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Motivation

Why implement an optimisation generator?

I TRANS ideally supports experimentation

I Existing optimisation specifications often difficult or
impossible to compare formally

I Questions over efficiency of generated optimisations.
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Overview

I soot system used as basis

I Specifications refined

I rewrites become pattern matches and replacement
I temporal operators reduced

I transform method corresponds to action

I condition method corresponds to side condition
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Dimple

I Represents certain aspects of the program using Binary
Decision Diagrams

I Suitable for CTL based dataflow analysis

I Uses JEDD as output language
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Relations

I <from,to,edgetype> Edges

I Assign, IfStmt, ReturnsValues

I <eq, l, r, op> Expr
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Side Conditions

comp-s true = [res = >]
comp-s False = [res = ⊥]
comp-s conlit(v) = [temp1 = >, res = temp1{v} >< meth.Conlit{c}]
comp-s varlit(v) = [temp1 = >, res = temp1{v} >< meth.Varlit{v}]
comp-s ¬ φ = comp-s φ @ [res = > - pred]

comp-s n | = φ = comp-s φ @ [res = (at =>) pred{n,at} <> pred{at,n}]
comp-s φ ∧ ψ = comp-s φ @ comp-s ψ @ [res = pred1 & pred2]

comp-s φ ∨ ψ = comp-s φ @ comp-s ψ @ [res = pred1 | pred2]



Node Conditions

comp-t EX φ = comp-t φ @

[temp1 = (et=>)meth.Edges,

res = (to=>at) pred{at} <> temp1{from} ]
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Until

temp1 = (et=>) meth.Edges;
acc = pred2;
do {
prev = acc;
temp2 = (from=>) pred1{at} <> temp1{to};
acc |= pred2 & temp2

} while(prev != acc);
res = acc
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What is Performance?

Aim: compare Performance with hand-written optimisations.

Definition
The Effectiveness of an optimization is a measure of the extent to
which it improves the performance of the program being optimized.

Definition
The Efficiency of an optimization is a measure of the performance
properties of the optimization.

Applied: Dead Code Elimination, Common Subexpression
elimination, Lazy Code Motion
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Scimark 2 Benchmark

I Part of Spec JVM 2008

I Commonly Used Java benchmark

I Performance of Scientific Application Kernels.
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The End

Anyone for Pub Questions?
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SUN JVM
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Efficiency

I Soot: 15 seconds for scimark

I Rosser: 270 seconds for scimark

I but 131/133 Methods optimised in 30 seconds

I :. Pathological cases in 2 remaining methods

I Usually: 2x slower than hand-coded

I Pathologically: > 1000x slower
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