
Web Eden: support for computing as construction?
Meurig Beynon

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK

wmb@dcs.warwick.ac.uk

Richard Myers
RJM Solutions

Haverflatt, Burrells
Appleby CA16 6EG, UK

Richard@rjmsolutions.com

 Antony Harfield
Department of Computer Science

University of Warwick
Coventry CV4 7AL, UK

ant@dcs.warwick.ac.uk

ABSTRACT

As Ben-Ari has observed, whatever the merits of adopting a

constructivist pedagogical stance towards Computer Science

education (CSE), it is impossible to reconcile the classical view of

computer science with a constructivist epistemology. There are

nonetheless good reasons for wishing to invoke a broader

epistemological framework in connection with modern

developments in computing practice. These include: the extent to

which computing technologies must be studied in the broader

engineering context; the greater prominence that the experiential

and phenomenological aspects of interaction with computers have

acquired; the aspiration (e.g. in agile methodologies) to construct

computer artefacts as an integral part of gaining the domain

knowledge required for complex software development. This

paper proposes Empirical Modelling (EM) as a constructivist

pedagogical approach that promises to address such broader

issues in CSE within a constructivist epistemological framework.

In the light of Ben-Ari’s insights, this is possible only through

adopting an alternative view of the nature of computing. The Web

Eden interpreter is introduced as a suitable first prototype for an

EM tool to support this vision for “computing as construction”.

Categories and Subject Descriptors

K.3.1 [Computer Uses in Education], K.3.2 [Computer and

Information Science Education]: Computer Science Education,

D.2.6 [Programming Environments]: Interactive environments.

General Terms

Design, Experimentation, Human Factors, Languages, Theory.

Keywords

 Computer Science Education, educational technology,

epistemology, constructivism, Empirical Modelling.

1. CONSTRUCTIVISM AND COMPUTING

1.1 Issues for Computer Science Education
The educational emphasis of classical computer science reflects

the perception of the computer as a reliable, predictable device

suitable for performing computation in the sense identified by

Lynn Stein [2]: “Computation is a function from its inputs to its

output. It is made up of a sequence of functional steps that

produce – at its end – some result that is its goal.” Teaching

programming stands at the core of the classical discipline.

Learning to program involves using formal programming

languages whose syntax and semantics is not negotiable. As

Mordecai Ben-Ari observes [1], whilst CSE that respects this

tradition may benefit from a constructivist pedagogical stance, it

cannot embrace a constructivist epistemology such as has been the

focus of controversy in the philosophy of science (cf. Latour [3]).

Modern computing nonetheless provokes questions that are not

easily addressed by traditional computer science. For instance:

a. How should we place classical Computer Science in the

broader engineering context? Applying computing technology in

complex systems raises concerns similar to those traditionally

associated with engineering. In asking "What can we expect of

formal verification?", the distinguished software consultant

Michael Jackson highlights the need to take fuller account of the

engineering perspective in complex systems development. And

whilst Ben-Ari remarks upon the affinity between CSE and

engineering education [1], he identifies the extent to which his

findings generalise to engineering education as an open question.

 b. To what extent are experiential and phenomenological

concerns within the scope of Computer Science? In many modern

applications of computing technology, the primary emphasis in

requirements is on experience rather than abstract function. In

such applications, the concrete physical characteristics of the

technology itself play an essential role. We may reflect on what

considerations affect the merits of different devices and interfaces

for speed-texting, for instance. This leads us to think of the

computer as resembling an instrument and to recognise the impact

that acquired skills have upon effective performance.

 c. Can we interpret programming activity as a legitimate way of

developing domain understanding? Agile methodologies feature

prominently in contemporary software development. In such

approaches – contrary to the precepts of traditional programming

– the conception of the software product and the understanding of

the domain this presumes are apparently being acquired even as

the product itself is being constructed. Interpreting a piece of

software as embodying domain and problem understanding rather

than merely meeting a functional requirement raises challenging

philosophical and ontological questions (cf. Loomes and Jones

[4]). The Play-In approach to software development advocated by

David Harel illustrates a process of software construction that

resembles the negotiation of meaning in a constructivist idiom.

Such questions all relate to how far we can conceive interaction

with computers as “computational” in the narrow sense of Stein

[2]. Accepting that interaction with computers must be program-

like in this sense makes it hard even to formulate these questions.

This has motivated many critiques of classical computer science.

1.2 Broader Visions of Computer Science
The discrepancies between computing practice and what classical

computer science addresses have been noted by many researchers

and interpreted in many different ways. Writing in 1998, Ben-Ari

[1] remarked that “the gap between the standard libraries

(especially the GUI libraries) of a modern programming

environment and the model of the computer is so great that

motivating beginners has become a serious problem". For Ben-

Ari, the GUI libraries are obstacles to the appreciation of the

computer as an “accessible ontological reality” of which the

student must develop a mental model. By contrast, Winograd and

Flores [5:78] contend that “computers do not exist, in the sense of

things that possess objective features and functions, outside of

language” and argue for a reconceptualisation of computing

beyond the “rationalistic” epistemological framework. Ridley [6]

articulates the perplexing issues that surround database theory,

where the relational model that was once viewed as the

foundational cornerstone of the field is widely perceived as

inadequate to account for modern practice.

The fact that Margaret Boden [7:1414] reviews the history of the

concept of computation under the heading "Computation as a

Moving Target” reflects the subtlety of the notion. Brian

Cantwell-Smith [8] highlights the inadequacy of traditional

accounts of computation in respect of modern computing practice,

and draws particular attention to the fact that what is understood

by the “semantics of computation” in theoretical computer science

is not to be confused with “the [content relation] that holds

between the computational process and the world outside it”

(which Smith describes as “the semantics of the semantics of the

process”). Stein [2] argues for the need to move from the classical

interpretation of “computation as calculation” to “something one

might call computation as interaction”.

These diverse critiques of classical computer science indicate that

there is considerable interest in broadening the scope of the

science of computing to embrace issues that cannot be addressed

by focusing solely on the classical theory of computation. Ben-Ari

[1] offers cogent reasons for believing that computer science as

narrowly interpreted as the study of program-like interactions with

computers cannot be based on an epistemological framework that

embraces a constructivist stance. But whilst the critiques by

Winograd and Flores, Cantwell-Smith, and Stein offer helpful

insight into what an alternative science and an alternative

epistemological framework might be like, they are ill-developed

in respect of principles and tools, especially when viewed

alongside Turing’s profound mathematically-based contribution to

our understanding of algorithmic processes.

1.3 Empirical Modelling
The approach to computing to which the Web Eden tool to be

introduced in the second section of the paper relates is that of

Empirical Modelling (EM) [9]. EM is based upon an

unconventional epistemological framework that is consonant with

William James’s radical empiricist philosophical stance [10].

James’s conception of knowing is rooted in direct experience –

his primary thesis is that relationships between experiences are

themselves given in experience. This is the basis on which one

experience (e.g. managing one’s expenses) can serve as the

content of another (e.g. manipulating a spreadsheet). Though such

knowing is of its essence a personal matter, this is no obstacle to

its potential classification as having an objective quality, if indeed

one’s own experience is experienced as cohering with that of

another person experiencing the same situation (cf. the way in

which a financial spreadsheet can represent public information

about a company’s finances). The nuances to which such a

concept of knowing can be adapted are sufficient to admit the

kind of realist conception of a computer that Ben-Ari endorses

[1], subject to certain reasonable contextual assumptions. It makes

good sense to view a computer in this way when considering it as

a computational device in a narrow sense for instance, but is not

so appropriate if the experience of the computer that is the subject

of concern is the colour of the display, or the possibility of erratic

operation due to hardware failure is taken into account.

The basic thesis of EM is that there are fundamental and generic

principles that can help in constructing artefacts that are intended

to be experienced as having a specific content. The key to this

construction is introducing counterparts in the artifact for the

relevant observables of its referent, and defining dependency

relationships – automatically maintained as in a spreadsheet – to

reflect the way in which changes to sets of observables are linked

in latent atomic changes of state. In EM, the role of such artefacts

– known as construals – is to mediate the modeller’s experiential

understanding of a situation before this can be articulated in

propositional terms. Developing such construals is conceptually

prior to programming activity. Like spreadsheets, construals

primarily relate to the representation of a current state of affairs or

situation rather than to a process.

EM engages directly with questions a, b and c above.

Because of the fundamental role it gives to personal experience, it

is clearly intimately linked with b. The way in which EM invokes

experiential and phenomenological concerns is well-oriented to an

engineering perspective. EM principles can be applied to making

sense of situations from the perspectives of human agents with

different perceptions and capabilities. By imaginative projection

(“to what observables subject to which dependencies can a

thermostat respond, and which can it change?”), EM can be

applied to other kinds of agent. Building construals is an activity

that then discloses viable physical and interpretative mechanisms

that might be exploited in applications. In this way, it lays the

foundation for many different potential functional uses.

Conventional programming activity and the concerns of classical

computer science can be interpreted as a specialised form of

interaction within the broader framework that EM affords. The

prominence that classical CSE gives to abstraction and logic is a

reflection of the fact that the empirical activities associated with

the identification of the computer as “an accessible ontological

reality” [1] are a matter of prior engineering to be taken for

granted. In contrast, EM addresses contexts where the nature and

robustness of the would-be computational mechanisms is yet to be

established [9:#087]. Such a reconceptualisation of computing

enables the blending of engineering and classical computer

science outlooks sought in a.

The radical nature of this reconceptualisation is highlighted by the

insights that EM brings to question c. James’s epistemological

stance maintains that all knowing is ultimately rooted in

connections that can be experienced. In EM, building construals

is about relating knowing to its experiential roots. Though EM

can lead to the realisation of program-like behaviours, this

realization takes the form of an enactment of pre-rehearsed

interactions within a constructed concrete live environment, rather

than the specification of an abstract computational process

optimised to a specific pre-conceived functional objective. On this

basis, EM is an activity that supports the development of domain

understanding, but not an activity that can be properly viewed as

programming. And where conventional CSE principles and tools

are concerned with situations and interpretations that have been

reliably pre-established and with associated knowledge that can be

expressed in propositional form, the emphasis in EM is upon

principles and tools that support the experimental learning

activities that must precede such an understanding [9:#098]. It is

for this reason that the principal EM tool, the EDEN interpreter to

be introduced in section 2, is of its essence a technology to

support learning without reference to any specific domain.

1.4 EM in relation to other critiques
There are many points of contact between EM and the various

critiques cited above. In EM, the primary emphasis in interpreting

interactions with computers is upon “the semantics of the

semantics” in the sense of Smith [8]. There is scope for the

negotiation of meaning that is relevant in particular to the social

processes that frame the protocols for computer use and the

identification of patterns of interaction and interpretation with

devices that can be deemed to be program-like. As in Stein’s

conception of computation-as-interaction [2], much importance is

attached to maintaining models of the external current state to

which the computing activity refers (cf. for instance Stein’s

discussion of her use of “bootstrapping directly from physical

interaction” to equip a robot with a capacity to read maps [2:19]).

The realisation of system-like behaviours through the rehearsal

and orchestration of primitive interactions amongst agents is well-

aligned with the computational metaphor of “a community of

interacting entities” proposed by Stein [2:9].

The crucial difference between EM and the proposals associated

with the critiques mentioned above is that the development of EM

has been intimately connected with identifying principles and

building tools to support their application. These principles are

more discriminating in the kinds of analysis and application that

they endorse. For instance, in keeping with Ben-Ari’s realist view

of the nature of the computer [1], they legitimise Winograd and

Flores’s contention that “[computers] are created in the

conversations human beings engage in when they cope with and

anticipate breakdown” only in particular contexts. They likewise

echo Ben-Ari’s reservations about the scope for bricolage in

conventional programming by calling into question Turkle and

Papert’s claims – cited by Stein [2:16] to support her concept of

computation-as-interaction – about the amenability of traditional

programs to experimental development [11]. And, because they

focus upon “the semantics of the semantics” of a computational

process rather than its abstract denotational/operational semantics,

they challenge the notion that the “new generation of software

engineering and design tools” identified by Stein in [2:16]

illustrates a decisive shift from the usual computational metaphor.

2. THE WEB EDEN ENVIRONMENT
The Web Eden environment [12] is an online environment for

constructing interactive models using EM principles. It represents

a radical new concept in technology-enhanced learning (TEL) that

has been applied in particular to CSE [9:#107], but – as motivated

above – can address any learning domain. By exploiting non-

standard principles based on modelling dependency relationships

for software construction, it introduces a new paradigm for open

source development that blends with the learning experience.

Because of its distinctive approach to software construction, Web

Eden affords an unusually intimate blending of domain learning

with model-building in the spirit of Latour’s construction [3,

9:#100]. This gives unprecedented scope for exploiting the

environment to support learning in many different idioms. We can

use Web Eden to guide learners through traditional tutorial-like

learning material. Web Eden also enables the learner to explore

live dynamic artefacts (as opposed to static pages of learning

material). If the learners become really advanced, they are able to

build their own artefacts and associated learning activities. Web

Eden can run as a stand-alone environment, or we can embed it

inside a virtual learning environment such as Moodle [9:#106].

Web Eden, like a spreadsheet environment, features counterparts

of meaningful variable quantities ("observables"), defined

connections between these which express the ways in which

changing the value of one observable directly affects the value of

another ("dependencies") and specific instances of redefinition of

observables, both manual and automated, that correspond to

meaningful action on the part of different agents. The use of

dependency is a common – if implicit – feature of much

educational software (e.g. tools like Mathematica, The Geometer's

Sketchpad, AgentSheets and Matlab, and learning artefacts such

as Cabri Geometry and Logotron's Visual Fractions), and its

merits are endorsed by the wide range of educational applications

for spreadsheets [13]. The motivating idea that makes Web Eden

distinctive is that these merits cannot be fully realised within a

conventional conceptual framework for computing [9:#096]. In

particular, dependency cannot be integrated into an educational

tool based on orthodox software principles (such as Imagine

Logo) without compromising its conceptual integrity [9:#104].

Conventional TEL software offers little support for integrating the

roles of the teacher (a pedagogical expert who conceives and

specifies the educational content, interfaces, learning outcomes

and exercises), the learner (typically a naive computer user who

interacts with the learning environment through a preconceived

interface) and the developer (an expert programmer who

implements the environment). The Web Eden environment is

open for interaction in all three roles at all times [9:#080]. What is

more, the interaction takes essentially the same form for teacher,

learners and developers alike. Every change to the current state to

the current environment, no matter how it is to be interpreted (for

instance, whether it is a change to the specification of the

environment, a step in the learning process, or a revision to the

interface or the underlying program), can be expressed as a

redefinition of observables in the model. All restrictions upon

interaction and interpretation are then of their essence purely

discretionary, according to the expertise and interests associated

with each specific role. This does not preclude the specification of

interfaces to constrain the ways in which particular agents can

redefine observables where this is appropriate.

Web Eden is a web-enabled version of the EDEN interpreter

[9:#106]. EDEN was web-enabled by Richard Myers in a prize-

winning final year computer science project at the University of

Warwick in 2007-8. It exploits state-of-the-art tools that make it

possible for server and client machines to share the computational

load in interpreting a model. It also overcomes the problems of

efficiently interpreting many EDEN models concurrently by

enabling distributed processing and load-balancing over many

EDEN virtual machines. Many hundreds of models have been

built using EDEN [14]. All such model-building has a strong

ingredient of domain learning. Many models have an explicit

educational objective and the range of learning applications is

broad. Web Eden inherits the qualities of EDEN as an educational

technology (cf. the “Applications Area” hyperlink at [9]), creating

a platform for the full realisation of the pedagogical advantages

for which previous experience of EDEN has offered proof-of-

concept, and helping to overcome the practical obstacles to wider

dissemination and adoption. It addresses the portability issues

encountered in downloading the interpreter and models, simplifies

the integration of the EDEN engine with other applications

through the use of web interfaces, and is designed to incorporate

session-sharing features that obviate the need to set up networks

for collaborative and distributed modes of interaction.

The most comprehensive practical introduction to Web Eden and

the modelling principles on which it is based can be found in the

workshops prepared in conjunction with The Sudoku Experience -

an online activity for gifted and talented pupils organised by the

University of Warwick in July 2008 [12]. In these workshops,

novice learners are first acquainted with the basic concepts and

techniques that are required for model-building. This involves

introspecting about the kinds of observables and dependencies

that are significant in solving a Sudoku puzzle. They are then

shown how these can be related to other tasks, such as devising

formulae to convert between different ways of indexing the

squares of a Sudoku grid. Once the principles of model-building

have been introduced, their application to Sudoku solution is

illustrated with reference to a "colour Sudoku" extension and the

automation of a technique that is first conceived and implemented

as a 'manually executed' pattern of interaction. In the final

workshop, the Web Eden environment is configured to allow

collaborative concurrent solution of Sudoku puzzles.

Web Eden was also applied in an online database module in the

Virtual Studies in Computer Science (ViSCoS) programme at

Joensuu University, Finland in 2008-9. This involved integrating

Web Eden with the Moodle environment [9:#106]. In the module,

design flaws in the international standard RDB language SQL are

exposed by contrasting and critiquing different strategies for

implementing SQL over a pure relational algebra notation. This

practical and interactive approach to highlighting abstract design

issues exploits the scope for open-ended interaction that Web

Eden affords, which encompasses the capacity for implementing

additional notations within the Web Eden environment on-the-fly.

The Web Eden Sudoku model was re-used in a second-year

undergraduate module in December 2008. The Alloy tool for

formal specification was used to generate the five essentially

different abstract mathematical groups of order 8. To make the

structure of these groups more accessible, the 9-by-9 grid in the

colour Sudoku model was adapted for displaying and

manipulating the corresponding group tables [12]. Simple patterns

of redefinition and renaming of elements served to acquaint

students without specialist mathematical knowledge with the

character of a mathematician's intuitive, rather than purely abstract

and axiomatic, understanding of group structure.

Other illustrative examples of the use of Web Eden can be

accessed via [12]. The environment has recently been further

developed to support more sophisticated online use with personal

and public project data. The fact that the essential interaction with

online models is mediated entirely through definition of

observables prepares the ground for several significant extensions.

These include: comprehensive monitoring of interactions that

enables intermediate states to be recorded and revisited as if

"live"; novel possibilities for collaboration primarily mediated

through interaction with artefacts rather than communication

based on language; potential for graphical user interfaces for

fabricating scripts from templates. And though we have gathered

informal evidence in support of our claims [9:090], we recognize

the need for more rigorous evaluations through empirical studies.

We envisage the deployment of Web Eden not as the release of a

product that meets a clearly preconceived specification, but as

initiating an ongoing organic process of continuing development

associated with the progressive extension, refinement and

adaptation of existing models and of the environment itself to

better meet educational goals. Teachers, developers and learners

will all participate in this process. A major concern in TEL has

been that of standardisation. In 2002-4, the principles underlying

Web Eden were effectively deployed at the BBC R&D

Laboratories in resolving critical issues of cross-platform

portability of digital content. This gives us confidence that,

appropriately deployed, Web Eden can offer rich experiences

customised to diverse learners and contexts. To achieve this goal,

we aspire to bring together representatives from schools,

universities and industry worldwide to establish an online “Centre

for Constructivist Computing” to promote the creation of models,

teaching and learning strategies, and extensions and refinements

of the modelling tool through open source development.

3. REFERENCES
[1] M. Ben-Ari. Constructivism in computer science education.

SIGCSE Bulletin, 30(1):257--261, 1998.

[2] L.A.Stein, Challenging the Computational Metaphor,

Cybernetics and Systems 30(6), September 1999, 1-35.

[3] B.Latour, The Promises of Constructivism, In Ihde, D. (ed.)

Chasing Technoscience: Matrix of Materiality, 2006, 27-46.

[4] M.J.Loomes and S.V.Jones, Requirements Engineering: A

Perspective Through Theory Building, Proc. ICRE'98, 1998,

100-107.

[5] T.Winograd and F.Flores, Understanding Computers and

Cognition, Addison-Wesley, 1987

[6] M.J.Ridley, Database Systems or Database Theory, Proc.

LTSN-ICS TLAD Workshop, Coventry, UK, 2003.

[7] M.Boden, Mind as Machine: A History of Cognitive Science,

Volume 2, Clarendon Press, Oxford, 2006.

[8] B.Cantwell-Smith, Two Lessons of Logic, Comput. Intell. 3,

214-218, 1987.

[9] Empirical Modelling website and EM papers as indexed at

http://www.dcs.warwick.ac.uk/modelling

[10] W.James, Essays in Radical Empiricism, Bison Books, 1996.

[11] S.Turkle and S.Papert. Epistemological Pluralism: Styles and

Voices within the Computer Culture, Journal of Women in

Culture and Society 16(1): 128-157, 1990.

[12] http://www.warwick.ac.uk/go/webeden

[13] J.E.Baker, S.J.Sugden, Spreadsheets in Education: The First

25 Years, Spreadsheets in Education, 2003.

[14] http://empublic.dcs.warwick.ac.uk/projects/

http://empublic.dcs.warwick.ac.uk/projects/

