Pricing Games in Networks

Éva Tardos Cornell University

Many Computer Science Games

• Routing:

routers choose path for packets though the Internet

• Bandwidth Sharing:

routers decide how to share limited bandwidth between many processes

- Load Balancing Balancing load on servers (e.g. Web servers)
- Network Design: Independent service providers building the Internet

Typical Objectives:

Minimize Delay

• Routing:

routers choose path for packets though the Internet

Load Balancing:

Balancing load on servers (e.g. Web servers)

Minimize Cost

• Bandwidth Sharing:

routers decide how to share limited bandwidth between many processes

Network Design:

Independent service providers building the Internet

Combine Cost and Delay

Prices in Market Models

Exchange market:

- buyers and sellers bring goods
- Market sets prices

Where do prices come from?

- Efficient algorithms for finding prices
 - Vazirani
- Tatonnement process
 - Cole-Fleischer

Is setting prices a game?

Price setting as part of a game

Facility location game [Vetta'02]

- Service providers choose locations
- and then select prices
- and users select location based on a combination of price + distance to selected location

Price of Anarchy: 2

Price setting as part of a game (2)

Pricing Game for Selfish Traffic [Acemoglu & Ozdaglar], [Hayrapetyan & T & Wexler]

- Service provides choose prices p_i
- users select providers minimizing price + delay (congestion based)

Price of Anarchy bound 3/2 for concave demand

Price Setting in Markets as a Game

[Larry Blume, David Easley, Jon Kleinberg, T] in EC'07

Example: financial markets

- buyers and sellers come to market
- Market makers (intermediaries) connect them
- Market makers set prices (asks and bids)
- Trade occurs based on prices

Traders connects buyers and sellers Traders offer price to sell (α) and buy (β) Sellers and buyers choose best offers Trade occurs

Networks of Sellers and Buyers

- Traders connect different buyers and sellers
- Traders make price offers to sell and buy
 - Offered prices may differ
- Sellers and buyers choose best offer
 - Sellers choose max
 - Buyers choose min
- and trade occurs

Example: Auction

Buyer with maximal value: 8 Trader offers to buy: monopoly Trader offers to sell: competition for the seller Transaction at second best price trader makes profit

Game Definition

Buyers and sellers valuation public knowledge The Game:

- Traders make price offers to sell and buy
- Sellers and buyers choose best offer
- Solution concept: subgame perfect equilibrium

Example: competitions

Monopoly prices

Any value $0 \le x \le 1$ is subgame perfect equilibrium

perfect competition

traders only make profit from monopoly

Questions About Market Game

Questions:

- Is there a subgame perfect equilibrium?
- how good is this outcome?
- Who ends up with the profit?

Extensions to distinguishable goods

- Example: Job market
 - Seller = job seeker
 - Buyer = hiring company
 - Both have preferences over the others

- Subgame perfect equilibrium exists
 - In pure strategies
- Outcome socially optimal
 - = Total valuation of those with goods is maximized
 - Note prices do not directly effect social welfare
 - Only buyers and sellers who end up with the good

What is Socially Optimal?

Max Value Matching problem

- Value of connecting seller i buyer j = =v_j- v_i=5-0=v(i,j)
- Maximum social value = maximum value matching in the induced bipartite graph

Socially optimal: proof

Simple special case: pair traders

• Each traders connect one buyer and one seller

Max value matching problem: Value of edge = value of matching buyer to seller

buyers buyers (i,j) = value of matching buyer j to seller i

Matching problem as linear program

$$LP \quad \begin{array}{l} \operatorname{Max} \Sigma_{ij} v(i,j) x_{ij} \\ \Sigma_j x_{ij} \leq 1 \text{ for all } i \\ \Sigma_j x_{ij} \leq 1 \text{ for all } j \\ x \geq 0 \end{array}$$

yalyi + $y_j \ge v(i,j)$ for edge (i,j) $y \ge 0$

Proof for Pair Traders

Theorem: Seller and buyer profits form linear programming dual variables with complementary slackness ⇒ solution is of maximum value

Complementary Slackness?

Theorem: Seller and buyer profits satisfy complementary slackness

- Seller or buyer makes money \Rightarrow involved in sale · y_i>0 implies than i is matched $\Sigma_j \times_{ij} = 1$
- Trader makes money \Rightarrow involved in sale • $y_i + y_j < v(i,j)$ for edge (i,j) than (i,j) in matching
- Trader is not in use \Rightarrow no trade opportunity
 - Edge (i,j) not used then $y_i + y_j \ge v(i,j)$

Equilibrium exists and socially optimal

Theorem:

- 1. Seller and buyer profits satisfy complementary slackness, hence trade maximizes social value
- 2. Optimal dual solution can be used to create (pure) subgame perfect equilibrium

Extends also to

- general traders and
- distinguishable goods (job-market)

Who ends up with the profit?

Range of Trader Profit?

Monopoly ask and buy values Subgame perfect equilibrium for any bid value y,X ∈[0,1] Trader profit is x+y+(1-x) = 1+y between 1 and 2

Results II

Theorem 1: we can get max. and min. possible profit in poly time

Theorem 2: trader t can make profit if and only if its connection to a seller of buyer i is essential for social welfare.

Analogous to VCG,

- but it's "budget balanced"
- and

Maximum possible profit?

Theorem: trader t can make profit if and only if its connection to a seller of buyer i is essential for social welfare

Note: trader t <u>cannot</u> make profit!

- Trader is essential (without t maximum social value is only 1)
- But no single connection to a seller or buyer is essential

Trader t cannot make profit?

- Trader is essential (without t social value =1)
- But no single connection to a seller or buyer is essential

One example

This is not a Nash

Summary of Market Pricing Game

Price-setting as a strategic game

- Subgame perfect equilibrium as solution
- Pure equilibrium exists
- And is always socially optimal

Price setting socially has pure equilibrium and is optimal ?????

- Demand curve
- Price p and number of users
- The profit resulting from price p
- Monopolist profit
- Welfare at monopoly price

Demand curve and Welfare at monopoly price p_m No distinction between profit and user value

Optimal welfare with price $0 \Rightarrow$ **Price of Anarchy bad**

Our Pricing Market Game

Allows individual pricing

Equilibrium exists?

Note: No price discrimination \Rightarrow equilibrium may not exists If $p \ge \frac{1}{2}$ then $\Rightarrow q=1$ If q=1 then $\Rightarrow p=1-\epsilon$ then $q=1-2\epsilon$ etc

Facility location game [Vetta'02] (revisited)

- Service providers choose locations
- and then prices (allows individual pricing)
- and users select location based on a combination of price + distance to selected location

selected facility
facility
facility
client

Price of Anarchy: 2

Pricing Game for Selfish Traffic (revisited)

[Acemoglu & Ozdaglar], [Hayrapetyan & T & Wexler]

- Service provides choose prices p_i (single price/link)
- users select providers minimizing price + delay (congestion based)

Price of Anarchy bound 3/2 for concave demand

Conclusion

We studied a market game where price setting is strategic behavior [Blume, Easley, J. Kleinberg, T in EC'07]

Price setting in other context?

- Facility location
- Link pricing with delays
- Many other natural contexts to understand