
Introduction
Design

Performance Results

Generating Compiler Optimisations using Rosser

Richard Warburton, Warwick University Computer Science
Department

July 1, 2008

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Introduction
Motivation

Design
Representation
Generation Strategy

Performance Results
Methodology
Effectiveness

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results
Motivation

Motivation

Why implement an optimisation generator?

I TRANS ideally supports experimentation

I Existing optimisation specifications often difficult or
impossible to compare formally

I Questions over efficiency of generated optimisations.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results
Motivation

Motivation

Why implement an optimisation generator?

I TRANS ideally supports experimentation

I Existing optimisation specifications often difficult or
impossible to compare formally

I Questions over efficiency of generated optimisations.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results
Motivation

Motivation

Why implement an optimisation generator?

I TRANS ideally supports experimentation

I Existing optimisation specifications often difficult or
impossible to compare formally

I Questions over efficiency of generated optimisations.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis

I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis
I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis
I Specifications refined

I rewrites become pattern matches and replacement

I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis
I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis
I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Overview

I soot system used as basis
I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Dimple

I Represents certain aspects of the program using Binary
Decision Diagrams

I Suitable for CTL based dataflow analysis

I Uses JEDD as output language

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Dimple

I Represents certain aspects of the program using Binary
Decision Diagrams

I Suitable for CTL based dataflow analysis

I Uses JEDD as output language

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Dimple

I Represents certain aspects of the program using Binary
Decision Diagrams

I Suitable for CTL based dataflow analysis

I Uses JEDD as output language

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Relations

I <from,to,edgetype> Edges

I Assign, IfStmt, ReturnsValues

I <eq, l, r, op> Expr

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Relations

I <from,to,edgetype> Edges

I Assign, IfStmt, ReturnsValues

I <eq, l, r, op> Expr

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Representation
Generation Strategy

Relations

I <from,to,edgetype> Edges

I Assign, IfStmt, ReturnsValues

I <eq, l, r, op> Expr

Richard Warburton Generating Compiler Optimisations using Rosser



Side Conditions

comp-s true = [res = >]
comp-s False = [res = ⊥]
comp-s conlit(v) = [temp1 = >, res = temp1{v} >< meth.Conlit{c}]
comp-s varlit(v) = [temp1 = >, res = temp1{v} >< meth.Varlit{v}]
comp-s ¬ φ = comp-s φ @ [res = > - pred]

comp-s n | = φ = comp-s φ @ [res = (at =>) pred{n,at} <> pred{at,n}]
comp-s φ ∧ ψ = comp-s φ @ comp-s ψ @ [res = pred1 & pred2]

comp-s φ ∨ ψ = comp-s φ @ comp-s ψ @ [res = pred1 | pred2]



Node Conditions

comp-t EX φ = comp-t φ @

[temp1 = (et=>)meth.Edges,

res = (to=>at) pred{at} <> temp1{from} ]



Introduction
Design

Performance Results

Representation
Generation Strategy

Until

temp1 = (et=>) meth.Edges;
acc = pred2;
do {
prev = acc;
temp2 = (from=>) pred1{at} <> temp1{to};
acc |= pred2 & temp2

} while(prev != acc);
res = acc

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

What is Performance?

Aim: compare Performance with hand-written optimisations.

Definition
The Effectiveness of an optimization is a measure of the extent to
which it improves the performance of the program being optimized.

Definition
The Efficiency of an optimization is a measure of the performance
properties of the optimization.

Applied: Dead Code Elimination, Common Subexpression
elimination, Lazy Code Motion

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

What is Performance?

Aim: compare Performance with hand-written optimisations.

Definition
The Effectiveness of an optimization is a measure of the extent to
which it improves the performance of the program being optimized.

Definition
The Efficiency of an optimization is a measure of the performance
properties of the optimization.

Applied: Dead Code Elimination, Common Subexpression
elimination, Lazy Code Motion

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

What is Performance?

Aim: compare Performance with hand-written optimisations.

Definition
The Effectiveness of an optimization is a measure of the extent to
which it improves the performance of the program being optimized.

Definition
The Efficiency of an optimization is a measure of the performance
properties of the optimization.

Applied: Dead Code Elimination, Common Subexpression
elimination, Lazy Code Motion

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

What is Performance?

Aim: compare Performance with hand-written optimisations.

Definition
The Effectiveness of an optimization is a measure of the extent to
which it improves the performance of the program being optimized.

Definition
The Efficiency of an optimization is a measure of the performance
properties of the optimization.

Applied: Dead Code Elimination, Common Subexpression
elimination, Lazy Code Motion

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Scimark 2 Benchmark

I Part of Spec JVM 2008

I Commonly Used Java benchmark

I Performance of Scientific Application Kernels.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Scimark 2 Benchmark

I Part of Spec JVM 2008

I Commonly Used Java benchmark

I Performance of Scientific Application Kernels.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Scimark 2 Benchmark

I Part of Spec JVM 2008

I Commonly Used Java benchmark

I Performance of Scientific Application Kernels.

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

SableVM

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

The End

Anyone for Pub Questions?

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

SUN JVM

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser



Introduction
Design

Performance Results

Methodology
Effectiveness

Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower

Richard Warburton Generating Compiler Optimisations using Rosser


	Introduction
	Motivation

	Design
	Representation
	Generation Strategy

	Performance Results
	Methodology
	Effectiveness


