
Reordering Buffer Management

for Non-Uniform Cost Models?

Matthias Englert and Matthias Westermann

Department of Computer Science
RWTH Aachen, D-52056 Aachen, Germany
{englert,marsu}@cs.rwth-aachen.de

Abstract. A sequence of objects which are characterized by their color
has to be processed. Their processing order influences how efficiently they
can be processed: Each color change between two consecutive objects
produces non-uniform cost. A reordering buffer which is a random access
buffer with storage capacity for k objects can be used to rearrange this
sequence in such a way that the total cost are minimized. This concept
is useful for many applications in computer science and economics.
We show that a reordering buffer reduces the cost of each sequence by
a factor of at most 2k − 1. This result even holds for cost functions
modeled by arbitrary metric spaces. In addition, a matching lower bound
is presented. From this bound follows that each strategy that does not
increase the cost of a sequence is at least (2k − 1)-competitive.
As main result, we present the deterministic Maximum Adjusted Penalty
(MAP) strategy which is O(log k)-competitive. Previous strategies only
achieve a competitive ratio of k in the non-uniform model. For the upper
bound on MAP, we introduce a basic proof technique. We believe that
this technique can be interesting for other problems.

1 Introduction

Frequently, a number of tasks has to be processed and their processing order
influences how efficiently they can be processed. Hence, a reordering buffer can
be expedient to influence the processing order. This concept is useful for many
applications in computer science and economics. In the following and in Sect.
1.2 we give some examples.

In computer graphics, a rendering system displays a 3D scene which is com-
posed of primitives. In current rendering systems a significant factor for the
performance are the state changes performed by the graphics hardware. A state
change occurs when two consecutively rendered primitives differ in their attribute
values, e.g., in their texture or shader program. These state changes slow down
a rendering system. Note that the duration of a state change is non-uniform
and heavily depends on the attribute values of the primitive causing this state
change, e.g., textures and shader programs vary significantly in size which has

? Supported by the DFG grant WE 2842/1.

a great impact on the state change. To reduce the cost of the state changes, a
reordering buffer can be included between application and graphics hardware.
This reordering buffer, which is a random access buffer with limited memory
capacity, can be used to rearrange the incoming sequence of primitives online in
such a way that the cost of the state changes are minimized.

Hard disks consist of one or more rotating platters. A read/write head is
positioned above the rotating surface of each platter. The position of a head
determines which cylinder can be accessed. The latency of an access is mainly
induced by the movement of the head to the respective cylinder. The latencies are
the dominating factor for the performance of a hard disk. This can be modeled
by a non-uniform metric, e.g., the line metric: Accesses are categorized according
to their destination cylinder, and the cost are defined as the distance between
start and destination cylinder. A reordering buffer can be used to rearrange the
incoming sequence of accesses online in such a way that latencies are minimized.
This problem is known as disk scheduling (see, e.g., [1]).

File servers are high-capacity storage devices which each computer in a net-
work can access to retrieve files. A file on a server is denoted as open, if it is
ready to be accessed. Otherwise, it is denoted as closed. By technical reasons,
the number of open files on a server is limited. The overhead induced by the
opening and closing processes is a significant factor for the performance of a file
server. Note that the cost of an opening or closing process is non-uniform and
depends on the characteristics of the involved file. This overhead can be mini-
mized by preceding a file server with a reordering buffer. If several open files are
allowed, this scenario is a generalization of the rendering scenario. In addition to
the possibility to choose a file that has to be opened next, there is the possibility
to choose a file that has to be closed in the case that the maximum number of
files is open. This scenario is equivalent to the classical paging problem (see, e.g.,
[2]) if the reordering buffer has storage capacity for only one file.

1.1 The Model

An input sequence σ = σ1σ2 · · · of objects which are only characterized by a
specific attribute has to be processed. To simplify matters, we suppose that
the objects are characterized by their color, and, for each object σi, let c(σi)
denote the color of σi. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange the input sequence in
the following way.

The current input object σi, i.e., the first object of σ that is not handled
yet, can be stored in the reordering buffer, or objects currently stored in the
reordering buffer can be removed. These removed objects result in an output
sequence σπ−1 = σπ−1(1)σπ−1(2) · · · which is a partial permutation of σ. Let the
current output object denote the object that was last assigned to the output
sequence. We suppose that the reordering buffer is initially empty and, after
processing the whole input sequence, the buffer is empty again.

For each color c, we are given weight bc. Cost bc are produced for each color
change to color c, i.e., for two consecutive objects σπ−1(i) and σπ−1(i+1) of the

output sequence, we define the cost function d(σπ−1(i), σπ−1(i+1)) = bc(σ
π−1(i+1))

,

if c(σπ−1(i)) 6= c(σπ−1(i+1)), and d(σπ−1(i), σπ−1(i+1)) = 0, otherwise. Then, the

goal is to minimize the cost CA(σ) =
∑

i d(σπ−1(i), σπ−1(i+1)) of a management
strategy A. Note that this models the presented application examples well except
disk scheduling (see also Sect. 1.3).

The notion of an online strategy is intended to formalize the realistic scenario,
where the strategy does not have knowledge about the whole input sequence in
advance. The online strategy has to serve the input sequence σ one after the
other, i.e., a new object is not issued before there is a free slot in the reordering
buffer. Online strategies are typically evaluated in a competitive analysis. In this
kind of analysis the cost of the online strategy are compared with the cost of an
optimal offline strategy. For a given sequence σ, let Cop(σ) denote the minimum
cost produced by an optimal offline strategy. An online strategy is denoted as
α-competitive if it produces cost at most α · Cop(σ) + κ, for each sequence σ,
where κ is a term that does not depend on σ. The value α is also called the
competitive ratio of the online strategy.

W.l.o.g., we only consider lazy strategies, i.e., strategies that fulfill the fol-
lowing two properties:

– If an object with the same color as the current output object is stored in the
reordering buffer, a lazy strategy does not make a color change.

– If the current input object can be stored in the reordering buffer, a lazy
strategy does not remove an object from the reordering buffer.

Note that every (in particular every optimal offline) strategy can be transformed
into a lazy strategy without increasing the cost.

1.2 Previous Work

Web caching with request reordering extends the classic paging model by allow-
ing reordering of requests under the constraint that a request is delayed by no
longer than a predetermined number of time steps (see, e.g., [3, 4]). Albers [3]
presents a deterministic strategy that achieves an optimal competitive ratio of
k+1, where k denotes the storage capacity of the cache. Feder et al. [4] introduce
a randomized strategy that achieves an asymptotically optimal competitive ratio
of Θ(log k).

The uniform case of our problem is studied in, e.g., [5, 6]. In the uniform
model, for each color c, weight bc = 1, i.e., just the number of color changes
is considered. Räcke, Sohler and Westermann [5] show that several standard
strategies are unsuitable for a reordering buffer, i.e., the competitive ratio of
the First In First Out and Least Recently Used strategy is Ω(

√
k) and the

competitive ratio of the Most Common First strategy is Ω(k), where k denotes
the buffer size. Further, the deterministic Bounded Waste strategy is presented
and it is proven that this strategy achieves a competitive ratio of O(log2 k) in the
uniform model. Kohrt and Pruhs [6] present a polynomial-time offline algorithm
that achieves a constant approximation ratio. However, their goal is to maximize

the number of saved color changes. Note that a constant approximation of the
minimal number of color changes in the output sequence is preferable, if it is
possible to save a large number of color changes.

Krokowski et al. [7] examine the previously mentioned rendering application
in an uniform version, i.e., just the number of state changes is considered. They
use a small reordering buffer to rearrange the incoming sequence of primitives
online in such a way that the number of state changes is minimized. Due to its
simple structure and its low memory requirements this method can easily be
implemented in software or even hardware. In their experimental evaluation this
method typically reduces the number of state changes by an order of magnitude
and the rendering time by roughly 30%. Note that the studied strategies do not
consider the individual cost of a state change. A conclusion is that there is a
lack of efficient strategies that consider these individual cost.

In the painting shop of a car plant, a sequence of cars bodies traverses the
final layer painting where each car body is painted with its own top coat. If
two consecutive cars have to be painted in different colors then a color change
is required which causes set-up cost. In addition to the color change cost, fur-
ther important non-uniform cost arise, e.g., the individual accessing times of the
parking slots for the car bodies. These costs can be minimized by preceding the
final layer painting with a reordering buffer. In several practical work, heuristic
strategies for reordering buffers are evaluated by simulation (see, e.g., [8]). Ef-
ficient strategies for reordering buffer are considered to be a major problem of
operating a paint shop.

1.3 Results and Further Work

In Sect. 2, the possible gain of a reordering buffer is investigated. We show
that a reordering buffer of size k reduces the cost of each sequence by a factor
of at most 2k − 1. This result holds for online and offline strategies and even
for cost functions modeled by arbitrary metric spaces, i.e., the cost function
d(σπ−1(i), σπ−1(i+1)) can be any positive and symmetric function obeying the
triangle inequality. In addition, a matching lower bound is presented. From this
basic upper bound follows immediately that each strategy that does not increase
the cost of an input sequence is at least (2k − 1)-competitive. In particular,
the simple online strategy that does no reordering at all is already (2k − 1)-
competitive. This shows the poor performance of some strategies. For example,
Yeh et al. [9] give a lower bound of 2k − 1 on the competitive ratio of the disk
scheduling strategies Shortest Seek Time First and Look in the line metric model.

In Sect. 3, we show a lower bound of k on the competitive ratio of the Bounded
Waste (BW) strategy in our model, where k denotes the size of the reordering
buffer. The BW strategy is introduced by Räcke, Sohler and Westermann [5] for
the uniform case of our problem: For each color c, weight bc = 1, i.e., just the
number of color changes is considered. Note that this lower bound even holds
for the case that BW takes the non-uniform cost into account, i.e., BW is aware
of the individual cost bc, for each color c. In Sect. 4, the deterministic Maximum
Adjusted Penalty (MAP) strategy is presented. We show that the MAP strategy

is O(log k)-competitive, where k denotes the size of the reordering buffer. Note
that, although MAP is equivalent to BW in the uniform case of our model, our
analysis provides a better result. Currently, we only know a trivial lower bound
of 5/3 on the competitive ratio of any deterministic strategy.

For the upper bound on MAP we introduce the following basic proof tech-
nique: First, it is shown that MAP with buffer size k is 4-competitive against
an optimal offline strategy with buffer size k/4. Finally, it is proven that an
optimal offline strategy with buffer size k/4 is O(log k)-competitive against an
optimal offline strategy with buffer size k. We believe that this technique can be
interesting for other problems.

Our non-uniform scenario can be modeled by the following star-like metric
space: d(x, y) = (bx + by)/2, if x 6= y, and d(x, y) = 0, otherwise. Above, we
conclude that there is a lack of efficient strategies for the disk scheduling problem,
i.e., the line metric space. We consider to transfer this technique from star-like
to line metric spaces.

2 Basic Upper Bound

In this section, we show that a reordering buffer of size k reduces the cost of each
sequence by a factor of at most 2k − 1. This result holds for online and offline
strategies and even for cost functions modeled by arbitrary metric spaces. Note
that this result is tight. Fix the two colors c1 and c2 with weights bc1 = bc2 = 1.
The input sequence σ = (c1c2)

k of length 2k can obviously be reordered to
σπ−1 = ck1c

k
2 with a reordering buffer of size k. The cost of σ is C(σ) = 2k − 1,

and the cost of σπ−1 is C(σπ−1) = 1. Hence, C(σ) = (2k − 1) · C(σπ−1) ≥
(2k − 1) · Cop(σ), where Cop(σ) denotes the cost of an optimal offline strategy
using a reordering buffer of size k.

Theorem 1. For every metric space (M,d), and every input sequence σ =
σ1 · · ·σl, with σi ∈M ,

C(σ) ≤ (2k − 1) · Cop(σ) ,

where C(σ) denotes the cost of σ, and Cop(σ) denotes the cost of an optimal
offline strategy using a reordering buffer of size k.

Proof. Fix an input sequence σ = σ1 · · ·σl. Let σπ−1 = σπ−1(1) · · ·σπ−1(l) denote
the output sequence of an optimal offline strategy using a reordering buffer of
size k. We define a subsequence Isr = σπ−1(r) · · ·σπ−1(s), if r ≤ s, and Isr =
σπ−1(s) · · ·σπ−1(r), otherwise. Let C(Isr) denote the cost of this subsequence, i.e.,

C(Isr) =
∑max{r,s}−1

j=min{r,s} d(σπ−1(j), σπ−1(j+1)).

Due to the triangle inequality, d(σi, σi+1) ≤ C(I
π(i+1)
π(i)). Thus,

C(σ) =

l−1∑

i=1

d(σi, σi+1) ≤
l−1∑

i=1

C(I
π(i+1)
π(i)) .

Fix two consecutive objects σπ−1(j) and σπ−1(j+1) of σπ−1 . We show that
these objects do only occur in at most 2k − 1 of the subsequences above. If

σπ−1(j) and σπ−1(j+1) are part of a subsequence I
π(i+1)
π(i) , one of the following two

cases is true:

1. π(i) ≤ j and π(i+ 1) ≥ j + 1
2. π(i+ 1) ≤ j and π(i) ≥ j + 1

In case (1), σi is one of the first j objects and σi+1 is not under the first j objects
of σπ−1 . In case (2), it is the other way around.

Obviously, the following observation can be made.

Observation 2. For each input sequence σ = σ1 · · ·σl, the output sequence of a
reordering buffer of size k is a permutation σπ−1 = σπ−1(1) · · ·σπ−1(l) of σ, with
π−1(i) < i+ k, for each i. In addition, each such permutation can be generated
using a reordering buffer of size k.

The observation shows that only one of the first i + k − 1 objects of σ can
be placed at the i-th position of σπ−1 . Thus, we conclude for case (1) that
i ≤ j + k − 1. In the same way, we conclude for case (2) the even stronger
inequality i+ 1 ≤ j + k − 1.

In the following, we consider case (1). The above conclusions provide that
σi+1 must be one of the first j + k objects of σ. But, σi+1 is not one of the first
j objects of σπ−1 . Recall that the observation shows that the first j objects of
σπ−1 have to be under the first j+k−1 objects of σ. Hence, at most k objects of
the first j+ k objects of σ cannot be under the first j objects of σπ−1 . It follows
that case (1) is true for at most k different subsequences. Obviously, case (2)
can be addressed analogously. It follows that case (2) is true for at most k − 1
different subsequences.

Hence,

C(σ) ≤
l−1∑

i=1

C(I
π(i+1)
π(i)) ≤ (2k − 1)

l−1∑

i=1

d(σπ−1(i), σπ−1(i+1)) = (2k − 1) · Cop(σ) ,

since at most 2k − 1 subsequences are containing the two objects σπ−1(i) and
σπ−1(i+1). ut

3 Lower Bound for the BW Strategy

The Bounded Waste (BW) strategy is introduced in [5] for the uniform case
of our model: For each color c, weight bc = 1, i.e., just the number of color
changes is considered. BW chooses one color as the active color, and continues
to remove objects of this active color from the reordering buffer until all objects
in the buffer have a color different from the active color. Then a new active color
has to be chosen. For this purpose, a counter Pc, which is initially set to zero,
is assigned to each color c. At each color change, the counter of each color c is
increased by the number of objects of color c currently stored in the buffer. Then
a color c′ with maximal counter Pc′ is chosen as the new active color and Pc′ is
reset to zero.

The following theorem shows a lower bound of k, where k denotes the size
of the reordering buffer, on the competitive ratio of BW in our non-uniform
model. Note that this lower bound even holds for the case that BW takes the
non-uniform weights of the colors into account.

Theorem 3. The competitive ratio of BW is at least k, where k denotes the size
of the reordering buffer.

Proof. Fix one expensive color x with weight bx = 1, and several inexpensive
colors c1, . . . cl with weights bc1 = · · · = bcl = ε. The input sequence σ = σ1 · · ·σl
with l = k · (k+1) is defined as follows: σi is of color x, if i is divisible by (k+1),
and of color ci, otherwise. Obviously, it is possible to produce an output sequence
σop
π−1 with cost C(σop

π−1) = 1+(k2−1) ·ε by aggregating objects of the expensive
color.

Each pair of objects in σ has different colors, except the pairs where both
objects have the color x. However, BW will never hold two objects of color x in
the reordering buffer at the same time. Assume this statement holds until some
step i in which an object of color x arrives. If each pair of objects in the buffer of
BW has different colors, the values of the counters are exclusively based on the
number of steps the corresponding objects are stored in the buffer. The object
of color x is after k − 1 steps the oldest object in the buffer. Hence, this object
is removed from the buffer in the next step, i.e., one step before the next object
of color x arrives.

The cost of the produced output sequence σon
π−1 is C(σon

π−1) = C(σ) = k+k2·ε.
Since the input sequence σ can be iterated and ε can be chosen arbitrarily small,
this yields a lower bound of k on the competitive ratio. Of course, BW could
take the non-uniform weights of the colors into account, i.e., the counter Pc is
increased by the number of objects of color c currently stored in the buffer times
the weight of color c. However, this proof does not dependent on this decision.

ut

4 The MAP Strategy

In this section, we present the Maximal Adjusted Penalty (MAP) strategy. We
show that the MAP strategy is O(log k)-competitive, where k denotes the size
of the reordering buffer.

MAP chooses one color as the active color, and removes at each time step
one object of this active color from the reordering buffer until all objects in the
buffer have a color different from the active color. Then a new active color has
to be chosen. For this purpose, a penalty counter Pc, which is initially set to
zero, is assigned to each color c. MAP chooses a color c as the new active color
with Pc − k · bc ≥ Pc′ − k · bc′ , for each color c′. The counters are updated after
a new active color is chosen. Suppose a step in which a color change from color
x to color y occurs. Let nc denote the number of objects of color c stored in the
buffer at the beginning of this step. Then each counter Pc is increased by nc · by
and counter Px is reset to zero.

The MAP strategy does not need to know the weights of all colors in advance.
It is sufficient to provide the weight bc when the first object of color c arrives.
In addition, a counter Pc can be deleted if no objects of color c are stored in the
buffer. Hence, each step can be performed in time O(k), since at most k counters
are active at the same time.

Theorem 4. The MAP strategy is O(log k)-competitive, where k denotes the
size of the reordering buffer.

Proof. The proof consists of two parts.

1. First, we prove that MAP with buffer size k is 4-competitive against an
optimal offline strategy with buffer size h = k/4.

2. Finally, we show that an optimal offline strategy with buffer size h isO(log k)-
competitive against an optimal offline strategy with buffer size k.

Together, this yields the theorem.

Part 1. Fix an input sequence σ and a lazy optimal offline strategy OPT. MAP
has a reordering buffer of size k and OPT has a reordering buffer of size h. We
exclude the last k color changes of MAP. Hence, it can be assumed that there
are k objects in the buffer of MAP at any time. Under this assumption we show
that MAP is 4-competitive against OPT. This yields part 1, since the last k
color changes of MAP produce at most cost k ·maxcolor c{bc}.

Color changes of MAP and OPT are denoted as online and offline color
changes, respectively. An online (offline) c-interval starts with an online (offline)
color change from color c to a different color and ends right before the next online
(offline) color change from c to a different color (the first online (offline) c-interval
starts with the first step). Each object of color c falls into exactly one online and
one offline c-interval, and it enters and leaves the buffer of the respective strategy
in the same c-interval. Also each step i falls into exactly one online and one offline
c-interval, and these intervals are denoted as active at step i.

Now, we introduce counters to which k-times the cost of each online color
change is assigned. For each color c, and each online c-interval I, the two counters
won,I
c and ŵon,I

c are introduced. won,I
c (i) and ŵon,I

c (i) denote the value of won,I
c

and ŵon,I
c at the beginning of step i, respectively. The counters are initially set

to zero, and they are monotonously increasing. A counter is denoted as active
at step i, if the according online c-interval I is active at step i. Otherwise, the
counter is denoted as inactive. For simplicity, we just write won

c (i) and ŵon
c (i) to

denote the active counters for color c at the beginning of step i. Inactive counters
do not change their value.

Fix a step i. In the following, we describe how k-times the cost of an online
color change is distributed among the counters. Let non

c (i) denote the number
of objects with color c in the buffer of MAP at the beginning of step i. For
simplicity, we just write non

c , if the step is fixed. Note that
∑

color c n
on
c = k.

Suppose there is an online color change to color c′ in step i. Then k · bc′ has to

be assigned to the counters. For each color c, won
c is increased by non

c · bc′ . In
total, we assign

∑
color c n

on
c · bc′ = k · bc′ to active counters.

But we prevent a counter won
c from becoming larger than k·bc. This restriction

might cause that nothing or only a part of the value non
c · bc′ is really assigned to

won
c . The remaining part, i.e, the part that would lead to a counter won

c larger
than k · bc, is assigned to ŵon

c′ instead. Note that won
c equals the Pc counter in

MAP, as long as Pc ≤ k · bc. Otherwise, won
c remains on the value k · bc, but

Pc is further increased. Note in addition that, for each color c′ and each online
c′-interval I, the counter ŵon,I

c′ is increased in at most one step.
Since we have assigned k-times the produced cost to counters, we can express

the cost of MAP Con = (1/k) ·∑color c

∑
on. c-int. I(W

on,I
c +Ŵ on,I

c), where W on,I
c

and Ŵ on,I
c denote the final, i.e., maximum, value of the counters won,I

c and ŵon,I
c ,

respectively.
In addition, for each color c and each online c-interval I, the counter wop,I

c

is introduced. wop,I
c (i) denotes the value of wop,I

c at the beginning of step i.
The counters are initially set to zero, and they are monotonously increasing. A
counter is denoted as active at step i, if the according online c-interval I is active
at step i. Otherwise, the counter is denoted as inactive. For simplicity, we just
write wop

c (i) to denote the active counter for color c at the beginning of step i.
Inactive counters do not change their value.

Fix a step i. Let nop
c (i) denote the number of objects with color c in the

buffer of OPT at the beginning of step i. For simplicity, we just write nop
c , if the

step is fixed. Note that
∑

color c n
op
c = h. Suppose there is an online color change

to color c′ in step i. For each color c, wop
c is increased by nop

c · bc′ . In total, we
assign

∑
color c n

op
c · bc′ = h · bc′ to active counters.

Hence, we yield a new possibility to express the cost of MAP Con = (1/h) ·∑
color c

∑
on. c-int. I W

op,I
c , where W op,I

c denotes the final, i.e., maximum, value
of the counter wop,I

c .
For each color c, we show the following main inequality

4k · Cop
c +

∑

on. c-int. I

(4W op,I
c − (W on,I

c + Ŵ on,I
c)) ≥

∑

on. c-int. I

(W on,I
c + Ŵ on,I

c) ,

where Cop
c denotes the total cost produced by offline color changes to color c.

Summing up over all colors, we yield 4k · Cop + 4h · Con − k · Con ≥ k · Con.
Hence, 4Cop ≥ Con. This yields part 1.

We distinguish between two kinds of online c-intervals. An online c-interval I
is denoted as problematic, if 4W op,I

c < 2(W on,I
c +Ŵ on,I

c). Otherwise, I is denoted
as non-problematic. Now, we show the following inequality

4k · Cop
c ≥ 2

∑

prob. c-int. I

(W on,I
c + Ŵ on,I

c) .

Obviously, the main inequality can be concluded with the help of the above
inequality.

The following lemma provides an upper bound on W on,I
c and Ŵ on,I

c . Then,
an upper bound on the number of problematic c-intervals is shown. These two
results together complete part 1 of the proof.

Lemma 5. For each color c and each online c-interval I,

Ŵ on,I
c ≤W on,I

c ≤ k · bc .

Proof. Due to the cost assignment for won,I
c ,W on,I

c ≤ k·bc. Suppose that Ŵ on,I
c >

0. Recall that ŵon,I
c is increased in at most one step. We consider the step i in

which ŵon,I
c is increased due to the online color change to color c in the online

c-interval I. In this step, for each color c′, Pc − k · bc ≥ Pc′ − k · bc′ .
Now, we distinguish the following two cases.

– Suppose that W on,I
c = k · bc.

The color change in step i produces cost bc. Hence, k · bc is assigned to the
counters in this step. Even if the whole value k · bc is assigned to ŵon,I

c ,
Ŵ on,I

c ≤ k · bc = W on,I
c , since ŵon,I

c is increased in at most one step.
– Suppose that W on,I

c < k · bc.
In this case, Pc = won

c (i) in step i. In fact, for each color c′, Pc′ = won
c′ (i)

at the beginning of step i, since won
c′ (i) < k · bc′ . If, for some color c′ 6= c,

won
c′ (i) = k · bc′ , MAP would have chosen color c′ as new active color in step

i.
Of course, for a color c′ 6= c, the active counter won

c′ can reach its limit k · bc′
in this step. won

c′ exceeds its limit by xc′ = max{0, won
c′ (i)+non

c′ (i) ·bc−k ·bc′}.
Due to MAP, won

c′ (i)− k · bc′ ≤ won
c (i)− k · bc. Hence, xc′ ≤ max{0, won

c (i) +
non
c′ (i) · bc − k · bc}.

Let V denote the set of all colors c′ with xc′ > 0. If V = ∅, Ŵ on,I
c = 0.

Otherwise,

Ŵ on,I
c =

∑

c′∈V

xc′ ≤ |V | · (won
c (i)− k · bc) +

∑

c′∈V

non
c′ (i) · bc

≤ won
c (i)− k · bc +

∑

c′∈V

non
c′ (i) · bc ≤ won

c (i) ≤W on,I
c ,

since won
c (i)− k · bc < 0.

This finishes the proof of the lemma. ut

The beginning of an offline c-interval I, before the offline color change to
color c occurs, is denoted as increasing phase, since the number of objects of
color c in the offline buffer is monotonously increasing. The remaining part of I,
after the offline color change to color c, is denoted as decreasing phase, since the
number of objects of color c in the offline buffer is monotonously decreasing.

Lemma 6. At most one problematic online c-interval starts in an offline c-
interval.

Proof. Fix a problematic online c-interval I. From Lem. 5 follows 4W op,I
c <

4W on,I
c . Hence, there exists at least one step i in I with nop

c (i) < non
c (i). Let I ′

denote the offline c-interval in which I starts.

Suppose I starts in the increasing phase of I ′. Let start(I) denote the first
step of interval I. Then nop

c (start(I)) ≥ 0 = non
c (start(I)). Hence, no step i with

nop
c (i) < non

c (i) can exist in this increasing phase, since every arriving object of
color c is stored in the offline buffer and no objects of color c are removed from
the offline buffer.

Consider the decreasing phase of I ′. If non
c is decreased, then nop

c is decreased
by the same amount. Hence, if there exists a step i with nop

c (i) < non
c (i) in

the decreasing phase of I ′, the offline c-interval I ′ ends before the end of the
problematic online c-interval I. ut

The total number of offline c-intervals is Cop
c /bc. We can exclude the first

offline c-interval, if c is the color of the first object in the output sequence of
OPT, since the total produced cost by MAP in the only problematic interval
starting in this offline c-interval can be bounded by a term independent of σ.
Note that we exclude, for only one color c, an offline c-interval. From the lemma
above it follows that the total number of problematic online c-intervals is at most
Cop
c /bc. Then

2
∑

prob. c-int. I

(W on,I
c + Ŵ on,I

c) ≤ 2
∑

prob. c-int. I

k · bc + k · bc

≤ 4k · bc · Cop
c /bc = 4k · Cop

c .

This completes part 1 of the proof.

Part 2. It remains to show, that an optimal offline strategy with buffer size
h = k/4 is O(log k)-competitive against an optimal offline strategy with buffer
size k. Fix an input sequence σ. For each step i, let nhc (i) denote the number
of objects of color c in the buffer of size h and let nkc (i) denote the number of
objects of color c in the buffer of size k.

Fix a lazy optimal offline strategy LARGE for the reordering buffer of size
k. The offline strategy SMALL for the reordering buffer of size h chooses a new
active color c, with nhc (i) ≥ nkc (i)/4. Note that there exists always such a color,
since

∑
color c n

h
c (i) =

∑
color c n

k
c (i)/4.

Large (small) c-intervals are defined for LARGE (SMALL) according to the
definition of online and offline c-intervals. The definitions of increasing and de-
creasing phases apply to large c-intervals, too. Note that the total number of
large (small) c-intervals is order of the total number of color changes to color c
of LARGE (SMALL).

For every color c, we show that there are at most O(log k) small c-intervals
in one large c-interval. Then, Ch

c ≤ O(log k) · Ck
c , where Ch

c (Ck
c) denotes the

cost of LARGE (SMALL) for color c. This yields part 2 of the proof.
Fix a color c. In the following, we only consider small c-intervals that are

completely contained in a large c-interval. In addition, we exclude a small c-
interval, if LARGE performs a color change to color c during this interval. Hence,
in total at most two small c-intervals are excluded for every large c-interval. The

remaining small c-intervals are completely contained either in an increasing or
in a decreasing phase of a large c-interval.

The following lemma shows that there are at most O(log k) small c-intervals
in a large c-interval, since the buffer size of LARGE is k.

Lemma 7. Let start(I) and end(I) denote the first and last step of a small
c-interval I, respectively.

– In an increasing phase: nkc (end(I)) ≥ (5/4)nkc (start(I)).
– In a decreasing phase: nkc (start(I)) ≥ (5/4)nkc (end(I)).

Proof. We only prove the inequality for the increasing phase. The inequality for
the decreasing phase can be addressed analogously. Fix a small c-interval I. Let
i be the step in I at which SMALL performs a color change to color c. Due to
SMALL, nhc (i) ≥ nkc (i)/4.

At least nhc (i) objects of color c arrive in I. Since I lies in an increasing phase,
these objects are not removed from the buffer of LARGE during I. At the end
of I, the nkc (start(I)) objects of color c stored in the buffer of LARGE before
I, are still there, and at least nhc (i) ≥ nkc (i)/4 ≥ nkc (start(I))/4 new objects of
color c are added. Hence, at least (5/4)nkc (start(I)) objects of color c are stored
in the buffer of LARGE at the end of I. ut

This completes part 2 of the proof. ut

References

1. Teorey, T., Pinkerton, T.: A comparative analysis of disk scheduling policies. Com-
munications of the ACM 15 (1972) 177–184

2. Fiat, A., Karp., R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. Journal of Algorithms 12 (1991) 685–699

3. Albers, S.: New results on web caching with request reordering. In: Proceedings
of the 16th ACM Symposium on Parallel Algorithms and Architectures (SPAA).
(2004) 84–92

4. Feder, T., Motwani, R., Panigrahy, R., Seiden, S., van Stee, R., Zhu, A.: Combining
request scheduling with web caching. Theoretical Compuer Science 324 (2004)
201–218

5. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Proceedings of the 10th European Symposium on Algorithms (ESA). (2002) 820–832

6. Kohrt, J., Pruhs, K.: A constant approximation algorithm for sorting buffers.
In: Proceedings of the 6th Latin American Symposium on Theoretical Informat-
ics (LATIN). (2004) 193–202

7. Krokowski, J., Räcke, H., Sohler, C., Westermann, M.: Reducing state changes with
a pipeline buffer. In: Proceedings of the 9th International Fall Workshop Vision,
Modeling, and Visualization (VMV). (2004) 217–224

8. Gutenschwager, K., Spieckermann, S., Voss, S.: A sequential ordering problem in
automotive paint shops. International Journal of Production Research 42 (2004)
1865–1878

9. Yeh, T., Kuo, C., Lei, C., Yen, H.: Competitive analysis of on-line disk scheduling.
Theory of Computing Systems 31 (1998) 491–506

