
Abstract

The ability to formally specify and verify compiler transformations (optimisa-
tions) is increasingly important to compiler designers as transformations become
increasingly complex.

TRANS is a language for expressing compiler transformations. The lan-
guage operates over the control flow graph (CFG) of a program. A TRANS
transformation has two parts: the rewrite, which describes how to change the
instructions at a node in the CFG and how to modify the edges of the graph to
actually apply the transformation, and the side-condition which is a temporal
logic formula which describes where in the CFG a transformation may be ap-
plied [Lacey, 2003, Kalvala et al., 2008]. The original presentation of TRANS
demonstrated the power of the language by using a toy language, L0, which con-
tains only assignments, if statements, goto statements and return statements.
All the variables in L0 are of type integer.

The main contribution of this thesis is the compilation of a catalogue of
compiler transformations written in TRANS which can be formally verified and
may be used in the future by compiler writers who wish to use TRANS, as
examples or extensions to their own transformation catalogues.

A number of extensions to L0 and TRANS were implemented to allow more
complex transformations to be written. TRANS is extended to support to nodes
in the control flow graph being basic blocks instead of single instructions, which
improves the efficiency of the implementation. L0 is extended by adding syn-
tax and semantics for supporting for arrays and function calls and TRANS is
extended to support matching these new features. The TRANS syntax uses a
recursive method to match each array subscript value and function parameters
instead of requiring lists to be implemented in TRANS. The thesis also imple-
ments a number of array subscript analysis techniques in TRANS to support
implementations of a number of loop based transformations.



Bibliography

Sara Kalvala, Richard Warburton, and David Lacey. Specifying and refining
program transformations using temporal logic side conditions. (in progress),
2008.

David Lacey. Program transformation using temporal logic specification. PhD
thesis, Oxford University Computing Laboratory, 2003.

2


