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Finding a Nash equilibrium (NE) is hard.

         In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006)

In 2-player games. (Chen and Deng 2006)

In win-lose games. (Abbott, Kane and Valiant 2005)

Are there general classes of game in which finding 
a NE is easier?
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Random Games (Barany, Vempala and Vetta 2005)

There is a algorithm for finding a NE in a random 2-player 
game which runs in polytime with high probability.

Planar Win-Lose Games (Addario-Berry, Olver and Vetta 2006)

There is a polytime algorithm for finding a NE in a planar 
win-lose 2-player game.
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Alice plays rows and Bob plays columns.

Nash Equilibrium: Alice and Bob play probability 
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Best Responses and Extreme Points

Extreme points still correspond to best responses.

Any extreme point on the anti-dominant of the 
convex hull is a best response to some probability 
distribution (q,1-q) on columns 2 and 3.

c3

c2

(1/2, 1/2)

r5
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Best Responses and Facets

But then faces can also correspond to best responses.

c3

c2

r1

r5
(2/3, 1/3)

P2,3

Theorem.              and             form a NE 
if and only if

             is a facet of          and             is a facet of          .

(r1, r5) (c2, c3)

P2,3 P1,5(r1, r5) (c2, c3)
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The # of Nash Equilibria

Theorem.  E(# d× d NE) ≥ E(#extreme points)2

Proof.   A set R of d rows is a best response to
a set C of d columns with probability

#facets(n
d

)

and vice versa.
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The # of Nash Equilibria

But this isn’t enough. We need concentration bounds.

We expect lots of NE, even lots with 2x2 support.

Can we show that                                       is small?Pr(# d× d NE = 0)

Theorem. For the uniform distribution  
E(#d× d NE) " log2(d−1) n



Cap Coverings



Cap Coverings

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))



Cap Coverings

K̄

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))



Cap Coverings

K̄

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))

A cap is the intersection of the cube and a halfspace. 
 



Cap Coverings

K̄

Cap Covering Thm. (Bar89)      can be closely covered by a 
small number of low volume caps that don’t intersect much.

K̄

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))

A cap is the intersection of the cube and a halfspace. 
 



Cap Coverings

K̄

Cap Covering Thm. (Bar89)      can be closely covered by a 
small number of low volume caps that don’t intersect much.

K̄

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))

A cap is the intersection of the cube and a halfspace. 
 



Cap Coverings

K̄

Cap Covering Thm. (Bar89)      can be closely covered by a 
small number of low volume caps that don’t intersect much.

K̄

The fraction of points on a convex hull K is 
 E(vol(K̄) = 1− E(vol(K))

A cap is the intersection of the cube and a halfspace. 
 



Concentration Bounds



Concentration Bounds

Cap coverings give concentration bounds on: 
 

# extreme points

# faces



Concentration Bounds

Cap coverings give concentration bounds on: 
 

# extreme points

# faces

Combinatorially. For NE we examine the probability 
that a set S of rows forms a facet given that 
      (i) A set T of rows forms a face.
      (ii) We resample some of the coordinates.
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A Dumb Algorithm

Algorithm. Exhaustively search for dxd NE; d=1,2,...

Theorem. The algorithm finds a NE in polytime w.h.p.

Proof. There is a 2x2 NE w.h.p.
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A vertex with no out-arcs is weakly dominated. 

S

So if                 then just find a NE in        . δ−(S) = ∅ G[S]
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Undominated Induced Cycles

Theorem.  There is a polytime algorithm to find a 
NE in a planar win-lose games.

Alice and Bob simply play the uniform distribution 
on their vertices in the cycle.

But an undominated, induced cycle gives a NE.

C
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Open Problems

Can we find a NE in a random game in 
expected polytime?

What other classes of game have 
polytime algorithms?


