▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Games on Timed Automata

Ashutosh Trivedi (Joint-work with Dr. Marcin Jurdziński.)

Warwick Postgraduate Colloquium in Computer Science, 2008

July 01, 2008

Boundary Region Automata

Conclusion

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

Timed Game Automaton

$$\Gamma = \{L, C, \rightarrow, A\}$$

$$L = L_{MAX} \cup L_{MIN}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Boundary Region Automata

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Timed Game Automaton

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Timed Game Automaton

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Timed Game Automaton

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Payoff Functions

Path

- Path $(s_0, \mu, \chi) := \langle s_0 \xrightarrow[t_1]{a_1} s_1 \xrightarrow[t_2]{a_2} \dots \rangle$
- Final(Path (s_0, μ, χ)) = inf $\{i : s_i \in F\}$.

Payoff Functions

Path

- Path $(s_0, \mu, \chi) := \langle s_0 \xrightarrow[t_1]{a_1} s_1 \xrightarrow[t_2]{a_2} \dots \rangle$
- Final(Path(s_0, μ, χ)) = inf{ $i : s_i \in F$ }.

Reachability-time Game

Payoff(Path(
$$s, \mu, \chi$$
)) := $\sum_{i=1}^{\text{Final}(\text{Path}(s, \mu, \chi))} t_i$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Payoff Functions

Path

• Path
$$(s_0, \mu, \chi) := \langle s_0 \xrightarrow[t_1]{t_1} s_1 \xrightarrow[t_2]{t_2} \dots \rangle$$

• Final(Path
$$(s_0, \mu, \chi)$$
) = inf $\{i : s_i \in F\}$.

Reachability-time Game

Payoff(Path(
$$s, \mu, \chi$$
)) := $\sum_{i=1}^{\text{Final}(\text{Path}(s, \mu, \chi))} t_i$

Average-time Game

Payoff(Path(
$$s, \mu, \chi$$
)) := $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} t_i$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Determinacy

Value

 $\begin{array}{l} \mathrm{Val}^*(s) := \inf_{\mu} \mathrm{sup}_{\pmb{\chi}} \mathrm{Payoff}(\mathrm{Path}(s,\mu,\pmb{\chi})) \\ \mathrm{Val}_*(s) := \mathrm{sup}_{\mu} \inf_{\pmb{\chi}} \mathrm{Payoff}(\mathrm{Path}(s,\mu,\pmb{\chi})) \end{array}$

Determinacy

Value

 $\begin{array}{l} \mathrm{Val}^*(s) := \inf_{\mu} \mathrm{sup}_{\boldsymbol{\chi}} \operatorname{Payoff}(\mathrm{Path}(s, \mu, \boldsymbol{\chi})) \\ \mathrm{Val}_*(s) := \mathrm{sup}_{\mu} \inf_{\boldsymbol{\chi}} \mathrm{Payoff}(\mathrm{Path}(s, \mu, \boldsymbol{\chi})) \end{array}$

Determinacy $Val(s) = Val^*(s) = Val_*(s)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Determinacy

Value

 $\begin{aligned} \mathrm{Val}^*(s) &:= \mathrm{inf}_{\mu} \operatorname{sup}_{\chi} \mathrm{Payoff}(\mathrm{Path}(s, \mu, \chi)) \\ \mathrm{Val}_*(s) &:= \mathrm{sup}_{\mu} \operatorname{inf}_{\chi} \mathrm{Payoff}(\mathrm{Path}(s, \mu, \chi)) \end{aligned}$

Determinacy $Val(s) = Val^*(s) = Val_*(s)$

Determinacy Theorem

Every reachability-time game is determined.

Determinacy Theorem

Every average-time game is determined.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Algorithmic problem

Algorithmic problem

- Find the value of the game.
- Compute a pair of ε -optimal strategies for Max and Min.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Algorithmic problem

Algorithmic problem

- Find the value of the game.
- Compute a pair of ε -optimal strategies for Max and Min.

Bottleneck

- Infinitely many states.
- Every state has infinitely many successors.

$$x < 1, x > 0$$

$$y = 1$$
THIN
$$x < 1, x > 0$$

$$y < 1, y > 0$$

$$y - x > 0$$
THICK
$$x = 0, y = 0$$
THIN

・ロト・(部・・目下・(日下・))

Conclusion

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Boundary Region Automata $\widehat{\Gamma}$: motivation

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Boundary Region Automata $\widehat{\Gamma}$: motivation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

・ロト・日本・日本・日本・日本・今日で

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Optimality equations for boundary region automata $\widehat{\Gamma}$.

Reachability-Time Games: Optimality equations $Opt(\widehat{\Gamma})$

$$T(R)(s) = \begin{cases} 0 & \text{if } s \in F \\ opt_{(R,(a,b,c),R')} \{b - s(c) + T(R')(s') : s \xrightarrow{a}{b - s(c)} s'\} & \text{if } s \notin F \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Optimality equations for boundary region automata $\widehat{\Gamma}$.

Reachability-Time Games: Optimality equations $Opt(\widehat{\Gamma})$

$$T(R)(s) = \begin{cases} 0 & \text{if } s \in F \\ opt_{(R,(a,b,c),R')} \{b - s(c) + T(R')(s') : s \xrightarrow{a}{b - s(c)} s'\} & \text{if } s \notin F \end{cases}$$

Theorem (Correctness of Abstraction)

For a timed game automaton Γ , one can construct a timed region graph $\widehat{\Gamma}$, such that a value of the reachability-time game can be obtained from a solution of $Opt(\widehat{\Gamma})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Optimality equations for boundary region automata $\widehat{\Gamma}$.

Average-Time Games: Optimality equations $\operatorname{Opt}(\widehat{\Gamma})$

$$G(R)(s) = opt_{([s],(a,b,c),R')} \{G(R')(s') : s \xrightarrow{a}{b-s(c)} s'\}$$

$$B(S)(s) = opt_{([s],(a,b,c),R')} \{b-s(c) - G(R)(s) + B(R')(s')$$

$$: G(R)(s) = G(R')(s') \text{ and } s \xrightarrow{a}{b-s(c)} s'\}.$$

Optimality equations for boundary region automata $\widehat{\Gamma}$.

Average-Time Games: Optimality equations $Opt(\widehat{\Gamma})$

$$G(R)(s) = opt_{([s],(a,b,c),R')} \{ G(R')(s') : s \xrightarrow{a}{b-s(c)} s' \}$$

$$B(S)(s) = opt_{([s],(a,b,c),R')} \{ b - s(c) - G(R)(s) + B(R')(s') \}$$

$$: G(R)(s) = G(R')(s') \text{ and } s \xrightarrow{a}{b-s(c)} s' \}.$$

Theorem (Correctness of Abstraction)

For a timed game automaton Γ , one can construct a timed region graph $\widehat{\Gamma}$, such that value of the average-time game can be obtained from a solution of $Opt(\widehat{\Gamma})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Complexity Results

Theorem (Complexity)

Reachability-Time Games are EXPTIME-complete.

Theorem (Complexity)

Average-Time Games are EXPTIME-complete.

Boundary Region Automata

Conclusion

Optimal-time to reach London

▲□▶▲□▶▲□▶▲□▶ = 三 つくぐ

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

future Work

Future Work

- Games on more general *concavely-priced timed automata*.
- Games on probabilistic timed automata.
- Some Practical Work Implementation / Symbolic Algorithms.