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End-to-end congestion control

Senders learn (through feedback from receivers) 
of congestion at queue, and slow down or speed 
up accordingly. With current TCP, throughput of 
a flow is proportional to 

senders receivers

)/(1 pT

T = round-trip time,  p = packet drop probability. 
(Jacobson 1988, Mathis, Semke, Mahdavi, Ott 1997, Padhye, 
Firoiu, Towsley, Kurose 1998, Floyd and Fall 1999)



Model definition

• We want to describe a network model, 
with fluctuating numbers of flows

• We first need
– notation for network structure
– abstraction of rate allocation

• Then we need to define the random nature 
of flow arrivals and departures



Network structure (J, R, A)
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Rate allocation
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w - weight of route  r

- number of flows on route r
- rate of each flow on route  r

Given the vector 
how are the rates  
chosen ?
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Optimization formulation

)(nxx =

α

α

−

−

∑ 1

1
r

r
r

r
xnw

subject to  

Rrx

JjCxnA

r

jrr
r

jr

∈≥

∈≤∑
0

maximize

Suppose                    is chosen to

(weighted    -fair allocations,  Mo and Walrand 2000)α
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Observe alignment with square-root formula  when            
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Solution



- maximum flow  
- proportionally fair
- TCP fair 
- max-min fair)1(
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Examples of    -fair allocations  α
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Example
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Flow level model
Define a Markov process
with transition rates
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Suppose vertical streams
have priority: then 
condition for stability is

and  not
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Stability? (i.e. positive recurrence?)

(Bonald and Massoulie 2001)



Fairness leads to stability

Suppose JjCA jr
r

jr ∈<∑ ρ

is positive recurrent 
(De Veciana, Lee and Konstantopoulos 1999;  
Bonald and Massoulie 2001).

Then the Markov process  )),(()( Rrtntn r ∈=

and resource allocation is weighted    -fair.α



Heavy traffic

We’re interested in what happens when we 
approach the edge of the achievable region, 
when
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Balanced fluid model
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State space collapse

The following are equivalent:
• n is an invariant state
• there exists a non-negative vector p 
with 
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Thus the set of invariant states forms a  J 
dimensional manifold, parameterized by  p. 



Workloads
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the workload for resource j,  and let

Define diagonal matrices
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Then W lies in the polyhedral cone
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Example
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Each bounding face corresponds 
to a resource not working at full 
capacity
Entrainment: congestion at some 
resources may prevent other 
resources from working at their 
full capacity. 1W
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Stationary distribution?
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Look for a stationary distribution for W, or equivalently, p. 
Williams (1987) determined sufficient conditions, in terms of the 
reflection angles and covariance matrix, for a SRBM in a 
polyhedral domain to have a product form invariant distribution – 
a skew symmetry condition 



Local traffic condition
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Assume the matrix A contains the columns of the 
unit matrix amongst its columns:

i.e. each resource has 
some local traffic -



Product form under 
proportional fairness
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Under the stationary distribution for the reflected 
Brownian motion, the (scaled) components of  p 
are independent and exponentially distributed.
The corresponding approximation for  n is

where 
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Dual random variables are independent and exponential!



Multipath routing
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First cut constraint
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Second cut constraint
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Generalized cut constraints
In general, stability requires

JjCA js
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- a collection of generalized cut constraints.
Provided        contains a unit matrix, we again have 
the approximation
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Again independent dual random variables, now 
one for each generalized cut constraint!
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