
Testing Geometric Properties ∗ †

Artur Czumaj ‡ Christian Sohler § Martin Ziegler ¶

Abstract

In this paper we study property testing for basic geometric properties. We aim at developing
efficient algorithms which determine whether a given (geometrical) object has a predetermined
property Q or is “far” from any object having the property. We show that many basic geometric
properties have very efficient testing algorithms, whose running time is significantly smaller
than the object description size. We present optimal property testing algorithms for the prob-
lem of testing disjointness of geometric objects, disjointness of V-polytopes, convex position
property of points sets, and of testing Delaunay triangulations.

∗The results presented in this paper appeared in a preliminary form as a part of the paper “Property testing in computational
geometry,” in Proceedings of the 8th Annual European Symposium on Algorithms (ESA’00), pages 155–166, volume 1879 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2000 [9].

†Research supported in part by NSF grants ITR-CCR-0313219, CCR-0105701, and by DFG grant Me 872/8-2.
‡Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom, czumaj@dcs.warwick.ac.uk.
§Heinz Nixdorf Institute and Department of Computer Science, University of Paderborn, D-33102 Paderborn, Germany,

csohler@upb.de.
¶Heinz Nixdorf Institute and Department of Computer Science, University of Paderborn, D-33102 Paderborn, Germany,

ziegler@uni-paderborn.de.

1 Introduction

Property Testing is the computational task to decide whether a given object (e.g., a graph, a function, or a
point set) has a certain predetermined property (e.g., bipartiteness, monotonicity, or convex position) or is
“far” from every object having this property. If the input object neither has the property nor is far from it,
the algorithm may answer arbitrarily. The concept of property testing was first formulated by Rubinfeld and
Sudan in the context of program checking [23]. Property testing arises naturally in the context of program
verification, learning theory, and, in a more theoretical setting, in probabilistically checkable proofs. For
example, in the context of program checking, one may first choose to test whether the program’s output
satisfies certain properties before checking that it is as desired. This approach is a very common practice in
software development, where it is (typically) infeasible to require to formally test that a program is correct,
but by verifying whether the output satisfies certain properties one can gain a reasonable confidence about
the quality of the program’s output. The study of property testing for combinatorial objects with focus on
graphs was initiated by Goldreich et al. [15]. In many follow-up papers the concept of property testing has
been applied to different classes of objects including graphs, matrices, languages, etc. For recent surveys of
results on property testing we refer the reader to [12, 14, 22].

In this paper we consider property testing as applied to geometric object in Euclidean spaces. We investi-
gate property testing for some basic and most representative problems/properties in computational geometry.
The main goal of this research is to develop algorithms which perform only a very small (sublinear, poly-
logarithmic, or even a constant) number of operations in order to check with a reasonable confidence the
required property. We study the following family of tasks:

Given oracle access to an unknown geometric object, determine whether the object has a certain
predefined property or is “far” from any object having this property.

Distance between objects is measured in terms of a relative edit distance. We say an object X (e.g., a set
of points in Rd) from a class C (e.g., a class of all point sets in Rd) is ε-far from satisfying a property Q

(over C) if no object Y from C which differs from X in no more than an ε-fraction of places (e.g., Y can be
constructed from X by adding and removing no more than ε · |X| points) satisfies Q.

The notion of “oracle access” corresponds to the representation of the objects in C and is problem
dependent. For example, if a geometric object is defined as a collection of points in Euclidean space, then
it is reasonable to require that the oracle allows the algorithm to ask only on the coordinate-position of each
single input point. If however, a geometric object is, say, a polygon, then the oracle shall typically allow to
query for the position of each point as well as for each single neighbor of each point in the polygon. In this
paper we shall always use the most natural notions of “oracle” for each problem at hand.

An ε-tester for a property Q is a (typically randomized) algorithm that always accepts1 any object
satisfying Q and with probability at least 2

3 rejects any object being ε-far from satisfying Q 2. There are
two types of possible complexity measures of a tester we focus on: the query complexity and the running
time complexity of an ε-tester. The query complexity of a tester is measured by the number of queries to
the oracle, while the running time complexity counts also the time needed by the algorithm to perform other
tasks (e.g., to compute a convex hull of some point set).

1In this paper we assume a one-sided error model, though in the literature also a two-sided error model has been considered. In
the two-sided error model one aims at distinguishing with probability at least 2

3
between the case an object X satisfies Q and the

case of X being ε-far from satisfying Q.
2One could consider a confidence parameter δ rather than fixing an error bound 1

3
. In that case one could apply here standard

amplification techniques and thus we have decided to fix the error bound.

1

To exemplify the notion of property testing, let us consider the standard geometrical property Q of a
point set P in Euclidean space Rd of being in convex position (a point set is in convex position if every point
of the set is a vertex of its convex hull). In this case, we aim at designing an algorithm that for a given oracle
access to P has to decide whether P is in convex position or P is “ε-far” from convex position. Here, we say
a set P is ε-far from convex position, 0 ≤ ε ≤ 1, if for every subset X ⊆ P of size at most ε · |P|, the set
P \ X is not in convex position. To design testers we assume that the oracle allows to query for the size of P

and for the position of each ith point in P, 1 ≤ i ≤ n.
In this paper we design ε-testers for some basic properties in computational geometry:

disjointness of geometric objects: property that an arrangement of objects is intersection-free,

disjointness of polytopes: property that two polytopes are intersection-free,

convex position: property that a set of points is in convex position, and

Delaunay triangulation: property that a triangulation is a Delaunay triangulation of a given point set.

1.1 Motivation

The concept of property testing can be viewed as a relaxation of a standard decision procedure: instead of
deciding whether an object has a given property or not, we only have to distinguish between the case when
the object has the property and the case when the object is far from it. Property testing algorithms have been
extensively studied in the literature in the recent years (cf. [12, 14, 22] and the references therein).

We believe that property testing is a natural form of approximation for many problems in Computational
Geometry. Whether or not the approximation provided by a standard approximation algorithm is more
useful than that of property testing depends on the problem at hand, but in some natural situations being
close to a property is almost as good as having the property. As a possible motivating example for our study,
let us consider the following problem from Computer Graphics of designing efficient rendering algorithms.
Rendering is the computational task to display a virtual scene on the screen. Such a virtual scene is typically
composed of several millions of polygons. Using nowadays graphics hardware and a standard z-buffer
algorithm it is not possible to render all polygons in a reasonable time. Therefore, it is necessary to determine
in advance if certain parts of the scene cannot be seen from the current point of view. This process is called
occlusion culling. Unfortunately, it is very difficult to compute exactly those polygons that cannot be seen
from a certain point of view. Many approaches have been developed to deal with this problem and some
of them work only for objects that have (roughly) a convex shape (see, e.g., the survey [6]). If we could
determine quickly in advance whether an object is convex or far from convex then we could quickly decide if
it is useful for the purpose of (online) occlusion culling. Such a service can be provided by a property testing
algorithm. Therefore we consider the closely related problem, if a point set (possibly the set of vertices of
an object used for culling purposes) is in convex position.

1.2 Related works

Despite a large body of research in testing combinatorial properties, there has not been much work done
in testing geometric properties. Alon et al. [1] and Czumaj and Sohler [8] investigated property testing of
clustering points in Rd. Some basic algorithms testing geometric properties are described in [7] and [9].

In the context of computational geometry a related notion of designing program checkers for some basic
geometric tasks has been investigated by Mehlhorn et al. [20]. Their approach is to design simple and effi-
cient algorithms which check whether an output of a geometric task is correct. The main difference between

2

Problem Query complexity Lower bound Running time

disjointness of geometric objects O(
√

n/ε) Ω(
√

n/ε) T(O(
√

n/ε))

disjointness of polytopes O (
d
ε · ln(d/ε)

)
Ω(1/ε) T(O (

d
ε · ln(d/ε)

)
)

sorted convex polygons O(1/ε) deterministic(!) Ω(1/ε) O(1/ε) deterministic(!)

convex position O(d+1
√

nd/ε) Ω(d+1
√

nd/ε) min{T(O(d+1
√

nd/ε)),O(n/ε)}

Delaunay triangulation (edit distance) O(n) Ω(n) O(n)

Delaunay triangulation (Def. 26) O(1/ε) Ω(1/ε) O(1/ε)

Table 1: ε-testers obtained in the paper. T(m) denotes the best known running time of the algorithm deciding
given property and we consider lower bounds with respect to the query complexity.

our approach and that in [20] is that property testing algorithms do not aim at deciding the property at hand
(in this case, whether the task output is correct), but instead we provide a certain notion of approximation
— we can argue that we do not accept the property (or the algorithm’s output) only if it is far from being
satisfied. This relaxation enables us to obtain algorithms with running times significantly better than those in
[20]. We sacrifice the 100% guarantee for the correctness of the output in the approach in [20] and achieve
a 99.9% guarantee with a much lower complexity.

We notice also that a conceptually similar (but not the same) type of approximation (closeness) as that
used in property testing have been also used before in computational geometry community, for example, for
geometric pattern matching problems and in [2] in a relaxation of the standard motion planning problem.
Also, a similar notion has been studied in the context of metrology of geometric tolerancing, see e.g., [21].

Ergün et al. [11] considered a related property that a sequence of points defines a convex hull inR2. This
problem is very different from the problem of testing convex position considered in the current paper. The
problem studied in [11] is to test if a sequence of points represents a polygon in R2 defines the convex hull
for the points in the sequence and it is possible to design a tester with (asymptotically) the same complexity
as that of testing sorting sequences, that is, of O(log n). The problem considered in the current paper
requires to test if a set of points is in convex position and its complexity is provably significantly higher (as
we prove in Lemma 20, it is Θ(n2/3) in 2-dimensional case). Furthermore, it is unclear how the techniques
from [11] can be applied to d-dimensional problem for d ≥ 3, while our techniques are extendable also
to the high-dimensional variant of the problem. The main reason behind this discrepancy is that in [11],
the polygon representation of the input is used, while we are using the geometric representation. Thus the
problems considered in [11] contains more structure (and therefore a faster tester exists) but the techniques
do not seem to generalize to higher dimension.

1.3 Description of new results

We provide efficient ε-testers for some basic problems in computations geometry. We investigate problems
that we found most representative for our study and that play an important role in the field. Table 1 sum-
marizes the bounds of our ε-tester developed in the paper in details. As it can be seen from Table 1, all
our algorithms are asymptotically tight or almost tight regarding their query complexity. We also prove a
general lower bound which shows that for many problems no deterministic ε-tester exists with the query
complexity o(n) already for ε = 1

2 .
All our property testers use the following approach: we first sample at random a sufficiently large subset

3

of input basic objects (e.g., input points) and then analyze the sample to obtain information about the whole
input. The key issue in this method is to provide a good description of the input’s property using a small
input’s sample. This approach is used in a simple way in our ε-testers for disjointness of geometric objects
and Delaunay triangulation, where such a description is easy to show. For disjointness of polytopes and
for testing convex position our arguments are more elaborate, because for these two problems it is more
complicated to prove the desired property of the whole input out of the analysis of small sample.

Technically, the analysis of testing convex position is most complicated. We develop a property testing
algorithm for the convex position property of point sets in Rd with query complexity of O

(
d+1

√
nd/ε

)
.

The algorithm for an input set P of n points in Rd tests O(d+1
√

nd/ε) points and is able to distinguish
between a set P in convex position and a set P that is ε-far from being in convex position. (Here, we say a
point set is ε-far from being in convex position if one has to modify at least an ε-fraction of the points to
obtain a set of points in convex position.) The algorithm is randomized and it will always accept a set in
convex position but it may fail with probability at most 1/3 for a set not in convex position. We also show
that our property testing algorithm is asymptotically optimal with respect to its query complexity, that is,
that every property tester for convex position must query Ω(d+1

√
nd/ε) points.

We mention also an important feature of all our algorithms, which is that all our testers supply proofs of
violation of the property for rejected objects.

Throughout the paper we always assume that d, the dimension of the Euclidean space under considera-
tion, is a constant. Moreover, we assume the size of the input object to be much bigger than d. Throughout
the paper we suppose also that all points/arrangements are in general position; this assumption is critical to
our analysis and our results hinge on it.

Organization. We begin in Section 2 with preliminaries. Next, in Section 3, we present some basic
probabilistic results about random sampling. In Section 4 we develop a tester for disjointness of a pair of
V-polytopes. In the next Section 5, we discuss the problem of testing if a point set is in convex position.
First, in Section 5.1, we develop a property tester for this problem, and then, in Section 5.2, we prove that
our tester has optimal complexity. Section 6 discusses testers for Delaunay triangulations. In Section 7, we
provide simple deterministic lower bounds for ε-testers. Section 8 contains final remarks.

2 Preliminaries

We begin with some basic notation and definitions. We use the Õ-notation to hide polylogarithmic factors,
i.e., we have Õ(n) = O(n logO(1) n). We write [n] = {1, . . . , n} for the set of integers between 1 and n.

Throughout the paper we assume that our input point set P is in general position, i.e., there are no k + 1

points in P that lie in a k-dimensional affine subspace for k < d. The assumption about general position is
critical to our analysis: the testers will fail if this assumption is not satisfied.

The goal of property testing is to develop efficient property testers. A property tester for Π is an algo-
rithm that gets a distance parameter ε and the size n of the input point set P. The property tester has oracle
access to the input function f (for each x ∈ [n] it may query for the value of f(x)). A property tester must3

• accept every function f ∈ Π, and

• reject every function f that is ε-far from Π with probability at least 2
3 .

3We consider a one-sided error model, though in the literature also a two-sided error model has been considered. In the two-
sided error model the goal is to distinguish with probability at least 2

3
between the case f ∈ Π and of f being ε-far from Π.

4

Notice that if f /∈ Π and f is not ε-far from Π, then the outcome of the algorithm can go either way.

3 Auxiliary lemmas about random sampling

All our testing algorithms use the following random sampling approach: pick a sample set of certain pre-
specified size independently and uniformly at random, and then analyze properties of the sample. In this
section we present auxiliary probabilistic lemmas that will be used in these analyzes. Although all our results
are tuned for the applications presented in this paper, they can be also applied in more general context.

Lemma 1 Let Ω be an arbitrary set of n elements. Let k and ` be arbitrary integers (possibly dependent on
n) and let s be an arbitrary integer such that s ≥ 2 n

(2 k)1/` . Let W1, . . . , Wk be arbitrary disjoint subsets of
Ω, each of size `. Let W be a subset of Ω of size s which is chosen independently and uniformly at random.
Then

Pr [∃j ∈ [k] : (Wj ⊆ W)] ≥ 1

4
.

Proof : We first observe that we can focus on the case k ≤ n
2 , because if k > n

2 , then every set Wi

contains exactly one element and then we immediately get Pr[∃j ∈ [k] : (Wj ⊆ W)] ≥ 1
2 . Furthermore,

since k ≤ n
2 yields ` + n−`

(2 k)1/` ≤ 2 n
(2 k)1/` , it is sufficient to consider only the case s = ` + n−`

(2 k)1/` . Next, by
Boole-Benferroni inequality, we obtain

Pr [∃j ∈ [k] : Wj ⊆ W] ≥
k∑

j=1

Pr[Wj ⊆ W] −
∑

1≤i<j≤k

Pr[(Wi ∪Wj) ⊆ W] .

Furthermore, we observe that for every j ∈ [k] it holds that

Pr[Wj ⊆ W] =

(
n−`
s−`

)
(
n
s

) =
(n − `)!

(s − `)! (n − s)!
· s! (n − s)!

n!
=

(n − `)! s!

n! (s − `)!
=

`−1∏

r=0

s − r

n − r
.

Similar arguments can be used to show that for every i, j ∈ [k], if i 6= j, then it holds that

Pr[(Wi ∪Wj) ⊆ W] =

(
n−2 `
s−2 `

)
(
n
s

) =

2 `−1∏

r=0

s − r

n − r
=

`−1∏

r=0

s − r

n − r
·

`−1∏

r=0

(s − `) − r

(n − `) − r
.

Hence, Boole-Benferroni inequality implies that

Pr [∃j ∈ [k] : (Wj ⊆ W)] ≥ k ·
`−1∏

r=0

s − r

n − r
−

(
k

2

)
·

`−1∏

r=0

s − r

n − r
·

`−1∏

r=0

(s − `) − r

(n − `) − r

= k ·
`−1∏

r=0

s − r

n − r
·
(

1 −
k − 1

2
·

`−1∏

r=0

(s − `) − r

(n − `) − r

)

≥ k ·
`−1∏

r=0

s − `

n − `
·
(

1 − k ·
`−1∏

r=0

s − `

n − `

)

= k ·
(

s − `

n − `

)`

·
(

1 − k ·
(

s − `

n − `

)`
)

.

5

Now, since we assumed that s = ` + n−`
(2 k)1/` , our calculations above yield Pr[∃j ∈ [k] : (Wj ⊆ W)] ≥ 1

4 ,
and thus the lemma follows. 2

Corollary 2 If in the Lemma 1 we have s ≥ 8 n
(2 k)1/l , then

Pr [∃j ∈ [k] : (Wj ⊆ W)] ≥ 2

3
.

Proof : The proof follows from Lemma 1 by standard amplification arguments. Indeed, we consider set W

as 4 independently selected sets W∗
1 , W∗

2 , W∗
3 , W∗

4 , each of size s
4 ≥ 2 n

(2 k)1/l , and apply Lemma 1 to obtain

Pr [∃j ∈ [k] : (Xj ⊆ W)] ≥ 1 −

4∏

i=1

(1 − Pr[∃j ∈ [k] : (Wj ⊆ W∗
i)]) ≥ 1 − (3/4)4 ≥ 2

3
.

2

We can use similar arguments as that in the proof of Lemma 1 to prove the following result.

Lemma 3 Let Ω be an arbitrary set of n elements. Let k, `, and r be arbitrary integers (possibly dependent
on n) and let s ≥ 2 n

(2 k)1/` be an integer. Let X1, . . . , Xk be any disjoint subsets of Ω of size l each. Let

Y1, . . . , Yk be any (not necessarily disjoint) subsets of Ω−
⋃k

j=1 Xj, each of size at least r. Let S be a subset

of Ω of size s which is chosen independently and uniformly at random. If r ≥ n ln(8 k)
s , then

Pr [∃j ∈ [k] : ((Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] ≥ 1

8
.

Proof : The proof is similar to that of Lemma 1 and uses Boole-Benferroni inequality. As in the proof
of Lemma 1, we can set s = ` + n−`

(2 k)1/` . We first give bounds for Pr[(Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] and
Pr[(Xi ∪ Xj ⊆ S) ∧ (Yi ∩ S 6= ∅) ∧ (Yj ∩ S 6= ∅)].

Notice that if i 6= j, then

Pr[(Xi ∪ Xj ⊆ S) ∧ (Yi ∩ S 6= ∅) ∧ (Yj ∩ S 6= ∅)] ≤ Pr[(Xi ∪ Xj ⊆ S)] .

Next, we observe that by the union bound, we obtain that

Pr[(Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] = 1 − Pr[(Xj 6⊆ S) ∨ (Yj ∩ S = ∅))]
≥ 1 − (Pr[Xj 6⊆ S] + Pr[Yj ∩ S = ∅])
= Pr[Xj ⊆ S] − Pr[Yj ∩ S = ∅] .

Therefore, by Boole-Benferroni inequality we obtain that

Pr [∃j ∈ [k] : ((Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] ≥
≥

∑

j∈[k]

Pr[(Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] −
∑

i,j∈[k],i6=j

Pr[(Xi ∪ Xj ⊆ S) ∧ (Yi ∩ S 6= ∅) ∧ (Yj ∩ S 6= ∅)]

≥

∑

j∈[k]

Pr[Xj ⊆ S] −
∑

i,j∈[k],i6=j

Pr[(Xi ∪ Xj ⊆ S)]

 −

∑

j∈[k]

Pr[Yj ∩ S = ∅] .

6

Furthermore, by our arguments from the proof of Lemma 1, we know that for our choice of s we have,

∑

j∈[k]

Pr[Xj ⊆ S] −
∑

i,j∈[k],i6=j

Pr[(Xi ∪ Xj ⊆ S)]

 ≥ 1

4
.

Therefore, we only have to focus on giving an upper bound for Pr[Yj ∩ S = ∅]. Then we have

Pr[Yj ∩ S = ∅] ≤
(
n−r

s

)
(
n
s

) =

r−1∏

t=0

n − s − t

n − t
=

n∏

t=n−r+1

(
1 −

s

t

)
≤ exp

(
n∑

t=n−r+1

−s

t

)

= exp

(
−s ·

n∑

t=n−r+1

1

t

)
≤ exp

(
−s · r · 1

n

)
.

Finally, we observe that since we assumed that r ≥ n ln(8 k)
s , we obtain Pr[Yj ∩ S = ∅] ≤ 1

8 k . Hence, we
obtain the claimed bound:

Pr [∃j ∈ [k] : ((Xj ⊆ S) ∧ (Yj ∩ S 6= ∅))] ≥

∑

j∈[k]

Pr[Xj ⊆ S] −
∑

i,j∈[k],i6=j

Pr[(Xi ∪ Xj ⊆ S)]

−
∑

j∈[k]

Pr[Yj ∩ S = ∅] ≥ 1

4
− k · 1

8 k
=

1

8
.

2

The following corollary follows immediately from Lemma 3 by setting the parameters appropriately and
by amplification.

Corollary 4 Let Ω be an arbitrary set of n elements. Let d be an arbitrary integer and let J = ε n
d+1 be

an integer for certain real ε, 0 < ε < 1. Let W1, . . . , WJ be disjoint subsets of Ω of size d + 1 each.
Further, let U1, . . . , UJ be arbitrary (not necessarily disjoint) subsets of Ω −

⋃J
j=1 Wj, each of size at

least 8 · (εn)1/(d+1) · ln(ε n
d+1). Let S be a subset of Ω of size at least 36 · (nd/ε)1/(d+1) which is chosen

independently and uniformly at random. Then

Pr [∃j ∈ [J] ∃u ∈ Uj : (Wj ∪ {u} ⊆ S)] ≥ 2

3
.

Next, we prove that the bounds for s in Lemma 1 and in Lemma 3 are tight up to a constant factor.

Lemma 5 Let Ω be an arbitrary set of n elements. Let k, `, and s be arbitrary integers (possibly dependent
on n). Let W1, . . . ,Wk be any disjoint subsets of Ω of size ` each. Let S be a subset of Ω of size s which is
chosen independently and uniformly at random. For every real p, 0 < p < 1, (possibly depending on other
parameters), if s ≤ (n − (` − 1)) · (p/k)1/`, then

Pr [∃j ∈ [k] : (Wj ⊆ S)] ≤ p .

Proof : We use the union bound to obtain that

Pr [∃j ∈ [k] : (Wj ⊆ S)] ≤
k∑

j=1

Pr[Wj ⊆ S] =

k∑

j=1

`−1∏

r=0

s − r

n − r
≤ k ·

(
s

n − (` − 1)

)`

.

Therefore, if s ≤ (n − (` − 1)) · (p/k)1/`, then the above inequality is upper bounded by p. 2

7

3.1 Sample application: Disjointness of generic geometric objects

To present the flavor of our property testing algorithms and their use of the lemmas above, we show now a
simple tester that verifies whether a collection of objects is disjoint (this result appears also in [10]). The
problem of deciding whether an arrangement of objects is intersection-free belongs to the most fundamental
problems in computational geometry. A typical example is to verify whether a set of line segments in the
plane or a set of hyper-rectangles or polytopes in Rd is intersection free. We assume the oracle allows to
query for the input objects and we suppose that there is an algorithm A that solves the exact decision problem
of testing whether a set of objects is disjoint. Furthermore, we consider the problem only for generic objects
(i.e., we use no information about the structure of the objects used, and so, the object analyzed may be of
arbitrary complexity; observe, however, that the running time complexity of this problem depends heavily
on the object properties, because so does the (implicitly used) algorithm A).

We say a collection of objects X is ε-far from being disjoint if there is no set T ⊆ X with |T | ≤ ε · |X|

such that X − T is disjoint. Then the following algorithm is a simple ε-tester:

DISJOINTNESS (set X consisting of n objects)
Choose a set S ⊆ X of size 8

√
n/ε uniformly at random

Check whether S is disjoint using algorithm A

if S is disjoint then accept
else reject

Theorem 6 Algorithm DISJOINTNESS(X) is an ε-tester with the query complexity Θ(
√

n/ε). Further-
more, its query complexity is asymptotically optimal. If the running time of the algorithm A for k objects is
T(k), then the running time of DISJOINTNESS(X) is O(T(8

√
n/ε)).

Proof : We first prove that DISJOINTNESS(X) is an ε-tester. Clearly, if X is intersection-free, then the
algorithm accepts X. So let us suppose that X is ε-far from being intersection-free. It easy to see that case we
can apply 1

2 nε times the following procedure to X: pick a pair of intersecting objects and remove it from
X. Thus in order to prove that DISJOINTNESS(X) is an ε-tester it is sufficient to show that with probability
at least 2

3 , at least one of the pairs is chosen to S (because the objects from each pair intersect each other).
To conclude the bound we apply Corollary 2. Sets W1, . . . , Wk (with k = 1

2 εn) in Corollary 2 are the
aforementioned pairs of intersecting objects and W = S. Since the size of S is 8

√
n/ε, the upper bound

for the query complexity follows.
To prove that every ε-tester has query complexity of Ω(

√
n/ε), let us consider two possible sets X: the

one in which X is pairwise disjoint and another one in which X consists of εn pairs of objects intersecting
each other within the pair and n − 2 ε n objects, each having no intersection with any other object. Then,
any ε-tester which distinguishes between the first and the second input and rejects the second set must query
the oracle to obtain at least once two objects from the same pair. Hence, we can apply Lemma 5 to show
that in order the tester to reject X the oracle must be queried at least Ω(

√
n/ε) times.

The last claim regarding the running time of the algorithm follows from our discussion above. 2

4 Disjointness of V-Polytopes

For any point set P in Rd let CH(P) denote the convex hull of P. In this section we consider a special
case of testing disjointness of geometric objects and analyze the property if for a given point sets (in convex

8

(a) (b)

Figure 1: (a) Two V-polygons defined by the two sets of points that are disjoint and (b) two V-polygons that
are not disjoint.

positions) R and B, the two polytopes CH(R) and CH(B) (so called V-polytopes4) are disjoint. We refer to
the point sets R and B as red and blue, respectively. Let P = R ∪ B and n = |P|.

Definition 7 Two polytopes CH(R) and CH(B) with finite points sets R, B ⊆ Rd in convex position are
ε-far from being disjoint, if there is no set V ⊆ R∪B, |V | ≤ ε · |R∪B|, such that CH(R−V) and CH(B−V)

are disjoint.

In this section we show that the following algorithm is an ε-tester for disjointness of V-polytopes.

DISJOINTNESS (R, B):
Choose a set S ⊆ P of size Θ

(
d
ε ln(d/ε)

)
uniformly at random

Test whether R ∩ S and B ∩ S are disjoint
if R ∩ S and B ∩ S are disjoint then accept
else reject

Before we proceed with the analysis of Algorithm DISJOINTNESS, we first recall a result on ε-nets due
to Haussler and Welzl [18]. Consider the range space

(
Rd,H)

with H being the set of all halfspaces in Rd.
It is known that H has Vapnik-Chervonenkis-dimension d + 1. For any real 0 < ε < 1 and any finite set
X ⊆ Rd, let us consider the setHX ,ε of all h ∈ H which contain a fraction of the points in X of size greater
than or equal to ε, i.e., HX ,ε = {h ∈ H : |h ∩ X | ≥ ε · |X |}. An ε-net of X for the range space

(
Rd,H)

is a subset Y ⊆ X containing a point in each h ∈ HX ,ε. The celebrated result of Haussler and Welzl [18]
on the existence of ε-nets states that a random subset Z of X of size at least c d

ε ln(d/ε) with probability at
least 0.9, where c is a suitable chosen absolute constant, is an ε-net of X . Now, we show how this result can
be applied to design an ε-tester for disjointness of V-polytopes with ε = 2 ε.

We begin with a simple observation (which follows easily from Definition 7) on the structure of sets
ε-far from being disjoint. For any hyperplane h we denote by h− and h+ two halfspaces induced by h. It
is easy to see that two convex polytopes are disjoint if and only if the can be separated by some hyperplane.
The following result extends this observation to pairs of sets that are ε-far from being disjoint.

Observation 8 Let R and B be two point sets whose V-polytopes are ε-far from being disjoint, and let h be
any hyperplane. It holds that |R ∩ h+| + |B ∩ h−| ≥ ε n and |R ∩ h−| + |B ∩ h+| ≥ εn. Therefore, in
particular, at least one of the following four cases must hold:

4For any point set X of points in Rd that are in convex position (cf. Definition 11), a V-polytope is its convex hull CH(X).

9

h+
h+

b

a

(red)

(red)
(blue)

(red)
a

b

h+ h+

(blue)

(blue)

(red)

(blue)

a

b

a

b

Figure 2: Different types of witnesses for which hyperplane h does not separate CH(R) from CH(B).

(1) |R ∩ h−|, |R ∩ h+| ≥ εn/2,

(2) |R ∩ h−|, |B ∩ h−| ≥ εn/2,

(3) |R ∩ h+|, |B ∩ h+| ≥ εn/2,

(4) |B ∩ h−|, |B ∩ h+| ≥ εn/2. 2

With this simple observation and the result above on ε-nets, we can prove the following theorem.

Theorem 9 Algorithm DISJOINTNESS is an ε-tester for disjointness of V-polytopes with the query com-
plexity O (

d
ε ln(d/ε)

)
.

Proof : Since the query complexity follows immediately from the bound on the size of S, we focus
on showing that DISJOINTNESS is a proper ε-tester. It is easy to see that if R and B are disjoint then
DISJOINTNESS always accepts the input. So let us suppose that the input is ε-far from being disjoint. Since
CH(R) and CH(B) are disjoint if and only if they can be separated by some hyperplane, our goal is to ensure
that with probability at least 2

3 , for every hyperplane h, the sample set S contains a witness that h does not
separate CH(R) from CH(B). It is easy to see that such a witness exists if we could ensure that for every
hyperplane h set S contains two points a, b such that either (a, b) or (b, a) belongs to one of the following
four sets (see also Figure 2):

(R ∩ h−)× (R ∩ h+) , (R ∩ h−)× (B ∩ h−) , (R ∩ h+)× (B ∩ h+) , (B ∩ h−)× (B ∩ h+) .

Moreover, by Observation 8 we know that for at least one of these four sets, the sets in the Cartesian
product are of cardinality at least εn/2 each. Let such two sets be called a representative for h. Therefore,
by our discussion above, in order to complete the proof of the theorem we only must show that S intersects
each representative set for every hyperplane h in Rd. And this follows from the result on the randomized
construction of ε-nets mentioned above (with ε = 2 ε). Indeed, by the aforementioned result due to Haussler
and Welzl [18], the set S is with probability at least 2

3 an (ε/2)-net of each of R and B for the range space(
Rd,H)

. Therefore, by the definition of ε-nets, S intersects every representative of each hyperplane h in
Rd. 2

One can also easily improve the query complexity of algorithm DISJOINTNESS in the special case when
d = 2 and the input polygons are stored in a sorted array (i.e., the input points of each of R and B are
stored in an array such that the consecutive vertices of the polygon CH(R) (CH(B), respectively) are on the
consecutive positions in the array).

10

Theorem 10 For all pairs of polygons in R2 represented by a sorted array there exists a deterministic ε-
tester for disjointness of V-polytopes with the query complexity and the running time of O(1/ε).

Proof : Using similar arguments as those in Observation 8, one can show that if we take as S every ε n
2 th

element from each polygon R and B, then if R and B are ε-far from being disjoint, then there will be a
certificate for that in S, i.e., S ∩ CH(R) and S ∩ CH(R) will intersect. 2

5 Testing convex position

In this section, we present a detailed analysis of the problem of testing if a given set of points in Rd is in
convex position. First, in Section 5.1, we develop a simple property tester and then prove its properties.
Next, in Section 5.2, we give a matching lower bound for the complexity of any property tester for convex
position. We will summarize our discussion in Section 5.3.

We begin with some basic definitions used in our analysis.

Definition 11 A point p ∈ P is called an extreme point of P if p is a vertex of CH(P), the convex hull of P.
The interior of CH(P) will be denoted by CHint(P). A point set P is in convex position if every point in

P is an extreme point, that is, CHint(P) ∩ P = ∅.

We assume that P is represented by a function f : [n] → Rd. We also need a distance measure that
determines when a point set is far from having the convex position property. We use the most natural
definition (most typical for property testing applications) which measures the fraction of the input that has
to be changed to obtain an object having the property.

Definition 12 A set P of n points is ε-far from convex position if no set Q of size (at most) εn exists such
that P \ Q is in convex position.

5.1 Testing convex position — upper bound

In this section we prove that the following algorithm is a property tester for convex position:

CONVEXTESTER (P, ε)

let s = 16
(
4 d+1

√
nd/ε + 2d + 2

)

Choose a set S ⊆ P of size s uniformly at random
if S is in convex position then accept
else reject

In order to show that CONVEXTESTER is a property tester we have to prove that (1) it accepts every point
set in convex position and (2) it rejects every point set that is ε-far from convex position with probability at
least 2/3.

We observe that CONVEXTESTER accepts every point set in convex position because every subset of a
set in convex position is in convex position, as well. Thus we only have to prove that a point set that is ε-far
from convex position is rejected with high probability.

Now let us assume that P is ε-far from convex position. We want to prove that algorithm CONVEX-
TESTER rejects P with probability at least 2/3. We will use the Carathéodory’s Theorem [4] that implies

11

that every point set that is not in convex position can be rejected by finding a subset of d + 2 points that is
not in convex position. We refer to such a subset as a counter example.

The idea of the analysis is now to consider sets Wi, 1 ≤ i ≤ εn
2(d+1) , of d + 1 points that can be easily

extended to a set of d + 2 points that is not in convex position. Easily extendible means that there is a large
set Ui of points such that for each p ∈ Ui the set Wi ∪ {p} is a counter example.

Finding counter examples. We now formalize this idea and prove two technical lemmas.

Lemma 13 Let P be a set of n points in Rd. Let p ∈ Rd be a point with p ∈ CHint(P), where P ∪ {p} is
in general position. Then there exist sets W ⊆ P and U ⊆ P \ W with |W| = d and |U| ≥ n

d+1 such that
p ∈ CHint(W ∪ {q}) for each q ∈ U.

p

1 2

3
p

p p

Figure 3: Illustration for the proof of Lemma 13. One of the cones Ci (this one is defined by p1 and p2).

Proof : Since p ∈ CHint(P), by Carathéodory’s Theorem [4] and by the general position assumption,
it follows that there is a set W∗ ⊆ P of size d + 1 such that p ∈ CHint(W

∗). Let us denote by W∗
i ,

1 ≤ i ≤ d+ 1, the subsets of W∗ of size d. We show that one of the subsets W∗
i of W∗ satisfies Lemma 13.

Without loss of generality, let us assume that p = (0, . . . , 0). We partition Rd into d + 1 cones. Let W−
i ,

1 ≤ i ≤ d + 1, denote the set of points {(−x1, . . . , −xd) : (x1, . . . , xd) ∈ W∗
i }. The conic combination of

the point vectors in the set W−
i defines a cone Ci ,1 ≤ i ≤ d + 1. The union of these cones Ci covers Rd.

Thus there is a cone Cj, 1 ≤ j ≤ d + 1, that contains at least n
d+1 points of P (and also of P \ W∗

j since
W∗

j ∩Cj = ∅). We also observe that for each q ∈ P ∩Cj it holds that p ∈ CHint(W
∗
j ∪ {q}). Therefore, we

can conclude that the sets W = W∗
j and U = P ∩ Cj satisfy the lemma. 2

The second technical lemma shows that if a point set is ε-far from convex position then there are many
sets Wi and Ui such that Wi ∪ {q} is not in convex position for every q ∈ Ui.

Lemma 14 Let P be a set of n points in Rd that is ε-far from convex position and let k = εn
d+1 . Then there

exist sets Wi ⊆ P, i ∈ [k], and sets Ui ⊆ P, i ∈ [k], such that the following properties are fulfilled:

(1) |Wi| = d + 1, i ∈ [k],

(2) Wi ∩Wj = ∅ for all i, j ∈ [k] with i 6= j,

(3) Wi ∪ {q} is not in convex position for every q ∈ Ui, and

(4) |Ui| ≥ (1 − ε) · n
d+1 .

12

Proof : We construct point sets P1, P2, . . . , Pk with P1 = P, Wi ⊆ Pi and Pi+1 = Pi \ Wi. Clearly, this
definition ensures that the sets Wi are disjoint. We show how to construct sets Wi and Pi.

First of all, observe that for every i ∈ [k] it holds that |Pi| = n − (d + 1)(i − 1) and thus |Pi| ≥
n−(d+ 1)(εn

d+1 − 1). This implies that |P \Pi| < εn and so the set Pi cannot be in convex position (by the
definition of ε-far we can delete every set of size at most εn and do not obtain a point set in convex position).
Since Pi is not in convex position there is a point p ∈ CHint(Pi). We apply Lemma 13 with p and Pi \ {p}

and obtain the sets W and U. We choose Wi = W ∪ {p} and Ui = U. By Lemma 13, we get |Wi| = d + 1

and Wi∪{q} is not in convex position for each q ∈ Ui. We already observed that |Pi| ≥ n−(d+1)(εn
d+1 −1).

Thus we know that |Pi \ {p}| ≥ n − εn which means that |Ui| ≥ n−εn
d+1 = (1 − ε) · n

d+1 . All properties in
Lemma 14 are satisfied and the lemma is proven. 2

Lemma 15 Algorithm CONVEXTESTER is a property tester for the convex position property. Its query
complexity is O(d+1

√
nd/ε).

Proof : We have to prove that CONVEXTESTER accepts every point set in convex position and rejects
every point set that is ε-far from convex position with probability 2/3.

We already observed that algorithm CONVEXTESTER accepts every point set in convex position. There-
fore, we have to show that every point set that is ε-far from convex position is rejected with probability
at least 2/3. Let P be a point set that is ε-far from convex position and let k = ε n

d+1 . Then there exist
sets Wi and Ui, i ∈ [k], with the properties stated in Lemma 14. Now let S ⊆ P be a point set of size
4 d+1

√
nd/ε + 2(d + 1) chosen uniformly at random from P. Without loss of generality, let us assume that

ε < 1/2. We view S as the union of two sets W and U of size 4 d+1
√

nd/ε and 2 (d + 1), respectively.
Clearly, we can assume that each of them is chosen uniformly (and independently) at random from P. We
first observe that for a fixed Ui of size (1 − ε) n

d+1 :

Pr [Ui ∩U 6= ∅] ≥ 1 −

(
1 −

|Ui|

n

)|U|

≥ 1 − 1/e ≥ 1/2 .

Moreover, we know that:

Pr [P is rejected] ≥ Pr [∃i ∈ [k] : Wi ⊆ S and Ui ∩ S 6= ∅]
≥ Pr [∃i ∈ [k] : Wi ⊆ W and Ui ∩U 6= ∅]
≥ Pr [∃i ∈ [k] : Wi ⊆ W] · 1/2 .

Now we use our auxiliary Lemma 1 showing that if we take a sample of size s from a set Ω of n elements,
then with good probability we have at least one of k disjoint sets (each of size `) in our sample. To derive a
bound on Pr [∃i ∈ [k] : Wi ⊆ W], we apply Lemma 1 with k = ε n

d+1 , ` = d + 1, and

s = 4 d+1

√
nd/ε ≥ d+1

√
(2 n)d · (d + 1)/ε ≥ 2n

(2 k)1/`

and obtain:
Pr [∃i ∈ [k] : Wi ⊆ W] ≥ 1/4 .

We conclude that
Pr [P is rejected] ≥ 1/8 .

13

If algorithm CONVEXTESTER chooses a set S of size 16 ·
(
4 d+1

√
nd/ε + 2 (d + 1)

)
then

Pr [P is rejected] ≥ 1 − (1 − 1/8)16 ≥ 2/3 ,

which proves the query complexity stated in Lemma 15. 2

5.2 Testing convex position — lower bound for query complexity

In this section we prove that the property tester described in the previous section is asymptotically optimal
with respect to the query complexity. We first show that the existence of a property tester with query
complexity q(ε, n) implies that there is a canonical property tester with the same query complexity, i.e.,
a property tester that samples a set S of q(ε, n) points uniformly at random and accepts if and only if the
sample set S is in convex position. Then we show that for sufficiently large n there is a point set P that is
ε-far from convex position such that

Pr[S is in convex position] > 1/3

holds, if S ⊆ P is a set of q(ε, n) = o(d+1
√

nd/ε) points chosen uniformly at random from P. This implies
that there is no property tester with query complexity q(ε, n).

In this section we consider only properties of point sets that do not depend on their representation as a
function f : [n] → Rd, i.e., either every functional representation of a point set P has the property or no
representation has the property. We call these properties combinatorial properties.

5.2.1 Canonical property testers

We begin our analysis with a fundamental lemma that is needed for lower bound constructions. We show
that if there is a property tester for a combinatorial property Π of point sets with query complexity q(ε, n)

then there is a property tester for Π that picks a sample set S ⊆ P of size q(ε, n) uniformly at random and
decides based on S and its internal coin flips. The proof is similar to the proof of Lemma 4.1 in [16] which
is based on an analogous statement proven by Bar-Yossef et al. in [3].

The idea of the proof is simple: There are n! different representations of the same point set, one for each
permutation of [n]. When we start our algorithm on a random representation of the same set then choosing
the next index adaptively is essentially equivalent to picking another element uniformly at random. This is
formalized in the following lemma.

Lemma 16 (Testing by Canonical Property Testers) Let Π be an arbitrary combinatorial property of point
sets and let A be an arbitrary property tester for Π with query complexity q(ε, n). Then there exists a prop-
erty tester for property Π that selects a set S of q(ε, n) points uniformly at random and accepts or rejects
the input solely on the base of S and its internal coin flips.

Proof : Recall that a point set P = {p1, · · · , pn} in the Rd is represented by a function f : [n] → Rd

with f(i) = pi. Since Π is a combinatorial property we know that we can analyze properties of P rather
than properties of the function representing P. That is, if one representation (permutation of points) of P has
property Π then every other representation also has property Π. We use this fact in the following to construct
a property tester that samples uniformly at random from an arbitrary property tester for Π. Both property
testers have the same query complexity.

14

Let A be an arbitrary property tester for Π. Without loss of generality, we assume that algorithm A
operates in iterations. In each iteration, depending on its internal coin flips and the answers obtained in the
past iterations, the algorithm selects a new index i and makes a query for the position of the point pi.

Now we obtain a new algorithmA ′ from A in the following way: WhenA ′ is started with input point set
P of size n (given to the oracle) it first chooses a permutation π of [n] uniformly at random. Then algorithm
A is invoked with oracle access to the point set π(P) that is represented by the function fπ : [n] → Rd

defined by fπ(i) = f(π(i)). We observe that π(P) has property Π if and only if P has property Π since
π(P) = P and since property Π is combinatorial. Furthermore, we know that A is a property tester for
property Π. Thus it must accept the input if π(P) has property Π. It follows that if P has property Π then A ′
accepts.

If P is ε-far from Π then so is π(P). By the fact that A is a property tester it follows that π(P) is rejected
by A with probability at least 2/3. It follows that A ′ also rejects P with probability at least 2/3. Thus we
know that A ′ is a property tester for property Π.

Our next step is to show that in each iteration of algorithm A ′ the next chosen point is uniformly dis-
tributed among all possible choices (among all points that have not been chosen in a previous iteration).
For every sequence r of coin flips let Ar denote the deterministic algorithm obtained from A by fixing the
outcome of the coin flips according to r. Furthermore, let A ′r denote the algorithm similar to A ′ with the
exception that Ar is invoked instead of A. We show that for every sequence r of coin flips and for every
possible sequence of queries and answers the choice of the point selected next by algorithm A ′ is uniformly
distributed among the points not selected so far.

Let iπ1,r, . . . , i
π
j,r denote the indices selected by A ′r in iterations 1 to j, i.e., the indices selected when Ar

is invoked with oracle access to the point set π(P). Furthermore, let qπ
1,r, . . . , q

π
j,r denote the points selected

by A ′r in iterations 1 to j, i.e., qπ
`,r = fπ(iπ`,r) for 1 ≤ ` ≤ j. The choice of the index iπj+1,r selected by A ′r

in iteration j + 1 depends only on the previously selected points qπ
1,r, . . . , q

π
j,r . Thus when we condition

π by fπ(iπ`,r) = qπ
`,r, 1 ≤ ` ≤ j, the choice of index iπj+1,r is deterministic. Furthermore, we prove in

the following claim that for every fixed index iπj+1,r under the same conditioning the point fπ(iπj+1,r) is
uniformly distributed among the points not selected so far:

Claim 17 Let i1, . . . , ij ∈ [n] be distinct indices and let q1, . . . , qj ∈ P be distinct points. Then for each
i ∈ [n] \ {i1, . . . , ij} and each p ∈ P \ {q1, . . . , qj}:

Pr[fπ(i) = p
∣∣ fπ(i`) = q`, 1 ≤ ` ≤ j] =

1

n − j
.

Proof : The number of permutations of [n] with fπ(i`) = q` for 1 ≤ ` ≤ j is equal to (n − j)!. For each
i ∈ [n] \ {i1, . . . , ij} and each p ∈ P \ {q1, . . . , qj} the number of permutations of [n] with fπ(i) = p and
fπ(i`) = q` for 1 ≤ ` ≤ j is equal to (n − j − 1)!. Therefore,

Pr[fπ(i) = p
∣∣ fπ(i`) = q`, 1 ≤ ` ≤ j] =

(n − j − 1)!

(n − j)!
=

1

n − j
.

2

Thus we know that in each iteration of algorithm A ′r the next chosen point is uniformly distributed
among the points not chosen so far. We use this fact to build an algorithm A ′′ that has the same output
distribution as A ′. Then we design an algorithm A ′′′ that samples a set S ⊆ P of q(ε, n) points uniformly at
random and then decides based on internal coin flips and the point positions. We observe that we can execute

15

algorithm A ′ by first choosing a sequence r of coin flips uniformly at random and then invoking algorithm
A ′r. AlgorithmA ′′ works in a similar manner. It first chooses a sequence r of coin flips uniformly at random.
Then it invokes algorithm A ′′r . Algorithm A ′′r behaves similarly to algorithm A ′r with the exception that in
each iteration when A ′r requests the position of the point with index i algorithm A ′′r selects uniformly at
random an index not selected so far and returns the corresponding point. Let us formalize this point and
look at iteration j of both algorithms. Let ij denote the index selected by algorithm A ′

r in iteration j and
let i ′j denote the index selected by algorithm A ′′

r . When during iteration j + 1 algorithm A ′r requests the
position of the point stored at index ij+1 then A ′′r selects an index i ′j+1 uniformly at random from the set
[n] \ {i ′1, . . . , i

′
j} and answers the query with the position of point i ′j+1.

Claim 18 Let P be any point set in the Rd. If algorithms A ′′ and A ′ are invoked with oracle access to the
same function representing P then their output distributions are identical.

Proof : Let us fix the function representing P and r (for both algorithms). We show by induction on the
number of iterations that the output distribution of algorithms A ′′r and A ′r are identical. We already proved
for a fixed selection of points in iterations 1 to j that the next point chosen by algorithm A ′r is uniformly
distributed among all points not selected so far. Clearly, the same is true for algorithmA ′′r (if the distribution
of the indices is uniform then so is the distribution of the corresponding points). Thus the induction step
holds and thus the output distributions of both algorithms are identical. 2

We have already proven that A ′ is a property tester for property Π. Since the output distributions of A ′′
and A ′ are identical for every input point set we have shown that algorithm A ′′ is also a property tester. But
A ′′ uses a non-adaptive sampling. Finally, we show that there is an algorithm A ′′′ that samples a set S of
q(ε, n) points uniformly at random and decides based on S and its internal coin flips.

Algorithm A ′′′ first samples a set S of q(ε, n) indices uniformly at random and then chooses a permu-
tation (i1, · · · , iq(ε,n)) of S uniformly at random. It then runs algorithm A ′′ and answers the j-th query of
algorithm A ′′ by returning the point stored at index ij.

Claim 19 Let P be any point set in Rd. If algorithms A ′′′ and A ′′ are invoked with oracle access to the
same function representing P then their output distributions are identical.

Proof : As before, we fix the function representing point set P and the random choice of r. We show by
induction on the number of iterations that both algorithms have the same output distribution. It suffices to
show that the choice of the index in iteration j + 1 is uniformly distributed among the indices not chosen so
far. For every index i ∈ [n] \ {i1, . . . , ij} it holds that

Pr[ij+1 = i
∣∣ i` 6= i for 1 ≤ ` ≤ j] =

q(ε, n) − j

n − j
· (q(ε, n) − j − 1)!

(q(ε, n) − j)!
=

1

n − j
.

Thus the index is chosen uniformly at random from the set of remaining indices. Hence, the output distribu-
tions of algorithms A ′′′ and A ′′ are identical. 2

Algorithm A ′′′ satisfies the statement of Lemma 16 what completes the proof of Lemma 16. 2

5.2.2 Lower bound for testing for convex positions

Equipped with the framework of canonical property testers developed in Section 5.2.1 and in Lemma 16,
we are ready now to prove our lower bound for testing for convex position.

16

Lemma 20 Every property tester (with one sided error) for convex position has query complexity Ω(d+1
√

nd/ε).

Proof : The proof is by contradiction. Assume there is a property tester A for convex position with query
complexity q(ε, n) = o(d+1

√
nd/ε). We first want to prove that there is a canonical tester with the same

query complexity:

Claim 21 Let A be a property tester for convex position of point sets with query complexity q(ε, n). Then
there is a property testerA ′′ for convex position of point sets that samples a set S of q(ε, n) points uniformly
at random and accepts if and only if the points in S are in convex position.

Proof : By Lemma 16 we know that there is a property tester A ′ that samples a set of q(ε, n) points
uniformly at random and decides whether to accept the input or to reject it on the base of S and its internal
coin flips. Let A ′′ be an algorithm that samples a set S of q(ε, n) points uniformly at random and that
accepts if and only if S is in convex position. We want to prove that A ′′ is a property tester. Clearly,
algorithm A ′′ accepts every point set in convex position. Thus we have to prove that it rejects every point set
that is ε-far from convex position. We show this indirectly by proving that if algorithm A ′ rejects a sample
set S then so does algorithm A ′′. By definition a property tester has one-sided error and so A ′ must accept
if the sample is in convex position. But if the sample S is not in convex position then A ′′ rejects. It follows
that A ′′ always rejects when A ′ rejects. Since A ′ is a property tester it rejects every point set P that is ε-far
from disjoint with probability at least 2/3. Hence algorithm A ′′ also rejects such a set P with probability at
least 2/3. Since A ′′ accepts every point set in convex position we have shown that A ′′ is a property tester
for convex position. This proves Claim 21. 2

Let us denote by A ′′ the property tester as obtained in Claim 21. In the remainder of the proof we
construct a point set P of n points that is ε-far from convex position and show that this point set is accepted
by A ′′ (observe that A ′′ is uniquely defined by q(ε, n)) with probability at least 1/2. Since P is ε-far from
convex position this is a contradiction to the fact that A ′′ is a property tester (which would require that P is
rejected with probability at least 2/3 > 1 − 1/2 = 1/2).

We start with an overview of our construction and then present it in details. The idea is to construct
a point set P that consists of εn + 1 sets Wi of size d + 1 (and some additional points). Each set Wi

consists of a set Fi of d extreme points that form a facet of the convex hull and one point qi that is located
infinitesimally close to the facet but in the interior of the convex hull. The point set has the property that
every subset S ⊆ P of size more than d + 1 is not in convex position if and only if there is a set Wi ⊆ S.

Figure 4: An example for the lower bound construction in 2D.

17

Now let S be a point set of size s chosen uniformly at random from P. We apply Lemma 3 with p = 1/2

and obtain that for

s ≤ (n − d) ·
(

1

2(εn + 1)

)1/(d+1)

= Θ

(
d+1

√
nd/ε

)

our sample set S does not contain one of the sets Wi with probability at least 1/2. Hence S is in convex
position with probability at least 1/2 and thus algorithm A ′′ is not a property tester, if q(ε, n) ≤ (n − d) ·(

1
2(εn+1)

)1/(d+1)
.

ph

H−
p Hp

+

p

Figure 5: Step 1: We start with a point set in convex position.

Detailed construction. For a set X and a point p in Rd let dist(X, p) = minx∈X ||x − p||. Let P1 be a
set of n − d · (εn + 1) points in general and convex position and let ε < 1/d − 1/n. Furthermore, let
P2 = {p1, . . . , pk} ⊆ P1 be a subset of size k = εn + 1. For each point p ∈ P1 let hp denote a hyperplane
(a tangent to CH(P1)) such that hp ∩ CH(P1) = p. Next, letH+

p ,H−
p denote the closed halfspaces induced

by hp such that H+
p denotes the halfspace containing P1 (Figure 5). Let

β = min
p,q∈P1,p6=q

dist(hp, q) .

Observation 22 Every point set P̃1 obtained from P1 by perturbing each of the points in P1 by a distance
of less than β/2 is in convex position.

ph ph

p

Figure 6: Step 2: We replace some points by a set Fi of d = 2 points.

18

Instead of perturbing the point set we replace each point pi ∈ P2 by a set Fi, i ∈ [k], of d points (Figure
6). We do this replacement in such a way that we obtain a point set P3 in general and convex position. For
a point p ∈ Rd, let B(p, β/3) denote the d-dimensional ball with center p and radius β/3. We choose each
Fi such that

• q ∈ hp ∩ B(p, β/3) for each q ∈ Fi,

• P3 = P1 \ P2 ∪ F is in general position, where F =
⋃

i∈[k] Fi.

Clearly, we can choose the Fi such that P3 is in general position because we can move the points within
B(pi, β/3) ∩ hpi

to destroy every degenerate cases. We observe that P3 is in convex position since hpi
is a

witness for the fact that the points in Fi are extreme points in P3.
We obtain the set P from P3 by adding a set Q = {q1, . . . , qk} of k points to P3. Let Wi = Fi ∪ {qi} for

each qi ∈ Q. We want to choose Q in such a way that:

• P = P3 ∪Q is ε-far from convex position, and

• if a subset S ⊆ P contains no set Wi, i ∈ [k], completely, then S is in convex position.

ph ph

q’i

vi i
q

Figure 7: Step 3: We place another point in the interior of CH(Fi) and move it slightly along vi into the
interior of the convex hull.

We now give a construction that satisfies these properties. For each i ∈ [k], let q ′i denote a point in the
interior of the ((d − 1)-dimensional) convex hull of Fi and let vi denote a vector pointing from q ′i in the
interior of CH(P3) (Figure 7).

Let qi(β) denote the point q ′i +β ·vi. For i ∈ [k] and p ∈ Fi let hFi,p(β) denote the hyperplane induced
by Fi \ {p} ∪ {qi(β)}. Furthermore, let H+

Fi,p
(β) and H−

Fi,p
(β) denote the halfspaces induced by hFi,p(β)

such that H+
Fi,p

(β) contains P for β = 0. Since P3 is in general position there is a value β∗ such that for
every i ∈ [k] and every p ∈ Fi the halfspace H+

Fi,p
(β∗) contains P3 \ {p} and such that P3 ∪Q is in general

position (where Q is defined as follows). We choose qi = qi(β
∗) and Q =

⋃
i∈[k] qi. We now have to

prove that Q has the required properties:

Claim 23 The set P = P3 ∪Q is ε-far from convex position. If a subset S ⊆ P does not contain a set Wi

completely, then S is in convex position.

Proof : Assume P is ε-close to convex position. Then there is a set R of at most εn points such that P \ R

is in convex position. Since |R| ≤ εn there is a set Wi completely contained in P \ R. Furthermore, we
know that by the size of P and R there must be at least one further point q in P \ R. By the choice of Q we

19

know that q is in H+
Fi,p

(β∗) for each p ∈ Fi. Hence qi is in the interior of CH(Fi ∪ {q}) which contradict
the fact that P \ R is in convex position.

It remains to prove the second statement. Let S ⊆ P a subset that contains no set Wi completely.
Without loss of generality, we assume that it contains exactly d points of each set Wi. If these points are the
points in Fi then by our construction the hyperplane hpi

is a witness that the points in Wi = Fi are extreme.
Otherwise, one of the points in Fi is not in S. Let is call the missing point p. Then hFi,p(β∗) is a witness
that the points are extreme points. Thus for every point p ∈ S we have a witness that p is extreme. Hence S

is in convex position. 2

Next, we want to use our probabilistic Lemma 5 to give an upper bound on the probability that a sample
set of size s chosen uniformly at random contains one of k sets Wi completely. We apply Lemma 5 with
p = 1/2 and obtain that for

s ≤ (n − d) ·
(

1

2(εn + 1)

)1/(d+1)

= Θ

(
d+1

√
nf/ε

)

a sample set S of size s chosen uniformly at random from P does not contain one of the Wi with probability
at least 1/2. Since q(ε, n) = o(d+1

√
nd/ε), we have for sufficiently large n

q(ε, n) ≤ (n − d) ·
(

1

2(εn + 1)

)1/(d+1)

.

It follows that there exists a point set P that is ε-far from convex position and that is accepted by algorithm
A ′′ with probability at least 1/2. Since the existence of a property tester for convex position with query
complexity q(ε, n) implies that algorithm A ′′ is a property tester, it follows that there is no property tester
with query complexity o(d+1

√
nd/ε). 2

5.3 Complexity of testing convex position

The following theorem summarizes the results in this section, and it states both, the query complexity of the
obtained tester and its running time complexity.

Theorem 24 Let P be a point set of n points in the Rd. Let T(n) be the running time of the fastest known

algorithm [5] to decide if a point set is in convex position; currently T(n) = O(n · logO(1) h+(nh)
bd/2c
bd/2c+1 ·

logO(1) n), with h denoting the number of extreme points of the set.
Then there is a property tester for the convex position property with query complexity O(d+1

√
nd/ε)

and running time O(T(d+1
√

nd/ε)). Furthermore, every property tester for convex position has a query
complexity of Ω(d+1

√
nd/ε).

Proof : Follows from Lemma 15 and Lemma 20. 2

6 Delaunay triangulations

In this section we consider the problem of testing another classical structure in computational geometry
which is the Delaunay triangulation (see, e.g., [13, 17]). For a given point set P in R2, the Delaunay
triangulation is a collection of edges on P (which is a triangulation of P) such that for each edge we can find

20

a circle containing the edge’s endpoints but not containing any other points. Our goal is to develop a test to
check whether a triangulation is Delaunay or it is far from the Delaunay triangulation. 5

We assume the triangulation is given as a planar map. It is known that the Euclidean minimum spanning
tree (EMST) for the input point set in R2 is a subgraph of the Delaunay triangulation, and in a companion
paper [10] (see also [9]) we presented a property tester for the EMST. The distance measure we used was
the edit distance: a graph is ε-far from EMST if one needs to delete or insert at least an ε fraction of the
edges to obtain an EMST. Thus it seems natural to apply edit distance also to Delaunay triangulations. But
it turns out that this measure makes the testing very hard, since a single vertex insertion might change the
whole triangulation.

Theorem 25 There is no sublinear property 1
4 -tester for Delaunay triangulations using edit distance (edge

deletion and insertion). This result holds even for property testers with two-sided error.

Proof : We will construct two distributions D1, D2 over geometric graphs with vertices inR2. Graphs from
D1 will be proper Delaunay triangulations and graphs from D2 will be ε-far from a Delaunay triangulation
in the edit distance and for some small enough constant ε.

Distribution D1 will only contain a single instance, which is constructed as follows. The vertices have
the following coordinates: (1, 0), (1, 1

n), (1, 2
n), . . . , (1,

dn/2e
n), . . . , (0, 1

2n), (0, 3
2n), (0, 5

2n), The graph
G in D1 is the Delaunay triangulation of these points. Distribution D2 is obtained by choosing one vertex
from G uniformly at random, deleting this vertex and re-triangulating the created hole. This way, we obtain
a Delaunay triangulation G ′ over n − 1 points. Now we consider the triangles from G that are also in G ′

and select one of them uniformly at random. We place a new point v at the center of gravity of this triangle.
It can be easily seen that there is a constant α > 0, such that any such point lies in the circumcircle of αn

triangles of G ′. We connect v with the vertices of the triangle it is contained in. Thus, we have obtained a
triangulation that is ε-far from Delaunay for ε < α.

It remains to show that no algorithm with o(n) query complexity can distinguish between these two
distributions with probability at least 2/3. Let us consider an arbitrary property tester A with query com-
plexity q(n) and let us fix the random bits ofA. We first consider the result of runningA on G. Let us mark
every vertex that accessed by the algorithm either by querying its position or querying an incident edge.
Now let us consider a random graph from G ′. Clearly, G ′ can be distinguished from G only if one of the
marked vertices are changed during the construction of G ′. But in this construction only a constant number
of vertices is changed and so the probability that a marked vertex is changed is O(q(n)/n). Summing up
over all strings of random bits we obtain that the probability of accepting G ′ is at least 2/3 − O(q(n)/n),
since A must accept G with probability at least 2/3. Since A is a property tester, it must reject G ′ with
probability at least 2/3, which implies that q(n) = Ω(n). 2

Testing Delaunay triangulation using different distance measures. We have seen that the Delaunay
triangulation is less suited for property testing than the EMST. However, there is a fast property test for
the Delaunay triangulation in another distance measure. For a given triangulation T , a flip of an edge e

5Here we sketch an interesting application of such a test during the (exact) computation of the Delaunay triangulation with an
incremental algorithm: We compute the Delaunay triangulation using floating point arithmetic and fix the triangulation at the end
of the algorithm (e.g., with edge flips now using exact arithmetic). To guarantee that we keep close to the correct triangulation
after O(1) vertex insertions we check whether the current triangulation is close to the Delaunay triangulation. If our test algorithm
rejects, we fix the triangulation and continue. This way we can avoid that small errors at the beginning of the computation lead to
large structural defects in the final triangulation.

21

is a triangulation obtained from T by removal of edge e and inserting another edge e∗ 6= e to the square
obtained after the removal.

Definition 26 A triangulation is ε-far from being Delaunay if there are at least εn edges that can be flipped
to improve the minimal angle locally.

Since any triangulation contains Θ(n) “flippable” edges [19] the above definition gives us a weak but
still useful distance measure for the Delaunay property. One can easily show that sampling and checking
O(1/ε) edges suffices to test whether a triangulation is ε-far from Delaunay.

Theorem 27 If we define a triangulation to be ε-far from being Delaunay if there are at least εn edges
that can be flipped to improve the minimal angle locally, then there exists an ε-tester with the running time
of O(1/ε). 2

7 Deterministic lower bounds

In this section we briefly discuss that if one requires only deterministic algorithms, for most of geometric
properties Ω(n) time is required.

Our model for the deterministic algorithms is as follows. The input is given as an array of input items.
The array has size n and we may access any item by its index in constant time. Let A be a deterministic
1
2 -tester for property Q. Let I be an instance of size n with property Q. By the definition, A must accept I.
Let TA(n) be the running time of A. Clearly, A can access at most TA(n) items of I. We color the accessed
items red and all other items blue.

Since A is deterministic, changing the blue items does not affect the outcome of the algorithm. To obtain
a lower bound of Ω(n), it is enough to show that if TA(n) < 1

2n and A examines only red items, then we
can construct from I an instance that is 1

2 -far from P by changing only blue items regardless how the red
items are chosen by A. Therefore, we can easily conclude with the following theorem.

Theorem 28 There is no deterministic 1
2 -tester with o(n) query complexity for the following problems:

Property Structure
Sorting Array

Convex Position Point Set
Disjointness of Polytopes Point Set
Disjointness of Objects Object Set

Euclidean Minimum Spanning Tree Graph
Delaunay Triangulation Planar Map

2

8 Final comments

A preliminary version of this paper appeared in a form of an extended abstract as a part of [9]. The con-
ference version [9] has been then split into two parts, one which forms the current paper and another which
appears in [10]. [10] contains a property testing algorithm for testing if a given graph is an Euclidean span-
ning tree of a given set of points in R2. Since that property testing algorithm is of different flavor and is
quite complex, we decided to split the conference version of the paper into two journal publications.

22

Acknowledgements

We thank Stefan Funke and Emo Welzl for their helpful comments on this work.

References

[1] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. SIAM Journal of Discrete Mathe-
matics, 16(3): 393–417, 2003.

[2] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Approxi-
mate motion planning and the complexity of the boundary of the union of simple geometric figures.
Algorithmica, 8: 391–406, 1992.

[3] Z. Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds and applica-
tions. In Proceedings of the 33th Annual ACM Symposium on Theory of Computing (STOC), pp.
266–275, 2001.

[4] C. Carathéodory. Über den Variabilitätsbereich der Fourierschen Konstanten von positiven har-
monischen Funktionen. Rendiconto del Circolo Matematico di Palermo, 32: 193–217, 1911.

[5] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete
& Computational Geometry, 16(3): 369–387, 1996.

[6] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for walkthrough
applications. IEEE Transactions on Visualization & Computer Graphics, 9(3):412–431, 2003.

[7] A. Czumaj and C. Sohler. Property testing with geometric queries. In Proceedings of the 9th Annual
European Symposium on Algorithms (ESA), pp. 266–277, 2001.

[8] A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property testers. SIAM
Journal on Computing, 34(3): 580–615, 2005.

[9] A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry. In Proceedings
of the 8th Annual European Symposium on Algorithms (ESA), pp. 155–166, 2000.

[10] A. Czumaj, C. Sohler, and M. Ziegler. Testing Euclidean minimum spanning trees in the plane.
Accepted to ACM Transactions on Algorithms, 2007.

[11] F. Ergün, S. Kannan, S. Ravi Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. Journal of
Computer and System Sciences, 60: 717–751, 2000.

[12] E. Fischer. The art of uninformed decisions. a primer to property testing. Bulletin of the European
Association for Theoretical Computer Science, 75: 97–126, 2001.

[13] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 20, pages 377–388, CRC
Press, Boca Raton, FL, 1997.

23

[14] O. Goldreich. Combinatorial property testing (a survey). In P. Pardalos, S. Rajasekaran, and
J. Rolim, eds., Proceedings of the DIMACS Workshop on Randomization Methods in Algorithm
Design, volume 43 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 45–59, 1997. American Mathematical Society, 1999.

[15] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4): 653–750, 1998.

[16] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random Struc-
tures and Algorithms, 23(1): 23–57, 2003.

[17] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and
Voronoi diagrams. Algorithmica, 7(4): 381–413, 1992.

[18] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computational
Geometry, 2: 127–151, 1987.

[19] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Computational
Geometry, 22(3): 333–346, October 1999.

[20] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking geometric
programs or verification of geometric structures. Computational Geometry: Theory and Applica-
tions, 12: 85–103, 1999.

[21] K. Mehlhorn, T. C. Shermer, and C. K. Yap. A complete roundness classification procedure. In
Proceedings of the 13th Annual ACM Symposium on Computational Geometry (SoCG), pp. 129–
138, 1997.

[22] D. Ron. Property testing. In P. M. Pardalos, S. Rajasekaran, J. Reif, and J. D. P. Rolim, eds.,
Handobook of Randomized Algorithms, volume II, pp. 597–649. Kluwer, 2001.

[23] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program
testing. SIAM Journal on Computing, 25(2): 252 – 271, 1996.

24

