
Multiple-choice Balanced Allocation in (almost) Parallel?

Petra Berenbrink1, Artur Czumaj2, Matthias Englert2,
Tom Friedetzky3, and Lars Nagel4

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada.
petra@sfu.ca

2 DIMAP and Department of Computer Science, University of Warwick, UK.
{A.Czumaj, M.Englert}@warwick.ac.uk

3 School of Engineering and Computing Sciences, Durham University, Durham, UK.
tom.friedetzky@dur.ac.uk

4 Zentrum für Datenverarbeitung, Johannes Gutenberg Universität Mainz, Germany.
nagell@uni-mainz.de

Abstract. We consider the problem of resource allocation in a parallel environ-
ment where new incoming resources are arriving online in groups or batches.
We study this scenario in an abstract framework of allocating balls into bins.
We revisit the allocation algorithm GREEDY[2] due to Azar, Broder, Karlin, and
Upfal (SIAM J. Comput. 1999), in which, for sequentially arriving balls, each
ball chooses two bins at random, and gets placed into one of those two bins with
minimum load. The maximum load of any bin after the last ball is allocated by
GREEDY[2] is well understood, as is, indeed, the entire load distribution, for a
wide range of settings. The main goal of our paper is to study balls and bins
allocation processes in a parallel environment with the balls arriving in batches. In
our model, m balls arrive in batches of size n each (with n being also equal to the
number of bins), and the balls in each batch are to be distributed among the bins
simultaneously. In this setting, we consider an algorithm that uses GREEDY[2]
for all balls within a given batch, the answers to those balls’ load queries are with
respect to the bin loads at the end of the previous batch, and do not in any way
depend on decisions made by other balls from the same batch.
Our main contribution is a tight analysis of the new process allocating balls in
batches: we show that after the allocation of any number of batches, the gap
between maximum and minimum load is O(logn) with high probability, and is
therefore independent of the number of batches used.

1 Introduction

One of the central challenges in modern distributed systems is to cope with the problem
of allocating their resources effectively in a balanced way. In this paper we consider a
general scenario of resource allocation in the case when new incoming resources are
arriving as a stream of batches, and the resources from each incoming batch are to be

? Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), by
EPSRC awards EP/D063191/1, EP/G069034/1, EP/F043333/1 and EP/F043333/1, and by .

allocated instantly. Although any analysis of the resource allocation protocols depends
heavily on various properties of the underlying system, such as, for instance, the un-
derlying network, service times and processing times, our focus is to study resource
allocation schemes in an abstract framework of balls and bins, which is known to be
able to provide important insights into more complex systems.

The framework of balls and bins is a powerful model with various applications in
computer science, e.g., the analysis of hashing, the modeling of load balancing strate-
gies, or the analysis of distributed processes. The typical aim is to find strategies that
balance the balls evenly among the bins and produce small maximum loads. While tra-
ditionally mostly processes allocating balls into random bins (the single-choice scheme)
have been studied (cf. [8,10]), more recently the main focus has been on the analysis
of extensions of processes that let each ball choose multiple random bins instead of
one, and then allocate itself to one of the chosen bins by considering their loads (see,
e.g., [3,4,7,9,14,15]). As many of these papers have demonstrated, multiple-choice pro-
tocols maintain the simplicity of the original single-choice scheme, while at the same
they have superior performance in many natural settings. For example, if one allocates
sequentially n balls into n bins by choosing d ≥ 2 random bins for each ball and then
places the ball into the lesser loaded of the chosen bins (such a scheme will be denoted
by GREEDY[d]), then no bin will have load greater than ln lnn

ln d + O(1) with high prob-
ability (w.h.p.5) [3], which compares favorably to the allocation of the balls performed
i.u.r. (independently and uniformly at random), where the maximum load is Θ(lnn

ln lnn),
w.h.p.

One major disadvantage of the multiple-choice strategies described above is that
they unfold their full potential only in a sequential setting. For example, to prove the
bounds for the standard multiple-choice schemes [3,4,15], it is assumed that the m
balls are allocated online, one after another, and that the information about bin loads is
immediately updated after allocation of each ball. These assumptions are unrealistic in
various load balancing applications, e.g., where the balls model the jobs in some parallel
or distributed setting and the choices of the balls must be performed independently and
in parallel, or in scenarios where the balls cannot easily access the current load of the
bins, for example, because of the delay in receiving this information. To cope with this,
various multiple-choice strategies have been developed for parallel environments to deal
with concurrent requests [1,2,11,13] and communication delays [6,7,12]. They base
their decisions on the number of parallel requests, allow extra rounds of communication,
and in some cases let balls re-choose.

We investigate how multi-choice schemes perform in a semi-parallel environment.
In our model, a stream of m balls arrives in batches of size n each (with n being equal
to the number of bins), and the loads of the bins are updated only between batches, that
is, any decisions made by balls belonging to the same batch are strictly concurrent. In
this setting, the algorithm uses GREEDY[d], but for all balls within a given batch, the
answers to those balls’ load queries are with respect to the bin loads at the end of the
previous batch, and do not in any way depend on decisions made by balls belonging to
the same batch. We show that, for d = 2, after the allocation of the mth ball, the gap

5 Event E holds with high probability if P (E) ≥ 1−n−c for any constant c > 0; it is important
to notice that throughout the paper this bound is independent of m, the number of balls.

between the maximum and the minimum load is O(log n) with high probability, with
probability at least 1− 1/nO(1), and is therefore independent of the number of batches.

1.1 Our model

In this paper we investigate how the bare GREEDY[2] protocol performs in a semi-
parallel environment in which m ≥ n balls are allocated into n bins. Concurrent re-
quests to the same bin are answered with the same current load (load here means the
number of balls allocated to the bin) and no additional information, like the number of
new requests. We model this by updating the bins only after every nth ball and show
that the gap between maximum and minimum load is independent of the number of
balls (and batches). With high probability, the gap is O(log n), similar to the bounds in
the sequential setting [4]. Our process follows GREEDY[2] [3,4], but we introduce ex-
plicit batches of size n, and will assume that all balls within one batch will be allocated
concurrently. Our protocol (which we shall refer to as BGREEDY[2], short for batch
greedy) is, therefore, in some sense a mix between sequential and parallel.

When a new batch of n balls arrives, each ball has two random choices and goes
into a bin of lower load. If both loads are equal, the bin with smaller ID is selected. (The
use of the bins’ IDs is only to break the ties; there are no restrictions for the IDs other
than that they are all distinct and there is a total order defined on them.) Note that due
to the batch structure of our model, bin loads are updated only after having allocated all
n balls belonging to a batch.

BGREEDY[d]:

• Repeat m
n

times:
. for each of the n new balls in a new batch, independently in parallel do the following:
� choose d bins i.u.r.
� allocate the ball into the chosen bin with the minimum loada; in case of tie, allocate

the ball into the chosen minimum-load bin with the smallest ID
a The load of each bin remains unchanged for the allocation of all balls from the same batch.

Our goal is to show that after throwing m balls into n bins, the gap between the
maximum load and the minimum load is at most O(log n), with high probability, in-
dependent of the number of balls. We restrict our analysis to the case d = 2. Indeed,
experiments with larger values of d suggest that the resulting load distribution does not
improve but gets slightly worse, though still being O(log n) for constant d.

1.2 Related work

There is a vast amount of literature studying the resource allocation problem modeled
using the balls into bins framework. The classical processes allocating balls into random
bins (the single-choice schemes) have been surveyed, e.g., in [8,10], and used in many

areas of mathematics, computer science, and engineering. The multiple-choice schemes
have been used in these areas and in various settings, e.g., in adaptive load sharing
[7], PRAM simulations [9], load balancing [3], and numerous follow-up papers, e.g.,
[1,4,5,14].

Although the multiple-choice schemes have been originally studied in the context
of sequential allocation, there has also been a significant interest in its use in a parallel
setting, see, e.g., [1,2,11,13]. Most known strategies involve additional rounds of com-
munication, some are also adaptive and allow for re-choosing bins. In a typical parallel
multiple-choice scheme, one aims at allocating n balls into n bins by allocating the
balls with very limited coordination and using as few as possible extra communication
rounds. For example, Lenzen and Wattenhofer [11] show that one can attain a maximum
load of 2 using log∗ n+O(1) rounds of communication, w.h.p.

The main difference between the parallel multiple-choice schemes and our model is
that in our setting, the allocation of the balls from a single batch must be done instantly,
without any coordination between the allocation of balls in the same batch.

Our model shares some similarities with the bulletin board model with periodic
updates, as proposed by Mitzenmacher [12], to deal with systems with “outdated in-
formation.” The model deals with the continuous process of allocating balls into bins:
the balls are arriving as a Poisson stream of rate λn, λ < 1, and each bin “serves”
(removes) its balls with exponential distribution with mean 1. The novel feature of the
model is the access to the information about the load of the bins, which is available
through a bulletin board, and which can contain outdated information about the load of
the bins. The main variant of the model proposed by Mitzenmacher [12], the bulletin
board model with periodic updates, assumes that the information about the load of each
bin is updated periodically every T seconds, that is, for every k ∈ N, to allocate the
balls arriving in time interval [kT, (k + 1)T), the process will use the load of the bins
at time kT . Mitzenmacher [12] considers three allocation mechanisms in this setting:
(i) each ball chooses a bin i.u.r., (ii) each ball chooses a bin with the smallest load in the
bulletin board, and (iii) each ball chooses d bins i.u.r. and is then allocated to the chosen
bin with the smallest load in the bulletin board. Mitzenmacher [12] provided an analyt-
ical study for this model for the limiting case as n → ∞ and supported the analytical
results by simulations. The third model studied by Mitzenmacher [12] is very related
to the model considered in our paper, though with several key differences. Firstly, it as-
sumes stochastic arrivals of the balls and stochastic ball removals. Secondly, the paper
only provides an analytical study in the limiting case which is supported by simulations,
whereas our paper gives a rigorous probabilistic analysis.

1.3 Contributions of this paper

We analyze BGREEDY[2] in which the balls are allocated in batches of size n. We
consider the scenario in which m balls are allocated into n bins, and we assume that the
bins are initially empty. The allocation at time t is described by the load vector directly
after the tth batch. Our main goal is to understand the load of the bins after allocating
m balls in m

n batches for arbitrary values of m.

The main result of the paper, Theorem 3, is that after the last batch has been allo-
cated, the load of any bin is m

n ±O(log n) w.h.p. (with probability at least 1− n−c for
any constant c). This follows from our two main technical results, Theorems 1 and 2.

We begin with Theorem 1 which studies the process under the assumption that the
number of allocated balls is (relatively) small, at most polynomially large in n.

Theorem 1. Let δ ≥ 1 be an arbitrary constant. Suppose that we run BGREEDY[2] for
τ ≤ nδ−1 batches, allocating m ≤ nδ many balls.

1. For all i ≥ 0 simultaneously, the number of bins with load at least mn + i+ γ is
upper bounded by ne−i, w.h.p., where γ = γ(δ) denotes a suitable constant.

2. No bin has fewer than m
n −O(log n) balls, w.h.p.

Theorem 1 directly implies Corollary 1.

Corollary 1. For any constant δ ≥ 1, if m ≤ nδ then the maximum load is m
n +

O(log n) w.h.p. and the minimum load is m
n −O(log n) w.h.p.

Our proof of Theorem 1 crucially relies on the assumption thatm is at most polyno-
mial in n. To deal with arbitrarily large values ofmwe prove Theorem 2 which removes
the restriction of having to have only polynomially many balls, and reduces the problem
to the case m = poly(n).

Theorem 2. Let c be a sufficiently large constant. Suppose that we run BGREEDY[2]
for τ ≥ nc batches. Further suppose that the maximum load is at most MAX and that
the minimum load is at least MIN with probability at least p. Then, for any positive
constant δ and any τ∗ > τ , the process after running τ∗ batches will have maximum
load at most MAX and minimum load at least MIN with probability at least p− n−δ .

By combining Theorem 2 with Corollary 1 we immediately obtain the following
main theorem, which holds for any number m of allocated balls.

Theorem 3 (Main). Fix n and m to be arbitrary integers and let c be any constant.
If one allocates m balls into n bins using BGREEDY[2] then with probability at least
1− n−c the maximum load is m

n +O(log n) and the minimum load is m
n −O(log n).

Remark 1. Let us emphasize that Theorem 3 ensures that the gap between the maxi-
mum and the minimum load is O(log n) w.h.p. at the end of the process. It is easy to
see that for large enough m no such bound can be ensured after every single batch.

The approach. On a high level, our analysis follows the approach proposed by Beren-
brink et al. [4] (see also [14]), but there are differences when applying the line of attack
from [4] to the parallel setting considered in this paper. Our analysis uses new ideas and
needs to be significantly tighter in several places.

The first part of our analysis (Theorem 1 and Corollary 1, proven in Section 2)
deals with the process after allocating a polynomial number of balls in the system, or
equivalently, after a polynomial number of batches. That part forms the basic block of
this paper, as the analysis of the general case can be reduced to it. Many ideas from [4]
do not work any more once decisions have to be made based upon outdated information.

We split this (batch-wise) analysis into two sub-parts: The first provides bounds on the
distribution of the underloaded bins (with load below the average), the second bounds
on the distribution of the overloaded bins (with load above the average). Whereas the
analysis of the underloaded bins follows the one in [4] rather closely, the analysis of the
overloaded bins requires several new ideas. The basic approach used in [4], the layered
induction, cannot (easily) be applied because of the large number of new balls allocated
in parallel in each single round. Instead, using the fact that the probability for a bin to
receive a ball does not change within a batch, we base our analysis on an appropriate
bound on the expected number of new balls for each bin.

The second part of the analysis is related to the infinite process (the number of
batches is arbitrarily large) and is formalized by the so-called Short Memory Theorem.
It states that, informally, if we run the process for a long time, then the behavior of the
load of the bins is essentially determined only by a small number of the most recent
batches. With that, one can reduce the analysis for an arbitrary number of batches to the
case in the first part, that is, to the case when the number of batches is only polynomially
small. The proof of the Short Memory Theorem uses similar coupling arguments as the
approach initiated in [4] (cf. also [14]), but the need to cope with parallel allocations
for the same batch makes the arguments more involved.

Further discussion. Our analysis shows that even in a parallel environment, where the
tasks from the same batch are to be allocated concurrently, the idea of using multiple-
choices for the allocation leads to a significant improvement in the performance of sys-
tem. Indeed, if we used BGREEDY[1] instead of BGREEDY[2], that is, if all balls were
allocated at random, then it is a folklore result that form ≥ n log n the gap between the
maximum and the minimum load isΘ(

√
m log n/n), w.h.p. Thus, our result shows that

despite the lack of any coordination between the allocation of balls in a single batch,
the use of a multiple-choice allocation scheme can improve the performance of system
as compared to the naive approach of fully random allocations (BGREEDY[1]).

Our result in Theorem 3 provides further evidence that even in systems with out-
dated information, by carefully choosing the allocation rules (multiple-choice allocation
scheme), one can obtain a very balanced load allocation.

Let us also mention that our analysis is tight in the sense that for large enoughm the
gap between the maximum and the minimum load in BGREEDY[2] is Ω(log n), w.h.p.

2 Polynomially many balls (Theorem 1)

Our analysis for the case of polynomially many balls follows the outline of the proof of
[4]. We will show two invariants, one for the underloaded and one for the overloaded
bins. The underloaded bins are analyzed in Section 2.2, the overloaded bins in Section
2.3. Together the invariants shown in both sections imply Theorem 1.

2.1 Preliminaries

The load of a bin is the number of balls it contains. Assuming that balls are allocated
sequentially, a ball’s height, or level, is the load of the selected bin right after the allo-
cation. Thus, one can picture the bin as a stack of balls and every new ball is simply

pushed on top of the stack. If balls arrive at the same time, then we nevertheless assume
that they are added to the stack one after the other (in an arbitrary order) so that each
ball has a unique height.

Fix a time step t and let m be the number of balls allocated until time step t (that is,
in t batches of size n each). The average number of balls per bin at time t is m

n = t.
We call bins with fewer than t balls underloaded and bins with more than t balls

overloaded. We will frequently refer to holes in the distribution. For a given bin, the
number of holes is defined to be the number of balls it is short of the average load at
that point of time.

Key invariants. Our analysis relies on the following invariants that we will prove to
hold w.h.p. (for t ≤ poly(n)):

• L(t): At time t, there are at most 0.7 · n holes.
• H(t): At time t, there are at most 0.47 · n balls of height at least t+ 5.

Observe that since the total number of holes equals the total number of balls with
height above average, invariant L(t) immediately implies that there are at most 0.7 · n
balls with height t+ 1 or larger at time t.

We will use induction on t to prove the invariantsL(t) andH(t): we will show that if
L(0), . . . , L(t−1) andH(0), . . . ,H(t−1) hold, then L(t) andH(t) are fulfilled w.h.p.
(Observe that unlike in [4], we do not need L(t) to prove H(t).) We will analyze the
underloaded and overloaded bins separately; the corresponding analyses communicate
only through the two invariants above. We will finally use invariant H(t) to derive
Theorem 1. Throughout the analysis, we use the following notation:

Definition 1. For i, t ≥ 0, we let α(t)
i denote the fraction of bins with load at most t− i

at time t, and β(t)
i denote the fraction of bins with load at least t+ i at the same time t.

2.2 Analysis of underloaded bins

We begin with the analysis of the load in the underloaded bins, that is, in the bins with
the load below the average load. Our goal is to prove that for any t, if the invariants
L(0), . . . , L(t−1) andH(0), . . . ,H(t−1) hold, then L(t) is fulfilled, that is, there are
at most 0.7n holes at time t w.h.p. Our analysis follows the analysis for the underloaded
bins from [4]. The details are omitted here.

Let c1 and c2 be suitable constants with c1 ≤ c2. The idea is to prove the following
two invariants (implying L(t)) for time t ∈ [0, poly(n)]:

• L1(t): For 1 ≤ i ≤ c1 · lnn, we have α(t)
i ≤ 1.6 · 0.3i.

• L2(t): For i ≥ c2 · lnn, we have α(t)
i = 0.

The proofs of L1(t) and L2(t) use an “outer” induction on t and an “inner” (layered)
induction on i. Note that the second invariant establishes the bound on the minimum
load of Theorem 1.

2.3 Analysis of overloaded bins

In this section, we analyze the load in overloaded bins and we will prove invariantH(t):
there are not more than 0.47 ·n balls with height at least t+5 w.h.p. The proof assumes
that invariant L(t− 1) holds, and hence that at time t− 1 there are at most 0.7 · n balls
above the average t− 1. Unlike our analysis in Section 2.2, this section is new and the
analysis requires many new ideas compared to [4].

We will analyze invariants H1(t) and H2(t) that imply both H(t) and Theorem 1.
To formulate the invariants H1(t) and H2(t), we first define two auxiliary functions h
and f :

Definition 2. For any i ≥ 0, define h(i) = 67 · 0.34i.
Let ` denote the smallest integer i such that h(i) ≤ n−0.9 and let σ ≥ 1 denote a

suitable constant (that will be specified later). For i ≥ 4, we define:

f(i) =


h(i) for 4 ≤ i < ` ,

max{h(i), 13 · n
−0.9} for i = ` ,

σ · n−1 for i = `+ 1 .

We use Definition 2 to set up our main invariants, H1(t) and H2(t). (Let us recall
that β(t)

i denotes the fraction of bins with load at least t+ i at time t; see Definition 1.)

• H1(t): For 5 ≤ i ≤ `, we have β(t)
i ≤ f(i),

• H2(t):
∑
i>` β

(t)
i ≤ σ · n−1.

H1(t) tells us that the number of balls decrease exponentially with each level. On
level ` the fraction of balls is upper-bounded by n−0.9. The number of balls above level
` can be bounded by a constant σ. The proof of the following observation follows easily
from the properties of the function f .

Observation 1 H1(t) and H2(t) imply H(t).

Observation 2 If L(t), H1(t) and H2(t) hold w.h.p. for all t, then Theorem 1 holds.

Proof. First we show that the number of bins with load at least m
n + i + 5 is upper

bounded by n · e−i: using Definition 2 and basic properties of functions f and h, we
can show that for i ≥ 5, the fraction βi of balls on level i is upper-bounded by h(i).
Thus, it suffices to show that e−k ≥ h(k + 4) for k ≥ 1:

1.08k ≥ 0.9⇒ e−k · 0.34−k ≥ 67 · 0.344 ⇔ e−k ≥ h(k + 4) = 67 · 0.34k+4 .

It remains to prove that this upper bound holds w.h.p. for all t ≤ nδ

n = nδ−1. This
follows directly from the statement that L(t), H1(t) and H2(t) hold w.h.p. for all t. ut

Further details are omitted here, but the invariants H1 and H2 are proven by in-
duction on t. Our induction assumptions are H1(0), . . . ,H1(t − 1), H2(t − 1) and
L(t − 1). These assumptions provide a distribution of the balls over the bins at time

t− 1. The induction step is proven by bounding the number of additional balls for each
bin w.h.p. Counting the number of additional balls is somewhat simplified by the fact
that the probability for a bin to receive a ball from batch t does not depend on how many
balls of batch t have been allocated before. This is because the protocol defines that the
allocation of a ball depends only on the loads of the bins (immediately) before batch t.

3 Reducing to polynomially many batches (Theorem 2)

In this section we sketch the arguments used to prove Theorem 2, which shows that
in order to analyze the maximum and/or minimum load after allocating m balls it is
sufficient to consider the scenario when the number of balls is polynomial with respect
to the number of bins, that is, m = poly(n).

The proof of Theorem 2 follows the approach proposed by [4] (see also [14]). The
main idea (stated formally in Theorem 4 in Section 3.3) is to prove that in BGREEDY[2],
if we start the process with K balls already allocated in the bins, and we then allocate
another K · poly(n) batches using BGREEDY[2], the obtained load distribution will be
(in a stochastic sense) almost independent of the initial allocation of the K balls in the
system. Therefore, without loss of generality, we could assume that the initial allocation
started with the same number of balls in every bin, in which case the process would be
identical to the one which ignored the initial K balls. This allows us to reduce the
analysis of BGREEDY[2] with m balls to the analysis of BGREEDY[2] with m′ � m
balls, and by applying this recursively, we can reduce the analysis of BGREEDY[2] to
the case when m is not too big, namely m = poly(n).

3.1 Basic definitions and notation

We use the standard notation [M] = {1, 2, . . . ,M} for any natural number M .

Load vectors and normalized load vectors. We model the allocation of balls in the bins
using load vectors. A load vector x = (x1, . . . , xn) specifies that the load of the ith bin
is xi. We will consider normalized load vectors; a load vector x is normalized if the
entries in x are sorted in non-increasing order, that is, xi ≥ xi+1 for every 1 ≤ i < n.
In that case, xi denotes the number of balls in the ith fullest bin. We observe that since
in our analysis the order among the bins is irrelevant (apart from tie breaking according
to bin IDs, which themselves are essentially arbitrary), we can restrict the state space to
normalized load vectors.

Let us mention an important feature of our analysis: while the normalized load
vectors are n-vectors with integer values, BGREEDY[2] resolves the ties in the load
of the two chosen bin by taking the one with the smallest ID, and so the outcome of
BGREEDY[2] depends on more than just the vector. However, one can always see any
normalized load vector as the one in which we order the bins of the same load according
to their IDs, from the largest ID to the smallest one. In view of that, the process of
selecting two bins to allocate a ball according to BGREEDY[2] for a normalized load
vector x = (x1, . . . , xn) is equivalent to one of choosing two indices it, jt i.u.r. and
then allocating the ball into the bin corresponding to xmax{it,jt}.

3.2 Allocation process and Markov chains

We will model the allocation process (one step of BGREEDY[2]) by a Markov chain:
if Xt denotes the (normalized) load vector at time t (after inserting t batches) then the
stochastic process (Xt)t∈N corresponds to a Markov chain MC = (Xt)t∈N whose tran-
sition probabilities are defined by our allocation process. In particular, Xt is a random
variable obeying a probability distribution L(Xt) defined by t steps of BGREEDY[2].
(Throughout the paper we use the standard notation to denote the probability distribu-
tion of a random variable U by L(U).)

Measuring similarity of distributions. We use a standard measure of discrepancy be-
tween two probability distributions ϑ and ν on a spaceΩ, the variation distance, defined
as ‖ϑ− ν‖ = 1

2

∑
ω∈Ω |ϑ(ω)− ν(ω)| = maxA⊆Ω(ϑ(A)− ν(A)).

3.3 Short Memory Theorem

Now we are ready to state our key result: Short Memory Theorem 4. Let us begin
with some further useful terminology. For any n,K ∈ N, let Ψn,K be the set of all
normalized load vectors x = (x1, . . . , xn) with

∑n
i=1 xi = K. That is, Ψn,K is the set

of all normalized load vectors that describe the system with K balls allocated to n bins.

Theorem 4 (Short Memory Theorem). Let K ∈ N and let x and y be any two nor-
malized load vectors in Ψn,K . For any t, let Xt (Yt) be the random variable describing
the normalized load vector after allocating t further batches on top of x (y, respec-
tively) using BGREEDY[2].

Then, for any ε > 0 there is some τ = O(K · n+ n6 · log2(Kn/ε)), such that for
every T ≥ τ , ‖L(XT)− L(YT)‖ ≤ ε.

One should read the claim in Theorem 4 so that if we start with any two arbitrary
allocations of K balls into n bins, then after adding T = K(n log(1/ε))O(1) batches
to each of them, the normalized load vectors of these two systems are almost indistin-
guishable; they will be stochastically identical with probability at least 1 − ε, for an
arbitrary small, positive ε.

Sketch of the proof of Theorem 4. The proof of Theorem 4 uses the neighboring
coupling approach initiated in [4]. We consider two normalized load vectors after al-
locating τ batches, xτ = (xτ1 , . . . , x

τ
n) and yτ = (yτ1 , . . . , y

τ
n) that differ by a single

ball, that is, xτ = yτ + ei − ej for i 6= j. (Here, for any s ∈ [n], es will denote
an n-vector consisting of a single element 1 in the coordinate s and of 0 in all other
coordinates. With this notation, if xτ = yτ + ei − ej for i 6= j then xi = yi + 1,
xj = yj − 1, and xs = ys for all s ∈ [n] \ {i, j}.) For any two normalized load vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) with x = y + ei − ej for any i, j, define
∆(x,y) = max{|xi − xj |, |yi − yj |}. Note that if x = y then i = j and ∆(x,y) = 0.

We will analyze a coupling for the Markov chains (Xt) and (Yt) starting with
x0 and y0 differing by a single ball, where all random choices performed by xτ are
identical to those performed by yτ . More formally, let us first consider state xτ . For

each ball in a given batch, we first choose two random numbers i, j ∈ [n] i.u.r., then
take the larger of them, say i, and then allocate the ball to the ith bin in the vector
xτ = (xτ1 , . . . , x

τ
n). Then, the same choice of i is used for the same ball for the vector

yτ . Observe that this construction uses the fact that in the normalized vector, the bins
with the same load are sorted in the decreasing order of their IDs.

It is not difficult to see that (i) the coupling (xτ ,yτ) 7→ (xτ+1,yτ+1) is a proper
coupling (i.e., transitions xτ 7→ xτ+1 and yτ 7→ yτ+1 are faithful copies of one step of
BGREEDY[2]), (ii) if xτ and yτ differ by a single ball then either xτ+1 and yτ+1 differ
by a single ball or xτ+1 = yτ+1, and (iii) if xτ = yτ then our coupling ensures that
xτ+1 = yτ+1. In view of these properties, our interest is in the analysis of the number
of steps required until xτ = yτ . Our central result about the coupling is as follows.

Lemma 1. Let t be any time step of the process with ∆(xt,yt) > 0. Then, either

• for some constant c > 0: Pr
[
∆(xt+1,yt+1) = 0 | xt,yt

]
≥ c

n3 , or
• E

[
∆(xt+1,yt+1) | xt,yt,xt 6= yt

]
≤∆(xt,yt)− 1

n .

By combining Lemma 1 with some basic analysis of random walks on a line, we
can prove the following.

Lemma 2. Let ε be any positive real. If ∆(x0,y0) = ∆ then the coupling satisfies
Pr
[
xτ = yτ | x0,y0

]
≥ 1− ε for some τ = O(∆ · n+ n6 · log2(n/ε)).

As the final step, we can combine Lemma 2 with the neighboring coupling approach
from [4] to conclude the proof of Theorem 4.

3.4 Using Short Memory Theorem 4 to prove Theorem 2

We are now ready to prove our key result, Theorem 2. Our approach follows the ap-
proach used in [4, Section 4] (see the discussion in [4, Remark 2, p. 1376]), and below
we will briefly present the main ideas of the reduction.

Suppose that we have m batches to be allocated into n bins. We first allocate a
smaller number of batches, say m′ � m batches with m′ · n balls. Then, suppose we
can show that the maximum load in any bin is at most m′ + ϑ and the minimum load
in any bin is at least m′ − ϑ, with sufficiently high probability 1 − p, and for an ap-
propriate value ϑ (majorization by the process of allocating all balls in random gives
ϑ = O(

√
m′ · log n/p), see, e.g., [4]). Since the difference between the maximum

and minimum load is at most 2ϑ, the distance between the load vector after allocating
m′ · n balls and the load vector in which every bin has identical load m′ is at most
2ϑn. Therefore, if we apply the Short Memory Theorem 4, after allocating a further
ϑnc batches for an appropriate constant c, we will have a system with m′ · n + ϑnc+1

balls for which the distributions of the bins loads in these two processes are almost in-
distinguishable (w.h.p.). Hence, instead of analyzing the original process, it is sufficient
to analyze the process in which we first allocate m′ balls to each bin, and then allocate
a further ϑnc batches using BGREEDY[2] – but this process can completely ignore the
firstm′ batches, because they are allocated deterministically. Therefore, we have shown
that in order to analyze the process for m = m′ + ϑnc batches, it is sufficient to ana-
lyze the same process for a smaller number of batches, for m∗ = ϑnc. As it has been

shown in detail in [4], by applying the reduction recursively with an appropriate choice
of parameters, the arguments above can be easily formalized to prove Theorem 2.

References

1. M. Adler, P. Berenbrink, and K. Schröder. Analyzing an infinite parallel job allocation
process. In Proceedings of the 6th Annual European Symposium on Algorithms (ESA),
pages 417–428, 1998.

2. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized load
balancing. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC), pages 238–247, USA, 1995.

3. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM Journal on
Computing, 29(1):180–200, 1999.

4. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily
loaded case. SIAM Journal on Computing, 35(6):1350–1385, 2006.

5. A. Czumaj and V. Stemann. Randomized allocation processes. In Proceedings of the 38th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 194–203, 1997.

6. M. Dahlin. Interpreting stale load information. IEEE Transactions on Parallel and Dis-
tributed Systems, 11(10):1033–1047, 2000.

7. D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous
distributed systems. IEEE Transactions on Software Engineering, 12:662–675, May 1986.

8. N. L. Johnson and S. Kotz. Urn Models and Their Application: An Approach to Modern
Discrete Probability Theory. John Wiley & Sons, New York, 1977.

9. R.M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a dis-
tributed memory machine. In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing (STOC), pages 318–326, 1992.

10. V. F. Kolchin, B. A. Sevast’yanov, and V. P. Chistyakov. Random Allocations. V. H.
Winston and Sons, Washington, D.C., 1978.

11. C. Lenzen and R. Wattenhofer. Tight bounds for parallel randomized load balancing. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pages
11–20, 2011.

12. M. Mitzenmacher. How useful is old information? IEEE Transactions on Parallel and
Distributed Systems, 11(1): 6–20, January 2000.

13. V. Stemann. Parallel balanced allocations. In Proceedings of the 8th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pages 261–269, 1996.

14. K. Talwar and U. Wieder. Balanced allocations: The weighted case. In Proceedings of
the 39th Annual ACM Symposium on Theory of Computing (STOC), pages 256–265, 2007.

15. B. Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4): 568–589,
2003.

