Bisimulation and Congruence Relations for Communicating Quantum Processes

Tim Davidson

tim@dcs.warwick.ac.uk

Warwick Postgraduate Colloquium in Computer Science 2008

Outline

- Introduction
- Quantum Information
- Equivalence Relations
- 4 Conclusion and Future Work

Motivation

- Formal analysis of system behaviour.
- Objective is to show correctness of a system, or uncover design/implementation flaws.
- Leads to reliability and robustness.
- Important where safety and security are high priorities.

Formal Methods

- Specification: Formal description of the system and its requirements.
 - Language syntax
 - Semantics
- **Verification:** Proof that the system conforms to its requirements.
 - Mathematical proofs
 - Model checking

Formal Methods

- Specification: Formal description of the system and its requirements.
 - Language syntax
 - Semantics
- **Verification:** Proof that the system conforms to its requirements.
 - Mathematical proofs
 - Model checking

Process Algebra

- Process algebras are one approach to modelling concurrent systems.
- A process algebra provides a language and semantics to specify the system.
- It defines algebraic laws to manipulate and reason about equivalences between processes.

Communicating Quantum Processes (CQP)

- Communicating Quantum Processes (CQP) is a process algebra designed for quantum processes [GN05].
- It is based on the π -calculus (designed for modelling mobile processes).

$$(c?[y].\{x, y *= CNot\}.d![x].\mathbf{0})$$

$$\xrightarrow{c?[y]} \xrightarrow{\tau} \xrightarrow{d![x]}$$

Quantum Process Algebras

- Other quantum process algebras exist:
 - QPAlg [Lal06]
 - qCCS [YFD07]
- The major selling point for CQP is the type system.
- No equivalence relations have been defined for CQP.
- No congruence relations exist for general quantum processes.

Quantum Processes

- Quantum processes are systems in which there is manipulation of quantum bits (qubits).
- This could be
 - Computation
 - Communication
 - Other protocols (eg. coin-flipping)

Quantum Operations

- Quantum processes may involve the following:
 - Preparation of quantum states.
 - Operations on qubits.
 - Transmission of qubits.
 - Quantum measurement.
 - Classical data.

Quantum Processes in Practice

- Quantum processes have already been implemented and are commercially available:
 - Quantum cryptography over fibre optic cable.
 - Random number generators.
- What is different about quantum processes?
 - Probabilistic Measurement: reading the "value" of a qubit does not give a definite result.
 - No-cloning: quantum states cannot be copied.
 - **Entanglement:** measuring one qubit can fix the value of another qubit even if they are physically separated.

What is an equivalence relation?

Equivalence Relation

An equivalence relation is a binary relation between two elements of a set satisfying

- Reflexivity: P ~ P
- Symmetry: $P \sim Q \Rightarrow Q \sim P$
- Transitivity: $P \sim Q$ and $Q \sim R \Rightarrow P \sim R$

$$P = c?[x].\{x = Z\}.\{x = X\}.d![x].\mathbf{0}$$

 $Q = c?[x].\{x = Y\}.d![x].\mathbf{0}$

What is an equivalence relation?

Equivalence Relation

An equivalence relation is a binary relation between two elements of a set satisfying

- Reflexivity: $P \sim P$
- Symmetry: $P \sim Q \Rightarrow Q \sim P$
- Transitivity: $P \sim Q$ and $Q \sim R \Rightarrow P \sim R$

$$P = c?[x].\{x = Z\}.\{x = X\}.d![x].0$$

 $Q = c?[x].\{x = Y\}.d![x].0$

Bisimilarity

Bisimilarity

- If process P can perform action α then so can Q, and the resulting processes are also bisimilar.
- If process Q can perform action α then so can P, and the resulting processes are also bisimilar.
- In this case we are only interested in external (observable) actions sending and receiving.

Congruence

Congruence

- Processes are equivalent in any context (not just in isolation).
- Allows substitution of processes.

Congruence

Congruence

- Processes are equivalent in any context (not just in isolation).
- Allows substitution of processes.

Issues: 'Bisimilar' processes that are different

 Processes that perform different (internal) actions may be bisimilar!

$$P = (\{x *= X\}.0)$$
 $Q = (\{x *= Z\}.0)$

Issues: 'Bisimilar' processes that are different

 Processes that perform different (internal) actions may be bisimilar!

Example

$$P = (\{x := X\}.0)$$
 $Q = (\{x := Z\}.0)$

 That's OK because the final quantum state is irrelevant if it is not sent to another process...

Issues: 'Bisimilar' processes that are different

 Processes that perform different (internal) actions may be bisimilar!

$$P = (\{x := X\}.0)$$
 $Q = (\{x := Z\}.0)$

- That's OK because the final quantum state is irrelevant if it is not sent to another process...
- ...BUT entanglement can interfere!

 Measurement of an entangled qubit affects the state of other qubits.

- Measurement of an entangled qubit affects the state of other qubits.
- If measurement of an entangled qubit occurs after all observable actions this may have an unconsidered effect on the state of a qubit in a parallel process.

- Measurement of an entangled qubit affects the state of other qubits.
- If measurement of an entangled qubit occurs after all observable actions this may have an unconsidered effect on the state of a qubit in a parallel process.
- This occurs because "different" processes may be bisimilar.

- Measurement of an entangled qubit affects the state of other qubits.
- If measurement of an entangled qubit occurs after all observable actions this may have an unconsidered effect on the state of a qubit in a parallel process.
- This occurs because "different" processes may be bisimilar.
- However many processes rely on qubits that are measured but not observed.

Summary

- Aiming to find a congruence relation for quantum processes.
- Quantum processes are subject to entanglement and probabilistic measurement.
- Entanglement and measurement prevent this bisimilarity from being a congruence.
- Entanglement and measurement do not interfere in all cases
- Identifying these cases should reveal a congruence!

References

- Simon J. Gay and Rajagopal Nagarajan.

 Communicating quantum processes.

 In POPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 145–157, New York, NY, USA, 2005. ACM Press.
- Marie Lalire.
 Relations among quantum processes: bisimilarity and congruence.
 - Mathematical. Structures in Comp. Sci., 16(3):407-428, 2006.
- Mingsheng Ying, Yuan Feng, and Runyao Duan.
 An algebra of quantum processes.
 http://arxiv.org/abs/0707.0330v1, Jul 2007.