Finding Nash Equilibria in Certain Classes of 2-Player Game Adrian Vetta McGill University Finding a Nash equilibrium (NE) is hard. Finding a Nash equilibrium (NE) is hard. O In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006) Finding a Nash equilibrium (NE) is hard. - O In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006) - o In 2-player games. (Chen and Deng 2006) #### Finding a Nash equilibrium (NE) is hard. - O In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006) - o In 2-player games. (Chen and Deng 2006) - O In win-lose games. (Abbott, Kane and Valiant 2005) Finding a Nash equilibrium (NE) is hard. - O In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006) - o In 2-player games. (Chen and Deng 2006) - O In win-lose games. (Abbott, Kane and Valiant 2005) Are there general classes of game in which finding a NE is easier? # Our Results #### Our Results #### Random Games (Bárány, Vempala and Vetta 2005) There is a algorithm for finding a NE in a random 2-player game which runs in polytime with high probability. #### Our Results #### Random Games (Bárány, Vempala and Vetta 2005) There is a algorithm for finding a NE in a random 2-player game which runs in polytime with high probability. #### Planar Win-Lose Games (Addario-Berry, Olver and Vetta 2006) There is a polytime algorithm for finding a NE in a planar win-lose 2-player game. A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. $$\begin{array}{c} \textbf{A} \\ \begin{pmatrix} 3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8 \\ \end{pmatrix} \begin{array}{c} \textbf{B} \\ \begin{pmatrix} 5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0 \\ \end{pmatrix}$$ A 2-player game in *normal form* is represented by two payoff matrices. A 2-player game in *normal form* is represented by two payoff matrices. Alice plays rows and Bob plays columns. Nash Equilibrium: Alice and Bob play probability distributions p^* and q^* that are mutual best responses. A 2-player game in *normal form* is represented by two payoff matrices. Alice plays rows and Bob plays columns. Nash Equilibrium: Alice and Bob play probability distributions p^* and q^* that are mutual best responses. • $$p^* = \operatorname{argmax}_p p^T(Aq^*)$$ and $q^* = \operatorname{argmax}_q q^T(B^Tp^*)$ ``` \begin{pmatrix} 3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8 \end{pmatrix} ``` ``` \begin{pmatrix} 3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8 \end{pmatrix} ``` o If Bob plays column 1 then Alice plays row 2. o If Bob plays column 1 then Alice plays row 2. If Bob plays column 1 then Alice plays row 2. Geometrically: Plot Alice's options as points in 1-D, then row 2 is an extreme point. If Bob plays column 1 then Alice plays row 2. Geometrically: Plot Alice's options as points in 1-D, then row 2 is an extreme point. ``` A \begin{pmatrix} 3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8 \end{pmatrix} ``` What if Bob plays a mixed strategy on columns 2 and 3? ### A Geometric Interpretation of MSNE Geometrically: Alice's options are now points in 2-D. Extreme points still correspond to best responses. Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. Extreme points still correspond to best responses. • Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. Extreme points still correspond to best responses. Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. Extreme points still correspond to best responses. • Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. Extreme points still correspond to best responses. Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. Extreme points still correspond to best responses. Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution (q, 1-q) on columns 2 and 3. # Best Responses and Facets But then faces can also correspond to best responses. ## Best Responses and Facets But then faces can also correspond to best responses. # Best Responses and Facets But then faces can also correspond to best responses. Theorem. (r_1, r_5) and (c_2, c_3) form a NE if and only if (r_1, r_5) is a facet of $\mathcal{P}_{2,3}$ and (c_2, c_3) is a facet of $\mathcal{P}_{1,5}$. In random games matrix entries are drawn independently from a distribution. e.g. U[0,1], N(0,1) In random games matrix entries are drawn independently from a distribution. e.g. U[0,1], N(0,1) In random games matrix entries are drawn independently from a distribution. e.g. U[0,1], N(0,1) In random games matrix entries are drawn independently from a distribution. e.g. U[0,1], N(0,1) In random games matrix entries are drawn independently from a distribution. In random games matrix entries are drawn independently from a distribution. In random games matrix entries are drawn independently from a distribution. In random games matrix entries are drawn independently from a distribution. In random games matrix entries are drawn independently from a distribution. e.g. U[0,1], N(0,1) Points are in general position. Points are in general position. • All NE have *supports* of the same size. Points are in general position. • All NE have *supports* of the same size. *Proof.* Won't have d+1 points on (d-1)-dimensional facet. Points are in general position. • All NE have *supports* of the same size. Points are in general position. • All NE have *supports* of the same size. \circ # extreme points \leq # facets Points are in general position. • All NE have *supports* of the same size. \circ # extreme points \leq # facets *Proof.* Each facet has d points; each extreme point is on \geq d facets. Points are in general position. • All NE have *supports* of the same size. \circ # extreme points \leq # facets # The # of Nash Equilibria # The # of Nash Equilibria Theorem. $E(\#d \times d \text{ NE}) \geq E(\#\text{extreme points})^2$ # The # of Nash Equilibria Theorem. $E(\#d \times d \text{ NE}) \geq E(\#\text{extreme points})^2$ Proof. A set R of d rows is a best response to a set C of d columns with probability $$\frac{\text{\#facets}}{\binom{n}{d}}$$ and vice versa. ### The # of Extreme Points #### The # of Extreme Points #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ #### The # of Extreme Points #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ #### Proof. $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ $$H_x = \{ y : \sum_{i=1}^d \frac{1-y_i}{1-x_i} = d \}$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ $$H_x = \{ y : \sum_{i=1}^d \frac{1 - y_i}{1 - x_i} = d \}$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ $$H_x = \{ y : \sum_{i=1}^d \frac{1 - y_i}{1 - x_i} = d \}$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ $$\geq n \int_{x \in \square} \Pr(H_x \text{ separates } x) f(x) dx$$ #### Theorem. For the uniform distribution $$E(\#\text{extreme points}) \succeq \log^{d-1} n$$ #### Proof. $$E(\text{\#extreme points}) = n \int_{x \in \square} \Pr(x \text{ is extreme}) f(x) dx$$ $$\geq n \int_{x \in \square} \Pr(H_x \text{ separates } x) f(x) dx$$ • • $$\succeq \log^{d-1} n$$ #### Theorem. For the uniform distribution $$E(\#d \times d \text{ NE}) \succeq \log^{2(d-1)} n$$ #### Theorem. For the uniform distribution $$E(\#d \times d \text{ NE}) \succeq \log^{2(d-1)} n$$ • We expect lots of NE, even lots with 2x2 support. #### Theorem. For the uniform distribution $$E(\#d \times d \text{ NE}) \succeq \log^{2(d-1)} n$$ - We expect lots of NE, even lots with 2x2 support. - But this isn't enough. We need concentration bounds. #### Theorem. For the uniform distribution $$E(\#d \times d \text{ NE}) \succeq \log^{2(d-1)} n$$ - We expect lots of NE, even lots with 2x2 support. - But this isn't enough. We need concentration bounds. - Can we show that $\Pr(\# d \times d \text{ NE} = 0)$ is small? The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ A cap is the intersection of the cube and a halfspace. The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ A cap is the intersection of the cube and a halfspace. Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much. The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ A cap is the intersection of the cube and a halfspace. Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much. The fraction of points on a convex hull K is $$E(\text{vol}(\bar{K}) = 1 - E(\text{vol}(K))$$ A cap is the intersection of the cube and a halfspace. Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much. ### Concentration Bounds ### Concentration Bounds Cap coverings give concentration bounds on: - # extreme points - # faces ### Concentration Bounds Cap coverings give concentration bounds on: - # extreme points - # faces Combinatorially. For NE we examine the probability that a set S of rows forms a *facet* given that - (i) A set T of rows forms a face. - (ii) We resample some of the coordinates. Algorithm. Exhaustively search for dxd NE; d=1,2,... Algorithm. Exhaustively search for dxd NE; d=1,2,... Theorem. The algorithm finds a NE in polytime w.h.p. Algorithm. Exhaustively search for dxd NE; d=1,2,... Theorem. The algorithm finds a NE in polytime w.h.p. Proof. There is a 2x2 NE w.h.p. In a win-lose game the payoff matrices are 0-1. In a win-lose game the payoff matrices are 0-1. In a win-lose game the payoff matrices are 0-1. In a win-lose game the payoff matrices are 0-1. $$B \left(egin{array}{cccc} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{array} ight)$$ $$r_1 \bullet \qquad \qquad c_1$$ $r_2 \bullet \qquad \qquad c_2$ $r_3 \bullet \qquad \qquad c_3$ In a win-lose game the payoff matrices are 0-1. In a win-lose game the payoff matrices are 0-1. # Nash Equilibria ## Nash Equilibria In win-lose games NE can correspond to subgraphs. ## Nash Equilibria In win-lose games NE can correspond to subgraphs. A red and blue vertex with no in-arcs form a PSNE. In win-lose games NE can correspond to subgraphs. - Vertices r and c form a PSNE if - (i) (*r*,*c*) is an arc. - (ii) r has no in-arcs. In win-lose games NE can correspond to subgraphs. - Vertices r and c form a PSNE if - (i) (*r*,*c*) is an arc. - (ii) r has no in-arcs. • A vertex with no out-arcs is weakly dominated. - A vertex with no out-arcs is weakly dominated. - ° So if $\delta^-(S) = \emptyset$ then just find a NE in G[S]. - A vertex with no out-arcs is weakly dominated. - ° So if $\delta^-(S) = \emptyset$ then just find a NE in G[S]. A win-lose game is planar if it has a planar digraph representation. • A win-lose game is *planar* if it has a planar digraph representation. Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. • A win-lose game is *planar* if it has a planar digraph representation. Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C. • A win-lose game is *planar* if it has a planar digraph representation. Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C. • A win-lose game is *planar* if it has a planar digraph representation. Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C. ## Undominated Induced Cycles But an undominated, induced cycle gives a NE. Alice and Bob simply play the uniform distribution on their vertices in the cycle. Theorem. There is a polytime algorithm to find a NE in a planar win-lose games. # **Open Problems** ## Open Problems • Can we find a NE in a random game in expected polytime? ### Open Problems • Can we find a NE in a random game in expected polytime? • What other classes of game have polytime algorithms?