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Finding a Nash equilibrium (NE) is hard.

O In multip|a)/er games. (Daskalakis, Goldberg and Papadimitriou 2006)
o In 2-player games. (Chen and Deng 2006)
O |n win-lose games. (Abbott, Kane and Valiant 2005)

Are there general classes of game in which finding
a NE is easier?
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Our Results

(Barany,Vempala and Vetta 2005)

There is a algorithm for finding a NE in a random 2-player
game which runs in polytime with high probability.

(Addario-Berry, Olver and Vetta 2006)

There is a polytime algorithm for finding a NE in a planar
win-lose 2-player game.
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Nash Equilibria

A 2-player game in normal form is represented by
two payoff matrices.
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A 2-player game in normal form is represented by
two payoff matrices.

A (3 73902\ g /52408 7)
9 1 1 3 4 5 46 8 5 7 3
7 46 2 8 0 2 3 7 1 3 3
0 4 2 3 3 9 8 6 1 1 6 4
6 6 5 5 1 1 0 3 4 9 3 8

\1 2 3 70 8 \7 1 56 2 0)

o Alice plays rows and Bob plays columns.

Alice and Bob play probability
distributions p™ and g* that are mutual best responses.

o p° = argmax, p'(Ag¢*) and ¢* = argmax, ¢ (B'p*)
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Best Responses and Extreme Points

Extreme points still correspond to best responses.

Po 3 (1/2,1/2)

*
‘0

Any extreme point on the anti-dominant of the
convex hull is a best response to some probability
distribution (g, 1-g) on columns 2 and 3.
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Best Responses and Facets

o But then faces can also correspond to best responses.

Theorem. (r1,75)and (c2,c3) form a NE
if and only if
(r1,75) is a facet of P2 3 and (co, ¢3) is a facet of P 5 .
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The # of Nash Equilibria

E(#d x d NE) > E(#extreme points)?

A set R of d rows is a best response to
a set C of d columns with probability

#tacets

(2)

and vice versa.
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The # of Extreme Points

Theorem. For the uniform distribution

E(#extreme points) = log? ' n

Proof.

E(#extreme points) = n / Pr(x is extreme) f(x) dx
rxed

> n/ Pr(H, separates x) f(x) dx
e[

- logd_1 n ]
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The # of Nash Equilibria

For the uniform distribution
E(#d x d NE) = log?d=Yp

° We expect lots of NE, even lots with 2x2 support.

o But this isn’t enough.VWe need concentration bounds.

o Can we show that Pr(# d x d NE = 0) is small?
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Cap Coverings

© The fraction of points on a convex hull K is

E(vol(K) = 1 — E(vol(K))

o A cap is the intersection of the cube and a halfspace.

Cap Covering Thm. @ars9) K can be closely covered by a
small number of low volume caps that don’t intersect much.
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Concentration Bounds

Cap coverings give concentration bounds on:

°© # extreme points

o # faces

Combinatorially. For NE we examine the probability
that a set S of rows forms a facet given that

(i) A set T of rows forms a face.

(i) We resample some of the coordinates.
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A Dumb Algorithm

Algorithm. Exhaustively search for dxd NE; d=1,2,...

Theorem. The algorithm finds a NE in polytime w.h.p.

Proof. There is a 2x2 NE w.h.p.
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Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

N

° Win-lose games have a bipartite, digraph
representation.

o O =
—_ = O
S = =
S O

1 >0 C1
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o A win-lose game is planar if it has a planar
digraph representation.
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bipartite, planar directed graph contains an
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Undominated Induced Cycles

But an undominated, induced cycle gives a NE.

=

o Alice and Bob simply play the uniform distribution
on their vertices in the cycle.

There is a polytime algorithm to find a
NE in a planar win-lose games.
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Open Problems

© Can we find a NE in a random game in
expected polytime!

o What other classes of game have
polytime algorithms?



