are represented by
variables, dependencies by scripts of definitions ("definitive scripts") resembling the definitions of cells
behind a spreadsheet, and agent actions can be represented via triggered procedures. EM constructs a
model that reflects the modeller's perspective on agency, synchronisation and causality within the system,
subject to pragmatic judgements based on the intended application of the model. The identification of
observables, dependencies and agents is arguably a process that underlies all system construction, whatever
the nature of the programming activity and paradigm is used, even if this process is not explicitly addressed.
The main theme of this paper is that program comprehension is assisted by trying to interpret programs with
reference to these fundamental abstractions.

Research into applying EM principles to software development for reactive systems is still in its preliminary
stages. EM techniques and tools are not yet sufficiently mature to address large programs, but there is much
relevant work on EM to supply evidence of potential for entire system development. Several examples of
model construction using EM principles have been described in previous papers [3,4,10]. These include a
vehicle cruise controller, a billiards game simulation, a digital watch and statechart simulation, and a train
simulation. Some research has been done into semi-automatic translation from such models to conventional
programs and simulations. This includes the LSD Engine, developed by Adzhiev and Sarkisov at the
Moscow Engineering Physics Institute, that uses EM principles to generate C++ programs semi-
automatically.

In the context of this paper, the significant issue is how EM shapes the conception of a reactive system and




thereby provides a framework within which to address program comprehension. It would be premature to
study program comprehension in realistic reactive systems at this stage, but there are demonstrable benefits
in adopting a systems view even in simpler contexts. By way of illustration, the examples introduced below
indicate how EM techniques can be used to give insight into programs for sequential user-computer
interaction. For instance, mouse actions by the user can be usefully interpreted as invocations of agents in a
manner that gives greater prominence to the user's role, and to issues relating to non-functional
requirements.

2.3. Program Comprehension from an EM Perspective

Several scenarios can apply to program comprehension. It is typically reasonable to suppose that the human
interpreter has some informal knowledge of the intended context and mode of use of a program. It may also
be possible to execute the program, and apply debugging tools to analyse its execution. There are a variety
of ways in which EM techniques can be applied under these conditions.

The description that follows presumes that the comprehension task is to understand how the components of
a reactive system have been programmed to operate concurrently. This entails conventional program
comprehension for the software components in the system. It must also take account of other more
unfamiliar forms of agent programming, such as the recommended protocols for the human agents in the
system, and the thresholds set for sensor activation etc. The illustrative examples to be introduced below
make it plausible that EM can be applied in this context, and indicate some of the potential benefits that can
be gained even for conventional program comprehension.

The aim of the program comprehension task is to construct an interactive situation model that (through the
appropriate use of metaphors) reflects the functional relationships and stimulus-response characteristics of
the components of the system. In constructing this model, the interpreter can draw upon domain knowledge
to elaborate the model top-down (somewhat in the spirit of Brooks' comprehension model [12]), and upon
inspection of program code to refine the model bottom-up (in the spirit of Pennington's comprehension
model [19]). The use of EM is also well-oriented for Brooks' theory that hypotheses are the sole drivers of
cognition; the concept that the evolving model embodies a working hypothesis about how the system
functions is entirely consistent with our previous practice in modelling concurrent systems [8]. There are
also precedents for integrating information drawn from top-down and bottom-up developments within a
single model [4,10].

The relevant domain knowledge in this context takes the form of understanding of causal relationships and

agency within the reactive system. This addressed such issues as: what are the agents in the system to
whom state-changes are attributed? to what stimuli do these agents respond? what observables represent
their 'perception’ of system state? what actions can they perform to change observables? how are relevant
observables within the system synchronised in system behaviour? what dependencies between observables
pertain when actions are performed? Common-sense knowledge may be sufficient to account in general
terms for the interaction in a reactive system, but more specialist insight becomes essential in points of
detail. This issue is highlighted by the problems that a 19th century spectator would have in accounting for
the responses of a radio-controlled vehicle.

The interactive situation model, as developed from a top-down approach, is necessarily framed in terms of
real-world observables, agents and dependencies. The domain knowledge it captures includes information
about what agents are present in the system, what observables they are presumed to respond to, how their
action upon other agents is mediated via observables, and what dependencies and invariant relationships
pertain amongst observables. To a limited degree, this model can also support experiments intended to

identify the ways in which changes to observables are synchronised in communication. More precise.
knowledge of the mechanisms that are used by agents to perform their roles is needed for a complete

understanding of how the system components have been programmed.
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A top-down development leads to an interactive situation model that captures the developer's primary
concept of a reactive system. Such a model will be common to many different developers, since it 1s
concerned only with observables, agency and dependency without reference to the mechanisms for
implementation. It provides a target for an analogue of Pennington's bottom-up program comprehension
process, where the program text is consulted to gain insight into a program at progressively higher levels of
abstraction.

Pennington classifies the products of inspection of program code in two ways, according to information
type, and level of detail [19]. Her classification includes the following information types:

» control flow - information about the sequence of events occurring in the program;

« data flow - information regarding transformations of objects occurring during the program,

including data dependencies and data structure information;

« state - values of variables, and how these are synchronised in change;

« operation - how particular lines of code can be interpreted as acting on state;

« function - high-level information about the overall goal of the program,
each represented at three levels of detail:

+ detailed (referring to program operations and variables);

+ program (referring to a program's procedural blocks);

+ domain (referring to real-world objects).

From the perspective afforded by top-down development of the ISM, program comprehension is focused on
identifying how a program defines the computer's role as an agent. In practical terms, when carrying out a
bottom-up analysis of code, this involves:

« reconstructing the states in which the computer characteristically interacts with other agents;

« identifying the stimuli to which the computer responds and which it generates;

« assembling primitive actions into semantically meaningful transitions;

« identifying which (families of) variables represent observables;

« identifying the semantically significant dependencies between observables.
The essence of this process is cross-referencing between different levels of detail so as to reconstruct
domain knowledge that is specifically associated with EM.

The particular computational abstraction that is most relevant in this connection is definition of the kind that
has been introduced in this paper. The use of scripts of definitions to represent state and of new definitions
or redefinitions (possibly executed simultaneously) to represent transitions characterises the form of
computer programming most closely related to EM, viz. definitive (definition-based) programming [2]. In
definitive programming, the computation that is associated with maintaining dependency within a script is
uninterpreted; only new definitions and redefinitions are associated with externally significant actions on
the part of an agent. Dependency maintenance represents activity that is both invisible to other agents and
indivisible, in the sense that it cannot be interrupted through the intervention of an external action. In
analysing a conventional program, the challenge is to use information about control flow, data flow, state
and operation to distinguish between code that maintains the integrity of internal state from code that effects
externally significant transitions.

Many features of existing programming paradigms address these issues to some extent, and offer clues to
the bottom-up reconstruction process. In general, the use of data structures and assertions is concerned with
integrity of state; object-orientation with maintaining local integrity of state, and the empirical validation of
local behaviours; functional abstractions with suppressing hidden state. Other programming features can be
related to agency and observables in a more direct manner. For instance, descriptive identifiers help to
distinguish the externally meaningful observables, whilst event-driven and rule-based paradigms can be
directly associated with agency. The most problematic aspect of making no explicit distinction between
invisibly maintaining state and visibly performing transitions is that many computational abstractions can



be equally effective in either role. For instance, rule-based computation is used both as a device for
updating state to reflect a dependency, and as a convenient way to specify behaviours. The invocation of
methods may likewise be associated with communication between agents in the real-world domain or with

purely private maintenance of state within a program object.
3. Applying Empirical Modelling to Interactive Situation Models for Program Comprehension

This section illustrates ideas that are representative of how EM can potentially be used to build ISMs for
program comprehension in a reactive systems context. Example 1 emphasises top-down development of an
ISM, whilst Example 2 examines issues in bottom-up development from an object-oriented program.

Example 1. Top-down Development of an Interactive Situation Model

Figure 1 depicts an embellished interface to a simple program, called jugs, that was first developed for
educational use in schools (cf [4]). The intended functionality of the program is clear from the menu
buttons: the objective for the pupil is to realise the specified target quantity of liquid in a jug by
appropriately filling and emptying jugs and pouring from one jug to another. The jugs program is a simple
simulation with a disguised mathematical significance: the capacities of the jugs are integers, and the .
operations that have to be performed in order to achieve the specified target can be interpreted as steps in |
Euclid's subtraction algorithm for computing the greatest common divisor of the capacities of the jugs.

In constructing an ISM for jugs in a top-down, it is only necessary to identify the observables that are
significant in the interaction between the user and the program. These include the parameters whose status
is explicitly represented to the user through the interface: the capacities of the jugs (capA, capB), their
contents (contA, contB), the target, the status of the interaction (e.g. is the program awaiting input from the
user? has the target been successfully achieved?), and the availability of menu options (e.g. is it possible to
fill jug A?). They also include the triggers that initiate activity in the program, which can be represented by
the selection of a value for an observable input, where input takes on one of five values depending upon
which menu button is selected. The identification of the observables that mediate user-computer interaction
in this way is associated with the shift in perspective that regards user and computer as agents within a

simple reactive system.

It is not necessary to consult program code to be able to infer the primitive agency and dependency between
the above observables. It is self-evident that in any jugs program, there should be dependencies between.
observables such that (for example) the menu option fillA is available if and only if jug A is not full, and
that this is the case precisely when 0 < contA < capA. The semi-realistic manner in which the capacity and
content if the jugs is represented to the user indicates that interaction is mediated by yet another observable
fullA - viz. whether jugA is full. The criterion by which a feature of the current state of the system is
viewed as an observable to the user is that it should be possible to apprehend its status directly. The same
criterion can be applied to other agents within the system, subject to introspecting about how it is that we
conceive that a system operates. For instance, it is reasonable to presume that the selection of a menu
button is instantaneously registered by the computer.

Where agency is concerned, it is clear that the state changes associated with pouring liquid from one jug to
another are carried out by the computer, and that the context in which this function is performed is such that
it can be regarded as one of several independent roles that the computer performs in response o user input.
That is to say, pouring liquid between jugs is an operation initiated by the user that can be construed as
invoking a pouring agent whose sole purpose is to simulate pouring and return control to the user. For this
reason, it is appropriate to take an agent-oriented view of the computer's role, thereby elaborating the
conception of the user and computer as a reactive system in a way that assists comprehension.

The jugs model illustrates the principal characteristics of an Empirical Modelling ISM. Such a model can




be constructed in a special-purpose environment supplied by the tkeden interpreter [1]. Variables such as
capA, contA, capB, fullA, availFillA, input etc are used to represent the observables the mediate between
agents. Definitions of variables are used to express dependencies between these observables. New
definitions and redefinitions or variables (freely available to the modeller in the role of super-agent) are
used to represent changes of state within the model. Such changes can be associated with the experimental
process involved in the construction of the model, but can also represent typically actions of agents, such as
the user or the pouring agent in jugs. These definitive (definition-based) aspects of the tkeden interpreter
include means to design line drawings and window layouts for the metaphorical representation of system
state. Their versatility is also enhanced by conventional procedural constructs, and event-driven procedural
actions. These enable the modeller to introduce rich functional dependencies into dependency relations, and
to simulate circumscribed behaviour of agents internal to the model.

Fuller details of a jugs model can be found in [4]. The following simple fragments from the model illustrate
the essential characteristics.

The definitive script that represents the observables and dependencies has the general form:

contentA = ...

capA = ...

SJullA = contentA==capA
avail_option_fillA = not fullA

Notice that this script can incorporate more explicit information about how interaction between user and
computer is mediated. For instance, the definition establishes a colour convention for menu availability:

colour_button_fillA = if avail_option_fillA then red else green

Dependencies of this nature make the ISM more program-specific. They can reflect the particular
capabilities of the computer on which the jugs program is implemented (e.g. presuming a colour display),
and of the user (e.g. the user is not colour blind). Though all ISMs for a particular system will include
representations of the fundamental observables, agents and dependencies, agent-specific features will have
to be introduced into the model to support deeper comprehension of a particular implementation. Such
features will have to be inferred from knowledge of the implementation architecture, and of the primitives
used in the program code. For instance, as Figurel illustrates, the visualisation of the jugs can be developed
using simple line drawing primitives (e.g. point and line drawing), using window and text layout primitives,
or generated as a textual output. In working with these display architectures, three different types of
definitive script are appropriate. All three have been used simultaneously in generating Figure 1.

The modeller can interact with the jugs ISM in the role of a super-agent, by directly redefining the values of
key parameters, for example. By way of illustration, the redefinition

capA =2 * | capB |

assigns the capacity of A to twice the current capacity of B (the construct 'l ...I" is used to refer to the current
value of an observable), whilst the redefinition

contentA = target

can be used to simulate successful completion of the user's task. Activity of this kind plays an important
part both in the model construction and the program comprehension process. It enables the modeller to




determine the expected values of parameters within the program when the basic dependencies are being
respected. In this respect, the ISM resembles an environment in which semantically significant assertions
about relationships beween programs variables are being animated.

A super-agent mode of interaction with the ISM is in some respects analogous to program debugging. It
permits state-changes that can be informative in program comprehension, but are beyond the functionality
of the program. For jugs, the valid interactions are defined by a choice of input menu, represented by a
redefinition of a variable input (=fillA, fillB, emptyA, emptyB, pour), as in the user interaction:

if avail_option_fill then input = pour

Although the modeller can simulate the interactions of the user and other agents directly, it is often
convenient to automate an agent role. For instance, the pouring agent can be explicitly modelled within the
jugs ISM by an event-driven action. A simple extract from the protocol for this agent is:

if input==pour and not emptyA and not fullB then
{input=pourAB; contentB = | contentA+contentB |-contentA)

if input==pourAB and not emptyA and not fullB then contentA = IcontentA I-1

More background on the jugs model can be found in other references [1,4]. Their emphasis is not upon use
of the jugs model as an ISM, but as a medium for software development. For example, it is possible to
derive a conventional procedural program from the jugs model by semi-automatic translation.

Example 2. Developing an Interactive Situation Model for a Simple Object-Oriented Program

Studying a particular program with a view to deriving an interaction situation model helps to clarify the
principles discussed in this paper, and to expose the significance of the EM process. It also illuminates
Brooks' thesis that program comprehension entails a reconstruction of domain knowledge used by the
program developer. This section introduces an ISM to assist the comprehension of a simple object-oriented
program for managing a mailbox taken from a standard textbook on JAVA [13] (cf. Figure 2).

For the JAVA programmer who develops the mailbox, the system concept is informed at the highest level
of abstraction by a requirements specification. This might take the form: "A mailbox keeps up to 10
messages that can be read on request. The number of messages currently in the mailbox is also displayed-
on request. New messages can be introduced into the mailbox if space permits, and messages once read are
discarded. When mail is read, messages are presented in FIFO order." In working from this specification,
the programmer has to conceive the objects that are to be used to represent the state of the mail system, and
the methods that are to be invoked to manipulate this state. For this purpose, a state-change in the real
world has to be expressed as corporate activity on a family of objects.

The following listing specifies the class mailbox:
class mailbox

{

public message remove()

{ if (nmsg ==) return null;
Message r = messages[out];
nmsg--;

out = (out+1) % MAXMSG;
returnr;




public void insert(Message m)

{ if (nmsg == MAXMSG) return;
messages[in] = m;
nmsg++;
in = (in+1) %2MAXMSG;

}

public String status()

{ if (nmsg==0) return "Mailbox empty";
else if (nmsg==1) return "1 message";
else if (nmsg < MAXMSG) return nmsg + "messages”;
else return "Mailbox full";

}

private final in MAXMSG = 10;

private int in = 0;

private int out = 0;

private int nmsg = 0,

private Message[] messages = new MessagelMAXMSG];
}

In arriving at this specification, the developer has decided to use a queue data type to store messages so that
they can be displayed in FIFO order. The queue is implemented via an array, and the variables in and our
are pointers to the first and last elements of the queue. Knowledge of this representation supplies the bridge
between the requirements specification and the program code.

At the maintenance stage, a programmer will have to recognise the mapping from real-world interpretation
to program code. The concept of "displaying messages by FIFO" has to be identified with sequences of
operations on particular variables, such as the pointers in and our and the array messages. More generally,
the current state of the executing program is what results from the cumulative effect of method invocations
upon the collection of objects that is initially instantiated. This further complicates cross-referencing
between the program level and the domain level of detail.

Once the queue representation has been understood, it becomes possible to construct an explicit model of
the states of the mailbox that is based on essentially the same observables. The definitive script below,
written in a variant of the tkeden notation that includes special-purpose windows of type TEXTBOX for text
entry and display, expresses the current state of the mailbox, and serves as an ISM for the JAVA program
above. In this script, an '=' system indicates an assignment, and an 'is' a definition. In the environment of
the script, it is possible for the modeller to take actions outside the scope of the JAVA program. For
instance, the modeller can act in a super-agent role to simulate the corruption of messages through an

operating system failure. Actions of this kind can be useful when exploring the intended and potential
behaviours of the associated program.

Maibox is [messagel, message2, message3, ..., message10];

// define the maximum number of messages that can be stored to be the size of the mailbox
MAXMSG is Mailbox#;

// initialise sender and content as lists comprising MAXMSG strings
sender = <list of MAXMSG items, each the empty string>:
content = <list of MAXMSG items, each the empty string>:




messagel is [sender[1], content{1]};
message? is [sender[2], content[2] };
message3 is [sender[3], content[3]};

message 10 is [sender[10], content[10]};

in is (totalin % MAXMSG) + 1
out is (totalout % MAXMSG) + 1;
nmsg is totalin - totalout;

totalin = 0;

totalout = O;

proc Text_click {
if (nmsg>MAXMSG) return;
sender[in] = fromText_getText();
content[in] = msgtext_getText();
totalin = totalin+1;
fromText_setText("");
msgText_settext("");

}

proc Play_click {
if (nmsg==0) return;
fromText_setText(sender{out]);
msgText_setText(content[out]);
totalout = totalout+1;

)

In this ISM, the actions Text_click and Play_click, respectively associated with supplying a new message
and reading a message from the Mailbox, are closely miodelled on the original JAVA program. The
definitions of in and out are derived by interpreting the queue implementation for stored messages. The
descriptive state-oriented rather than behaviour-oriented nature of the ISM model establishes a direct link
between the model and an observation-and-agent-oriented conception of the system.

4. Concluding remarks

This paper has focused on program comprehension at the domain level. Similar principles can be applied
when examining programs at higher levels of detail. A recent application of EM principles to the exposition
and study of heapsort [9] demonstrates the potential for constructing interactive situation models to support
programming activity at much lower levels of abstraction. In this context, the relevant observables are the
semantically significant features of the data structures (such as the order relations between values at
adjacent nodes of a tree, and abstract conditions such as whether the heap condition is satisfied at a node).
The problems of program comprehension can also be viewed as seamlessly connected with the
comprehension problems that arise in mathematical and scientific visualisation. It is natural to seek an
extension to the ISM for the jugs program that clarifies the number-theoretic significance of the simulation
activity, for example. There have been several previous applications of EM to visualisation problems of
this kind [7]. The range of possible ways in which programs can be interpreted recalls the distinction made
by Smith [21] between the operational semantics of programs, as understood by computer scientists, and a
program's meaning in relation to its external context - "the semantics of the semantics of programs” (cf [5]).

The potential applications of EM to requirements [8], together with research that has been done on
automatic generation of conventional programs from EM models of concurrent systems point to a futuristic
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scenario in which an interactive situation model is supplied with a program. This could be useful as a
extensible basis for program comprehension, as a way of linking requirements specification and validation,
and as a knowledge base from which to derive program variants.

Previous experience of developing models using EM also points to significant issues for future research:

Problems of scale: The size of models that we have been able to construct with our present tools is
restricted to at most a few thousand definitions. Large models can be hard to manage because they are less
structured than good conventional programs, include many dependency links and do not have information
hiding. Some possible research directions to tackle these issues are proposed in [1].

Closer integration between EM and conventional programs: Experience of program development from
EM models indicates that there is potentially considerable information loss in the transition from system
concept to programmed system [1]. For instance, specialisation and efficiency is typically obtained through
optimisations that restrict functionality and obscure the empirical roots of the system conception. Relevant
topics for future research include potential ways of integrating ISMs with programs (cf. the way in which
engineers attach monitoring instruments to an executing system) and the development of empirical
techniques for bottom-up development of ISMs.
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