
Optimal Online Buffer Scheduling for Block Devices *

Anna Adamaszek
Department of Computer Science and

Centre for Discrete Mathematics and its
Applications (DIMAP)

University of Warwick, Coventry, UK
A.M.Adamaszek@warwick.ac.uk

Artur Czumaj
Department of Computer Science and

Centre for Discrete Mathematics and its
Applications (DIMAP)

University of Warwick, Coventry, UK
A.Czumaj@warwick.ac.uk

Matthias Englert
Department of Computer Science and

Centre for Discrete Mathematics and its
Applications (DIMAP)

University of Warwick, Coventry, UK
M.Englert@warwick.ac.uk

Harald Räcke
Institut für Informatik

Technische Universität München
Munich, Germany

raecke@in.tum.de

ABSTRACT
We introduce a buffer scheduling problem for block operation
devices in an online setting. We consider a stream of items
of different types to be processed by a block device. The
block device can process all items of the same type in a single
step. To improve the performance of the system a buffer of
size k is used to store items in order to reduce the number
of operations required. Whenever the buffer becomes full a
buffer scheduling strategy has to select one type and then
a block operation on all elements with this type that are
currently in the buffer is performed. The goal is to design
a scheduling strategy that minimizes the number of block
operations required.

In this paper we consider the online version of this problem,
where the buffer scheduling strategy must make decisions
without knowing the future items that appear in the input
stream. Our main result is the design of an O(log log k)-
competitive online randomized buffer scheduling strategy.
The bound is asymptotically tight. As a byproduct of our LP-
based techniques, we obtain a randomized offline algorithm
that approximates the optimal number of block operations
to within a constant factor.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

∗Research supported by the Centre for Discrete Mathematics
and its Applications (DIMAP), University of Warwick, EP-
SRC award EP/D063191/1, by EPSRC grant EP/F043333/1,
and by EPSRC grant EP/G069034/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’ 12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

General Terms
Theory, Algorithms

Keywords
Online Algorithms, Online Primal-Dual, Buffer Management,
Reordering Buffer, Sorting Buffer

1. INTRODUCTION
We consider a buffer scheduling problem for block operation
devices. A stream of items of different types (e.g. colors)
have to be processed by a block device. For example the
items could be data that has to be written to the hard disc
and two items have the same type if they are located in the
same block on the hard disc. The block device can process
all items with the same type in a single step.

To improve the performance of the whole system a buffer
of size k can be used to store items in order to reduce the
number of operations required. Whenever the buffer becomes
full (i.e., contains k elements) a buffer scheduling strategy
has to select one color and then a block operation on all
elements with this color that are currently stored in memory
is performed. The processed elements are then removed
from the buffer and free up space for new elements from the
input stream. The goal is to design a scheduling strategy
that minimizes the number of block operations required to
process all elements from the input sequence.

In this paper our focus lies on the online version of this
problem, where the buffer scheduling strategy must make
decisions without knowing the future items that appear in the
input stream. Our main result is the design of an O(log log k)-
competitive online randomized buffer scheduling strategy.

The problem of minimizing the number of block operations
for a buffer is closely related to the reordering buffer problem
([22]). The reordering buffer problem has the same basic
setup; the only difference is that the processing device does
not perform block operations but instead it has different
states (one for each color), and it can process items of color c
if and only if it is in state c. Both problems give a simple yet
versatile framework for modelling real world buffer problems
(see e.g., [5, 11, 18, 21, 22] for the reordering buffer problem).
It is clear that the number of block operations required in

the block device scheduling problem is at least as large as
the number of state changes in the corresponding reordering
buffer instance. In fact it could be much larger as a sequence
of length n consisting of a single color requires only one state
change but d n

k+1
e block operations.

The reordering buffer problem is quite well studied in the
literature. It was introduced by Räcke et al. [22] who gave an
O(log2 k)-competitive online algorithm. This was improved
by Englert and Westermann [16] to O(log k). Aboud [1]
showed that with the proof technique from [16] it is not
possible to derive online algorithms with a competitive ratio
o(log k). Nevertheless, Avigdor-Elgrabli and Rabani [5] were
able to go beyond the logarithmic threshold by presenting
an online algorithm with competitive ratio O(log k/ log log k)
using linear programming based techniques. This result was
later improved by Adamaszek et al. [2] who provide a deter-
ministic algorithm with competitive ratio of O(

√
log k) and

show lower bounds of Ω(
√

log k/ log log k) and Ω(log log k)
on the competitive ratio for deterministic and randomized
strategies, respectively.

In fact, the above lower bounds on the competitive ratio of
a reordering buffer strategy also hold in the model where we
have block operations, because, with a minor modification,
the sequences considered in [2] do not use the fact that it is
possible to process items that were not in the buffer when
the corresponding state changes occurred.

Hence, the O(log log k)-competitive algorithm that we de-
velop in this paper obtains an asymptotically optimal com-
petitive ratio.

1.1 Further related work
The reordering buffer problem has been also studied in the
offline setting, and it was shown by Chan et al. [13] and
independently by Asahiro et al. [4] that the problem is NP-
hard. Until recently no offline approximation algorithms that
achieve better bounds than the best online algorithm from
[2] have been known. However, in a very new development,
Avigdor-Elgrabli and Rabani [6] reported a constant factor
offline approximation for the reordering buffer problem. Our
techniques also give a constant factor approximation algo-
rithm for the offline version of the block device scheduling
problem.

Let us also mention that there have been extensive studies
of more general versions of the uniform reordering buffer
problem mentioned above. Khandekar and Pandit [19], and
Gamzu and Segev [17] considered the problem where the
colors correspond to points in a line-metric with appropri-
ately defined costs of changing the colors. Englert et al.
[14] studied a more general version where colors correspond
to arbitrary points in a metric space (C, d) and the cost
for switching from color c′ to color c is the distance d(c′, c)
between the corresponding points in the metric space. Re-
search has also been done on the maximization version of
the problem, where the cost measure is the number of color
changes that the output sequence saved over the unordered
input sequence. For this version there exist constant factor
approximation algorithms due to Kohrt and Pruhs [20] and
Bar-Yehuda and Laserson [10].

1.2 Our results and techniques
In this paper we present asymptotically tight results for the
block device scheduling problem. We present a random-
ized online algorithm that obtains a competitive ratio of

O(log log k). As a byproduct of our techniques, we obtain a
randomized offline algorithm that approximates the optimal
number of block operations to within a constant factor.

While our problem is closely related to the reordering buffer
problem mentioned above, our approach differs significantly
from the combinatorial approach used in earlier works for
the latter problem [5, 2, 16, 22]. Our techniques are similar
to the approach used by Bansal et al. in online algorithms
for weighted caching [8] and generalized caching [9], and use
also ideas developed for improved generalized caching in [3].
In all these papers one first formulates a packing/covering
linear program that forms a relaxation of the original problem.
Then one solves the linear program in an online-manner using
the online primal-dual framework for packing and covering
problems introduced by Buchbinder and Naor [12]. In the
final step, one gives a randomized rounding algorithm to
transform the fractional solution into an integral one. This
approach has been shown to be very successful in the study
of online caching algorithms and in other related online
problems (see, e.g., [7]), and in this paper we demonstrate
its power in the buffer management scenario.

We begin in Section 2 by formulating a relaxation of our
problem that is a packing/covering linear program with
an exponential number of constraints. This formulation
uses so-called Knapsack cover inequalities that, for example,
have also been used for the generalized caching problem [9].
However, applying the online primal-dual framework directly
to this LP would lead to a competitive ratio of O(log k).
Therefore in Section 2 we first modify the LP in such a
way that applying the primal-dual technique leads to an
O(log log k) competitive ratio.

In Section 3 we apply the online primal-dual framework.
Although this follows more or less the standard primal-dual
technique, it is somewhat non-standard because we apply
some of the main arguments not to individual variables but
to sums of variables. The rounding is done in Section 4. Here,
we present an algorithm that transforms a solution to the
LP into a distribution over deterministic buffer scheduling
strategies with expected cost at most a constant times larger
than the cost of the LP solution. These results combined
together yield a randomized online algorithm that obtains a
competitive ratio of O(log log k).

Since we can show that the linear program (despite its
exponential size) can be solved in polynomial time, and since
the rounding yields a constant factor approximation of the
LP, our approach gives us a polynomial time constant factor
approximation randomized offline algorithm, as well.

2. LP FORMULATION
Our model is the following. At any point in time the buffer
can store k elements. At a time-step t ≥ 1 a new item
appears. If the number of items currently stored in the buffer
is at most k − 1, the new item can simply be added to the
buffer. Otherwise, an output operation has to be performed.
For this, a buffer-management algorithm selects a color c
and all elements among the set of k + 1 visible elements (i.e.
the k elements stored in the buffer plus the new element
that arrived in time-step t) that have color c are removed
from the buffer. The goal is to minimize the total number of
output operations.

For this model we set up a linear program as follows. We
have variables xc(τ) for every time-step τ and every color
c. This variable reflects that we switch to color c at time

τ , and remove all elements of this color. We model the
buffer constraint at time t, as follows. Suppose, that we fix
a time-step sc < t for every color c and that we consider
only elements of color c that appear after time sc (sc can
be viewed as a time-step at which we performed an output
operation for color c; note that we allow sc = 0 so that the
constraint sc < t can be obtained for every time-step t ≥ 1).

We use wc(sc, t) to denote the number of elements of
color c that appear between time sc and t (excluding sc
but including t). For simplicity, we extend this notation
to a vector ~s that represents the chosen time-steps for all
colors, i.e., wc(~s, t) := wc(sc, t). We will also allow sc ≥ t, in
which case we simply set wc(sc, t) := 0. The total number of
elements that appear until time t (but after their respective
time-step sc) is then W (~s, t) :=

∑
c wc(~s, t). Of course, if

W (~s, t) > k the buffer constraint at t is violated, unless we
remove some elements.

If we perform an output operation for color c at time
τ > sc we remove at most wc(~s, τ) elements that appear
between time sc and τ (and if there are no other output
operations between sc and τ we remove exactly wc(~s, τ)
elements). Summing this over all colors gives that for every
vector ~s ∑

c

∑
τ≤t

wc(~s, τ) · xc(τ) ≥W (~s, t)− k

is a valid constraint (recall that wc(~s, τ) = 0 if τ ≤ sc).
In an integral setting, the constraint still remains valid if

we tighten it by replacing wc(~s, τ) by w̃c(~s, τ, t) defined as
follows:

w̃c(~s, τ, t) := max{min{wc(~s, τ),W (~s, t)− k}, 0} .

Our linear program is the following

min
∑
c

∑
τ

xc(τ)

s.t. ∀~s, t with W (~s, t) ≥ k :∑
c

∑
τ≤t

w̃c(~s, τ, t) · xc(τ) ≥W (~s, t)− k

∀τ, c :

xc(τ) ≥ 0
(LPk)

2.1 Modifying the LP
For solving our LP online, we will use the following slightly
modified LP in which we replace k by k′ = (1− ε) · k ≥ 1,
where ε will later be chosen as 1/ log k.

min
∑
c

∑
τ

xc(τ)

s.t. ∀~s, t with W (~s, t) ≥ k :∑
c

∑
τ≤t

w̃c(~s, τ, t) · xc(τ) ≥W (~s, t)− k′

∀τ, c :

xc(τ) ≥ 0
(Primal)

Here the above linear program uses the definition:

w̃c(~s, τ, t) := max{min{wc(~s, τ),W (~s, t)− k′}, 0} .

This means that LP Primal is obtained by using LPk′ and
removing constraints for ~s, t with k′ ≤W (~s, t) < k.

We will relate the optimal value of Primal LP to the cost
of an optimal algorithm. To this end, we compare the cost
of an optimal offline solution utilizing a buffer of size k with
the cost of an optimal offline solution utilizing a buffer of
size k′ = (1− ε) · k. The proof is an adapted and generalized
version of Theorem 2.1 in [15].

Theorem 2.1. For any input sequence, the cost OPTk′
of an optimal offline solution utilizing a buffer of size k′ =
(1− ε) · k is at most a factor of (2 + ε ln k′)/(1− ε) larger
than the cost OPTk of an optimal offline solution utilizing a
buffer of size k.

Proof. Fix any input sequence and consider an optimal
offline algorithm using a buffer of size k. Without loss of
generality, we may assume that each block operation in
the optimum solution processes a different color. Indeed,
if two operations were to process the same color, we could
re-color the elements processed in one of the operations to a
completely new color. This does not change OPTk and can
only increase OPTk′ .

We number the colors in the order of the respective block
operations, i.e., the i-th block operation processes items of
color i and the number of different colors equals OPTk. Now,
we design an offline strategy to process the input sequence
with a buffer of size k′.

We call a color finished at some time t, if all elements of
that color have been processed by our strategy by time t.
Every other color is called unfinished, and in particular, we
use ω to denote the unfinished color that has the smallest
index. Let n(c) denote the number of elements of color c
stored in the buffer. The potential φ(c) of an unfinished color
c is defined as (c− ω + 1) · n(c). Note that ω, n(c), and φ(c)
change over time but we do not indicate this, since the time
will always be clear from the context.

Now consider the following strategy to process the input
sequence with a buffer of size k′. The strategy maintains
a counter p(i) for each unfinished color i that is initialized
with 0 and gives a lower bound on the number of items with
color i or larger that have already been processed.

(1) Let ω be the unfinished color with the smallest index.

(2) If the last element for color ω is either in the buffer or is
the next element, perform a block operation for ω.

(3) Otherwise, identify a color q with maximum potential
and perform a block operation for q.

If after this, the last element for ω is still neither in the
buffer nor the next element, increase p(i) by n(q) for
each i, ω ≤ i ≤ q.

(4) Repeat.

We start our analysis by giving a bound on the values of
the counters p(i).

Fact 2.2. At any point in time and for any i, p(i) ≤ εk.

Proof. For an arbitrary fixed time, we give a bound on
p(ω), where ω is the first unfinished color at that time. This
bound implies the claim since, due to the way the counters
are increased, p(i) ≥ p(i+ 1) for every i ≥ ω.

Let ` be the number of elements with a color smaller than
ω. Preceding the block operation to process color ω, the
optimal solution for buffer size k processed exactly these `

elements. Since the block operation for color ω processes
all input elements of color ω and the buffer can only hold
k elements, all elements of color ω must appear among the
first `+ k + 1 elements of the input sequence.

Assume for contradiction that p(ω) is increased beyond εk
in Step (3). This means in particular that not all elements of
colour ω have yet appeared. Further, we have processed at
least dεke elements with a color ω or larger (since p(ω) > εk),
and we have processed all ` elements with color less than
ω. The buffer stores bk′c = k − dεke elements, and the next
element is not the last element of color ω (as otw. we would
not increase p(ω)).

Altogether the first ` + dεke + k − dεke + 1 = ` + k + 1
elements do not contain all elements of color ω. This is a
contradiction.

Next, we give a lower bound on the potential φ(q) that color
q has in Step (3) of our strategy.

Fact 2.3. φ(q) ≥ k′/(1 + ln k′).

Proof. Define s := k′/(1 + ln k′) to shorten notation.
Suppose there is no color c with φ(c) ≥ s. We know that for
every color c < ω, n(c) = 0 (these are the finished colors)
and for c ≥ ω − 1 + s, n(c) = 0 (since we assume that every
color has potential less than s). However, since in total there

are k′ elements in the buffer,
∑ω−1+bsc
c=ω n(c) = k′. On the

other hand, for every c, (c− ω + 1) · n(c) = φ(c) < s. This
gives a contradiction since

k′ =

ω−1+bsc∑
c=ω

n(c) < s ·
ω−1+bsc∑
c=ω

1

c− ω + 1

= s ·
bsc∑
i=1

1

i
= s ·Hbsc ≤ s · (ln(s) + 1) ≤ k′ ,

and the claim follows.

Putting everything together we get:

– For each color, there is at most one block operation
due to Step (2).

– Every block operation in Step (3), except OPTk many
(one for each color), results in an increase of

∑
i p(i) by

k′/(1 + ln k′) due to Fact 2.3. Since
∑
i p(i) is bounded

by εk ·OPTk by Fact 2.2, we conclude that there can
be at most εk ·OPTk · (1+ln k′)/k′ = (1+ln k′) ·ε/(1−
ε) · OPTk such block operations.

In total, we have at most (2 + (1 + ln k′) · ε/(1− ε)) ·OPTk <
(2 + ε ln k′)/(1− ε) ·OPTk block operations as claimed.

Using Theorem 2.1, we can easily prove the following lemma.

Lemma 2.4. For ε = 1/ log k, the value of LP Primal is
at most a constant factor larger than the cost OPTk of an
optimal offline algorithm using a buffer of size k.

Proof. By the choice of ε and Theorem 2.1, the value
of LPk′ is at most OPTk′ ≤ O(1) · OPTk. LP Primal is
obtained from LPk′ by deleting constraints k′ ≤W (~s, t) < k.
Of course, this can only decrease the cost of the optimum
solution.

3. SOLVING THE LP ONLINE
In this section we show how to solve the linear program
Primal from Section 2.1 in an online fashion using the primal
dual technique introduced by Buchbinder and Naor [12].
The cost of the online solution will turn out to be at most
O(log log k) · opt(Primal), where opt(Primal) denotes the cost
of an optimum solution to the LP. In Section 4 we then show
how to turn such an online fractional solution into an online
algorithm while only increasing the cost by another constant
factor.

Recall LP Primal:

min
∑
c

∑
τ

xc(τ)

s.t. ∀~s, t with W (~s, t) ≥ k :∑
c

∑
τ≤t

w̃c(~s, τ, t) · xc(τ) ≥W (~s, t)− k′

∀τ, c :

xc(τ) ≥ 0
(Primal)

The dual is the following

max
∑
(~s,t)

α~s,t(W (~s, t)− k′)

s.t. ∀τ, c :∑
(~s,t):t≥τ

w̃c(~s, τ, t) · α~s,t ≤ 1

∀~s, t with W (~s, t) ≥ k
α~s,t ≥ 0

(Dual)

Note that the LP Dual has variables α~s,t for W (~s, t) ≥ k.
For simplicity of notation we define α~s,t := 0 for W (~s, t) < k
as this allows to write summations in a simpler form.
The following definition uses a constant scaling factor γ
defined in Section 4. For this section we only require γ ≥ 2.

Definition 3.1. A constraint (~s, t) of LP Primal is called
a proper constraint for a variable assignment x if the follow-
ing holds for every color c:

a)
∑
sc≤τ≤t xc(τ) ≥ 1/γ;

b)
∑
sc<τ≤t xc(τ) < 2/γ;

c) xc(τ) < 1/γ for all τ ∈ {sc + 1, . . . , t}.

The online algorithm in Section 4 successively generates
proper violated constraints and feeds them to Algorithm 1.
The algorithm then increases xc(τ)-values until either the
constraint (~s, t) is satisfied, or not proper anymore. In addi-
tion the algorithm from Section 4 also guarantees that the
constraints are monotone, i.e., for two consecutive constraints
(~s1, t1) and (~s2, t2), ~s1 ≤ ~s2 and t1 ≤ t2. In this section we
show that the assignment to LP Primal constructed by calls to
Algorithm 1 has cost no more than O(log log k) · opt(Primal).

Given a primal constraint (~s, t), the algorithm increases
the dual variable α~s,t for the constraint by an infinitesimal
amount dα~s,t (Line 15). It also computes for every primal
variable xτ (c), τ ∈ {sc+1, . . . , t} a value ∆(τ, c) that specifies
an increase to xc(t) “wished by variable xc(τ)” (Lines 7 and
11). Then in Line 13 the xc(t)-value is increased by the
maximum of the ∆(τ, c)-values taken over all τ ’s.

Procedure 1 fix-constraint((~s, t), x, α)

Input: A violated, proper constraint (~s, t), current variable

assignments x and α.

Output: New assignments for x and α. Return if (~s, t) is

satisfied or not proper anymore.

1: while (~s, t) is proper violated constraint do

2: for each variable xc(τ), sc < τ ≤ t do
3: ∆(τ, c) := 0

4: if (
∑

(~s,t):t≥τ w̃c(~s, τ, t) · α~s,t == 1) then

5: // constraint for (τ, c) is tight

6: if (Xc[τ, t] <
1

log3 k
) then

7: ∆(τ, c) := 1
log3 k

8: x̂c(τ) := 1
log3 k

9: if (
∑

(~s,t):t≥τ w̃c(~s, τ, t) · α~s,t > 1) then

10: // constraint for (τ, c) is violated

11: ∆(τ, c) := Xc[τ, t] · w̃c(~s, τ, t)dα~s,t
12: dxc(t) := maxτ :sc<τ≤t ∆(τ, c)

13: ∀c : xc(t) := xc(t) + dxc(t)

14: // increase variable α~s,t by infinitesimal amount

15: α~s,t = α~s,t + dα~s,t

The following analysis is close to the standard analysis
using the primal dual scheme. The important part is that
we can initialize the xc(τ)-values with 1/log3 k. For most
algorithms that use the online primal-dual scheme this ini-
tialization is 1

n
, which results in an LP-solution with approxi-

mation guarantee O(log n). Another aspect that differs from
the standard analysis is that we do not apply the standard
arguments to individual variables but to sums of variables
(namely Xc[τ, t] :=

∑
τ≤i≤t xc(i)).

Step 1: show that the solution is approximately feasible
for the dual.
Let v(τ, c) =

∑
(~s,t):τ≤t w̃c(~s, τ, t)α~s,t − 1 denote the amount

by which the dual constraint for variable xc(τ) is violated. Let
Xc[τ, t] =

∑t
i=τ xc(i). The violation can increase if the α~s,t-

multiplier for some primal constraint (~s, t) is increased during
Procedure 1. However, note that only primal constraints
(~s, t) with τ ∈ {sc + 1, . . . , t} will result in an increase of
v(τ, c) as for others w̃c(~s, τ, t) = 0. Furthermore, (~s, t) is
proper which gives Xc[sc+1, t] < 2/γ. Therefore, once a dual
constraint (τ, c) fulfills Xc(τ, t) ≥ 2/γ its violation v(τ, c)
will not be increased anymore. In the following we analyze
how large the violation can become until Xc[τ, t] ≥ 2/γ. For
this we need the following claim.

Claim 3.2. A violated dual constraint fulfills Xc[τ, t] ≥
1

log3 k
exp(v(τ, c)).

Proof. When the dual constraint (τ, c) becomes tight
(i.e., v(τ, c) = 0) the algorithm sets ∆(τ, c) := 1

log3 k
in

Line 7. This means that at this point (after the end of the
iteration) we have

Xc[τ, t] ≥
1

log3 k
exp(v(τ, c)) (1)

and the claim holds.

During the following iterations a dual variable α~s,t is in-
creased by dα~s,t (Line 15) which increases the violation v(τ, c)
by w̃c(sc, τ, t)dα~s,t. This means that the right hand side of
Equation 1 increases by

1

log3 k
exp(v(τ, c)) · w̃c(sc, τ, t)dα~s,t

However, at the same time Xc[τ, t] increases by at least

Xc[τ, t]·w̃c(~s, τ, t)dα~s,t ≥
1

log3 k
exp(v(τ, c))·w̃c(sc, τ, t)dα~s,t

according to Line 11 of the algorithm.

From the above lemma it follows that the violation of a dual
constraint can grow to at most O(log log k) until Xc(τ, t)
becomes 2/γ after which the violation does not increase
anymore. Hence, scaling down the dual variables by a factor
of O(log log k) leads to a feasible dual solution.

The primal cost of the solution (the total value of all xc(τ)-
variables) comes from two sources. There may be an increase
of 1/log3 k if a dual constraint becomes tight (Line 7) or there
is the normal increase in Line 11. We will split the primal
cost into two types according to their source. Let Ĉ denote
the cost induced by increases in Line 7 and C denote cost
induced by increases in Line 11. Note that Ĉ ≤

∑
τ,c x̂c(τ)

since we set x̂c(τ) = 1/log3 k, whenever we make an increase
in Line 7 of the algorithm.

Step 2: show that x̂c(τ)’s fulfill “primal slackness con-
ditions.
We show that x̂c(τ) > 0 ⇒

∑
(~s,t):t≥τ w̃c(~s, τ, t) · α~s,t ≥

1. This is immediate as the algorithm only assigns x̂c(τ)
a non-zero value if the dual constraint corresponding to
variable xc(τ) is tight. Once a constraint is tight in the
online algorithm it means that in the end the constraint will
either be tight or violated.

Step 3: show that x̂c(τ)’s fulfill “dual slackness condi-
tions”.
Here we show α~s,t > 0 ⇒

∑
c

∑
τ≤t w̃c(~s, τ, t) · x̂c(τ) ≤

W (~s, t) − k′. Fix a color c. We partition the time-steps
τ ∈ {sc + 1, . . . , t} into classes according to the value of
wc(sc, τ), The class Tj,c, j ≥ 0 contains the time-steps for
which wc(sc, τ) ∈ [2j , 2j+1).

Claim 3.3. A class Tj,c includes at most O(log log k) time-
steps τ that have x̂c(τ) > 0.

Proof. Since α~s,t > 0 the constraint (~s, t) has been fed
to Procedure 1 at some point. We first analyze how many
time-steps τ with x̂c(τ) > 0 can have been created before
Procedure 1 was called with constraint (~s, t). Because of
the monotonicity of constraints we know that all constraints
(~s′, t′) among these that have led to an increase in x̂c(τ)-
values fulfill ~s′ ≤ ~s and t′ ≤ t.

Fix a class Tj,c and let τ1, τ2, . . . denote its time-steps that
have x̂c(τi) > 0 in increasing order. Consider a time-step τi.
When the algorithm sets x̂c(τi) to 1/log3 k it must be at a
time ti < τi+1. The reason is that setting x̂c(τi) = 1/log3 k
also triggers an increase of 1/log3 k to xc(ti). If τi+1 ≤ ti
this high value of xc(ti) would prevent x̂(τi+1) from being
increased as this only happens if Xc[τi+1, ti+1] < 1/log3 k.

Define L(τi) :=
∑

(~s,t):τi≤t w̃c(~s, τi, t) · α~s,t to be the load

of τi (the left hand side of the constraint (τi, c) in the dual).
Note that an increase of L(τi), i > 1 by w̃(s′c, τi, t

′)dα~s′,t′ in
Line 15 is connected with an increase of L(τ1) by w̃(s′c, τ1, t

′)dα~s′,t′
which is approximately the same up to a constant factor as
τ1 and τi are in the same class (note that if τ1 and τ2 are
in the same class w.r.t. ~s they are also in the same class
w.r.t. ~s′). In order for a τi to set its x̂c(τi)-value, it first
needs to collect a load of 1 as its constraint needs to be tight.
Consequently, for every τi with x̂c(τi) > 0, the load L(τ1)
will increase by at least 1/2. Since the dual solution is almost
feasible the load L(τ1) is at most O(log log k). This gives
that before constraint (~s, t) at most O(log log k) time-steps
τ ∈ {sc + 1, . . . , t} could achieve x̂c(τ) > 0.

After this at most one time-step within {sc + 1, . . . , t} can
have its xc(τ)-value increased. This holds because after the
next increase (at time t′′ ≥ t) xc(t′′) will be at least 1/ log3 k.
Again this prevents any x̂c(τ)-value with τ ≤ t′′ from being
increased.

Let nj,c denote the number of time-steps τ in class Tj,c that
have x̂c(τ) > 0. Then we have∑
c

∑
τ≤t

w̃c(~s, τ, t) · x̂c(τ) ≤
∑
c

∑
j>0

2j+1nj,c
1

log3 k

≤
∑
c

O(log log k) · wc(sc, t) 1
log3 k

≤W (~s, t)/log k ≤W (~s, t)− k′ .

Note that the last inequality follows from the transforma-
tion of our LP in Section 2, and is the key for obtaining a
competitive ratio of O(log log k).

Step 4: conclude that cost of x̂c(τ)’s is not too large.
From the slackness conditions we derive a bound on the cost
Ĉ as follows.∑

c

∑
τ x̂c(τ) ≤

∑
c

∑
τ

[∑
(~s,t):t≥τ

w̃c(~s, τ, t) · α~s,t
]
· x̂c(τ)

≤
∑
(~s,t)

α~s,t
∑
c

∑
τ≤t

w̃c(~s, τ, t) · x̂c(τ)

≤
∑
(~s,t)

α~s,t ·
(
W (~s, t)− k′

)
.

The last term is the profit of an approximately feasible dual
solution. Hence, it is at most an O(log log k)-factor larger
than the cost of an optimal primal solution.

Step 5: show that C is small.
The cost C that is created in Line 11 and Line 12 can be
estimated as follows. In one iteration the dual profit increases
by (W (~s, t)− k′) · dα~s,t. We now estimate the increase of C
during the same iteration. Fix a color c. In Line 11 every
τ ∈ {sc + 1, . . . , t} makes a wish for an increase of xc(t) of
Xc[τ, t] · w̃c(~s, τ, t)dα~s,t. In Line 12 the maximum is taken.
This means that

dxc(t) = max
τ

Xc[τ, t] · w̃c(~s, τ, t)dα~s,t

≤
∑
τ

w̃c(~s, τ, t) · xc(τ) · dα~s,t .

Summing this over all colors c gives that the increase in

Algorithm 2 RANDOM-STEP(t)

1: // buffer constraints may be violated due to new item

2: if (~s, t) not proper then recompute ~s
3: while constraint (~s, t) is violated do
4: fix-constraint((~s, t), x, α) // change current solution

5: adjust distribution µ to reflect new xc(τ)-values
6: if (~s, t) not proper then recompute ~s
7: // buffer constraints are fulfilled

primal cost is at most∑
τ

∑
c

w̃c(~s, τ, t)xc(τ) · dα~s,t ≤ (W (~s, t)− k′) · dα~s,t .

Here the last inequality follows since the constraint (~s, t)
is violated. Hence, the increase in the cost C is at most
the increase in dual profit of an approximately feasible dual
solution, which is at most O(log log k) times the cost of an
optimal primal solution.

4. ROUNDING THE LP-SOLUTION IN AN
ONLINE MANNER

The randomized algorithm RANDOM for the buffer manage-
ment problem uses an “LP-solver” for obtaining assignments
to LP Primal and LP Dual with low primal cost and then uses
these solutions to generate a distribution µ over deterministic
buffer management strategies with low expected cost.

Algorithm 2 shows the general structure of one step for
RANDOM. RANDOM maintains a vector ~s and together with
the current time-step t the pair (~s, t) forms a primal constraint
of the LP that RANDOM tries to satisfy. For this, RANDOM
feeds the current primal and dual assignments together with
(~s, t) to an “LP-routine”. This sub-routine could e.g. be
Algorithm 1 from Section 3. However, it could also be a
routine that is simply based on knowing the optimal LP-
solution (for the design of offline approximation algorithms
we can assume that we know the optimum LP-solution as
we have a separation oracle (see Section A)).

The LP-subroutine increases some primal variables xc(τ)
with sc < τ ≤ t until the constraint (~s, t) is either satisfied or
the constraint (~s, t) is not proper anymore. Then, RANDOM
adjusts the distribution over buffer management strategies
to reflect the changed variables xc(τ) in the primal LP. In
case the LP-routine returned because (~s, t) is not proper,
RANDOM computes a new vector ~s and repeats the process.

When finally the constraint (~s, t) is satisfied all determinis-
tic buffer management strategies in the distribution µ fulfill
their buffer-constraint (for time t). Observe that the assign-
ment for the primal LP may not be feasible as RANDOM
only feeds some constraints to the LP-routine. Further, note
that the assignment to the dual LP is not used by RANDOM
at all (but may be used by the LP-routine).

A deterministic buffer management strategy is given by a
function D : T × C → N0 with the meaning that D(τ, c) de-
scribes the number of output operations for color c performed
right after the τ -th item appeared. We allow D(τ, c) > 1,
i.e., we will allow that the strategy performs several con-
secutive output operations for the same color. We show
that each strategy in the support of µ fulfills the buffer-
constraints and that the cost for updating the distribution
is only O(primal-cost), where primal-cost is the cost of the
primal assignment generated by the calls to the LP-routine.

This means that if the LP-routine is the procedure from
Section 3 we obtain an online algorithm with competitive
ratio O(log log k). If we implement it using the optimal LP-
solution we obtain an offline approximation algorithm with
a constant approximation factor.

In order to show a bound on the update cost, we show
that any change to the LP that increases the LP-cost by ε
results in a change to the distribution over buffer management
strategies with expected cost O(ε).

4.1 Ensuring Buffer Constraints
Suppose that RANDOM just finished its step at time t (Algo-
rithm 2), and that ~s is the vector maintained by RANDOM.
RANDOM will always guarantee that ~s, and the assignment
x fulfill 1/γ ≤

∑
τ∈{sc+1,...,t} xc(τ) < 3/γ and xc(τ) ≤ 1/γ,

and that ~s is monotonically increasing (the latter property
is only important for the implementation of the LP-routine
in Section 3 that assumes that the constraints that are fed
to the routine have this property). We will use the fact that
the constraint (~s, t) is fulfilled to show that the strategies in
the support of µ fulfill the buffer-constraints.

We first set up some properties that the strategies in µ have
to fulfill. The fact that buffer-constraints hold will follow
from these properties. In order to define these properties we
introduce the following notation. Let γ denote a scaling factor
to be determined later. We use zc(τ) := max{γxc(τ), 1} to
denote a scaled version of the current assignment to LP Primal.
We partition the pairs (τ, c) with τ ∈ {sc + 1, . . . , t} into
classes according to the value of wc(sc, τ). We say a pair
(τ, c) is in class Si if wc(sc, τ) ∈ [2i, 2i+1) (we do not care
about (τ, c)-pairs that have wc(sc, τ) = 0). We further use Sc

to denote the set {(τ, c) | τ ∈ {sc + 1, . . . , t}} and S =
⋃
c S

c.
In addition to sets Si we also define a set L that con-

tains (τ, c)-pairs with a “large”wc(τ, c)-value. Formally, we
first select pairs in decreasing order of wc(τ, c)-value un-
til L contains pairs whose zc(τ)-values sum up to at least
λ+ 1 (for a parameter λ� γ to be chosen later) or L = S;
then if the zc(τ)-values sum up to more than λ + 1 we re-
move the last element added. Hence, if L 6= S we have
λ ≤

∑
(τ,c)∈L zc(τ) ≤ λ+ 1, as the zc(τ)’s are at most 1. A

buffer management strategy D has to fulfill the following
properties.

1. For every color c,
∑
sc≤τ≤tD(τ, c) ≥ 1, i.e., D removed

the color at least once between time sc and t.

2. D mirrors the fractional solution of the LP on the sets
Si:

∀Si :
⌊∑

(τ,c)∈Si

zc(τ)
⌋
≤
∑

(τ,c)∈Si

D(τ, c) .

3. D mirrors the fractional solution of the LP on the set
L of large (τ, c)-pairs:⌊∑

(τ,c)∈L
zc(τ)

⌋
≤
∑

(τ,c)∈L
D(τ, c) .

4. For every color c and for every class Si, we have∑
(τ,c)∈Si∩Sc D(τ, c) ≤ 9, this means D did not remove

the same color very often in the same class.

We first show that a buffer management strategy D that
fulfills the above properties also fulfills buffer-constraints
provided that the constraint for (~s, t) in the primal LP is
satisfied. Property 1 guarantees that elements/items of color

c that appeared at time sc or before do not influence the
buffer-constraint for D at time t, since all these items have
already been removed. Hence, the following formula specifies
exactly the number of items in D’s buffer at time t:

buffer(t) = W (~s, t)−
∑
c

max
τ :D(τ,c)=1

wc(sc, τ) . (2)

This holds because the term wc(sc, τ) (for the maximum τ
with D(τ, c) = 1) specifies the items that appeared after time
sc (excluding sc) and are evicted at time τ or before. Let
j denote the index of the largest class that contains a pair
(τ, c) with D(τ, c) = 1. Then

max
τ :D(τ,c)=1

wc(sc, τ) ≥ 2j ≥ 1

36

j∑
i=0

9 · 2i+1

≥ 1

36

∑
(τ,c)∈Sc

D(τ, c) · wc(sc, τ) ,

where the last step uses Property 4 (the fact that D does
not evict a color too often in the same class). Plugging
the above into Equation 2 yields buffer(t) ≤ W (~s, t) −
1
36

∑
(τ,c)∈S D(τ, c)·wc(sc, τ). We need to show that this is at

most k. This means we want to show that
∑

(τ,c)∈S D(τ, c) ·
wc(sc, τ) ≥ 36(W (~s, t)− k).

This is encapsulated in the following lemma.

Lemma 4.1. Let (~s, t) be a proper, satisfied constraint. A
buffer scheduling strategy that fulfills property 1, 2, 3, or 4
fulfills

∑
(τ,c)∈S D(τ, c) · wc(sc, τ) ≥ 36(W (~s, t)− k).

Proof. For this we need the following claim.

Claim 4.2. Either we have λ ≤
∑

(τ,c)∈L zc(τ) ≤ (λ+ 1)

or W (~s, t) ≤ k.

Proof. The constraint for (~s, t) in LP Primal is fulfilled.
Therefore, ∑

sc<τ≤t

w̃c(sc, τ, t) · xc(τ) ≥W (~s, t)− k .

If W (~s, t)− k ≥ 0 then w̃c(sc, τ, t) ≤ w(~s, t). Therefore, the
xc(τ) must sum to at least one. Scaling by γ gives that
the zc(τ)’s sum up to at least γ. Hence, L will contain a
zc(τ)-weight of at least λ and at most λ+ 1, as λ� γ.

In order to show the lemma we can assume that W (~s, t)−
k > 0 as otherwise the equation trivially holds as the left
hand side is always positive. The above claim then gives∑

(τ,c)∈L zc(τ) ≥ λ.

Now assume that i`, the class-index of the pair (τ, c) ∈ L
with smallest wc(sc, τ)-value, fulfills 2i` ≥ W (~s, t)− k. Then∑

(τ,c)∈S

wc(sc, τ) ·D(τ, c) ≥
∑

(τ,c)∈L

wc(sc, τ) ·D(τ, c)

≥ 2i`
∑

(τ,c)∈L

D(τ, c)

≥ λ(W (~s, t)− k)

≥ 36(W (~s, t)− k) ,

by choosing λ ≥ 36. In the following we can assume 2i` ≤

(W (~s, t)− k). We have∑
(τ,c)∈S

wc(sc, τ)D(τ, c)

≥
∑
i≤i`

∑
(τ,c)∈Si

wc(sc, τ)D(τ, c)

≥
∑
i≤i`

2i
∑

(τ,c)∈Si

D(τ, c)

≥
∑
i≤i`

2i
(∑

(τ,c)∈Si

zc(τ)− 1
)

=
1

2

∑
i≤i`

∑
(τ,c)∈Si

2i+1zc(τ)−
∑
i≤i`

2i

≥ 1

2

∑
i≤i`

∑
(τ,c)∈Si

wc(sc, τ)zc(τ)− 2i`+1

≥ γ

2

∑
i≤i`

∑
(τ,c)∈Si

w̃c(sc, τ, t)xc(τ)− 2(W (~s, t)− k) .

(3)

Then

γ

2

∑
L\Si`

w̃c(sc, τ, t)xc(τ) ≤ 1

2

∑
(τ,c)∈L

w̃c(sc, τ, t)zc(τ)

≤ (W (~s, t)− k)
∑

(τ,c)∈L

zc(τ)

≤ (λ+ 1)(W (S)− k)

where the last inequality follows from
∑

(τ,c)∈L ≤ λ + 1.
Adding the inequality

0 ≥ γ

2

∑
L\Si`

w̃c(sc, τ, t)xc(τ)− (λ+ 1)(W~(s), t− k)

to Equation 3 gives∑
(τ,c)∈S

wc(sc, τ)D(τ, c)

≥ γ

2

∑
(τ,c)∈S

w̃c(sc, τ, t)xc(τ)− (λ+ 2)(W (~s, t)− k)

≥ 36(W (~s, t)− k) ,

where the last inequality holds for large enough γ, and uses
the fact that the constraint for (~s, t) in LP Primal is fulfilled.

5. UPDATING THE DISTRIBUTION
It remains to show how to update the distribution in an
online manner so that the buffer management strategies
fulfill Properties 1, 2, 3, and 4.

Instead of constructing µ directly we will first construct
distributions µ1, µ2, µ3. A random buffer management strat-
egy according to µ is then chosen by sampling strategies
µ1 ∼ D1, µ2 ∼ D2, µ3 ∼ D3 and computing the strat-
egy D by setting D(τ, c) := max{D1(τ, c), D2(τ, c), D3(τ, c)}.
Any strategy, whether in the support of µ1, µ2, or µ3 ful-
fills ∀c,∀Si

∑
(τ,c)∈Si∩Sc D(τ, c) ≤ 3. Hence, the strategy

D = max{D1,D2,D3} fulfills ∀c,∀Si
∑

(τ,c)∈Si
D(τ, c) ≤ 9

(Property 4).
In addition strategies in the support of µ1 fulfill Property 1,

strategies from µ2 fulfill Property 2, and strategies from µ3

fulfill Property 3. Hence, D will fulfill all these properties
and consequently D will obey the buffer-constraints.

5.1 Maintaining µ1, µ2, and µ3

In the following we describe how to update µ1, µ2, and µ3,
and make sure that the strategies in their support fulfill
their respective properties. The distributions µ1 and µ2 will
always fulfill

∑
D µi(D) ·D(τ, c) = zc(τ), i.e., the expected

number of times the color c is removed at time τ by a random
strategy D is equal to the scaled LP-variable zc(τ) (recall
that we allow a strategy to remove a color several times in
the same step). It would be difficult to maintain the above
property without allowing changes in the past. Therefore,
we will allow a strategy at time t to alter its past behavior
and to increase or decrease D(τ, c) for τ < t (such a change
may incur a cost, of course). In reality, decreasing a D(τ, c)-
value only makes fulfilling buffer-constraints more difficult, so
allowing this does not give additional power to the algorithm.
Similarly, increasing a D(τ, c)-value with τ < t is never better
than increasing D(t, c) instead, since we only care about the
buffer-constraint at t as the others have already been met.

There are two types of changes that require updating the
distributions. Firstly, the zc(τ)-values may increase due to
executing the LP-subroutine. We will assume that these
changes are infinitesimal, i.e., in each step we have to react
to an increase of a zc(τ)-value from zc(τ) to zc(τ) + ε.

The other type of change is a change to the vector ~s
triggered in Line 2 or Line 6 of Algorithm 2. The re-
computation of ~s is done as follows. Let c denote a color
that either has a τ̄ ∈ {sc + 1, . . . , t} with xc(τ̄) ≥ 1/λ or
has

∑
sc<τ≤t xc(τ) ≥ 2/γ. In the first case we set s′c = τ̄ .

In the second case we compute the largest s such that∑
s≤τ≤t xc(τ) ≥ 1

γ
. Then we set s′c to this value. We do this

for all colors independently. The above procedure guarantees
that the following properties always hold

•
∑

(τ,c):sc<τ≤t zc(τ) < 3. A constraint (~s, t) is only

proper if
∑

(τ,c):sc<τ≤t zτ (c) ≤ 2. When feeding such a
constraint to Algorithm 1 from Section 3, the z-values
are at most increased by γ/log3 k within a single step.
For large enough k this means that the above sum never
exceeds 3.

•
∑
sc≤τ≤t zc(τ) ≥ 1 In the end we want that every

strategy D from µ has every color removed at least once
within the range {sc, . . . , t}. Therefore this property is
important.

Whenever ~s changes
∑

(τ,c):sc<τ≤t zc(τ) decreases by at least

1. Therefore a fixed pair (τ, c) is only involved in at most 3
different constraints (~s, t).

For increasing zc(τ)-values we show that an increase in
ε results in an expected cost of O(ε) for the maintenance
operation. We also implement a maintenance operation with
O(ε) expected cost when a zc(τ)-value decreases. With this
decrement operation we implement a change of the vector ~s
as follows.

Suppose we want to change the c-th coordinate of ~s from
sc to s′c. This may make all properties that depend on the
values wc(sc, τ) invalid. We decrement all zc(τ)-values with
τ ∈ {s′c + 1, . . . , t} to 0. Then we change sc to s′c, and after
that we increase the zc(τ)-values again. The cost for this is
O(zc(τ)) for every (τ, c)-pair involved. Since each (τ, c)-pair
is only involved in a constant number of these decrement

operations we obtain that the total cost for the change is
only O(

∑
τ,c zc(τ)) = O(primal cost), provided that we can

implement the increase and decrease operations as claimed.

Maintaining µ1

For maintaining µ1 we do not require a decrement oper-
ation as Property 1 does not depend on wc(sc, τ)-values.
Suppose that zc(τ) increases by ε. Then we first identify
an ε-measure of strategies that have the smallest value of
arg maxτ ′{D(τ ′, c) > 0}, i.e., strategies that did not re-
move color c for a long time. For these strategies we set
D(τ, c) = 1. This means that the strategies evict color c in
a round-robin fashion. Since

∑
(τ,c)∈Sc

∑
D µ(D)D(τ, c) =∑

(τ,c)∈Sc zτ (c) ≥ 1, Property 1 follows.

Maintaining µ2

We maintain a strengthening of Property 2, namely for all
Si:⌊∑

(τ,c)∈Si
zc(τ)

⌋
≤
∑

(τ,c)∈Si
D(τ, c) ≤

⌈∑
(τ,c)∈Si

zc(τ)
⌉
.

(4)

Suppose that the zc̄(τ̄) value for some pair (τ̄ , c̄) is increased
by ε and assume that (τ̄ , c̄) ∈ Si. As we want to sat-
isfy

∑
D µ1(D)D(τ̄ , c̄) = zc̄(τ̄) we have to increase D(τ̄ , c̄)

for some strategies. For this we choose an ε-fraction of
strategies that have

∑
(τ,c)∈Sc∩Si

D(τ, c) ≤ 2 (these must

exist for small enough ε as
∑
D

∑
(τ,c)∈Sc∩Si

D(τ, c)µ1(D) =∑
(τ,c)∈Sc∩Si

zc(τ) ≤
∑

(τ,c)∈Sc zc(τ) < 3). We increase the

value of D(τ, c) for the chosen strategies.
Now the constraint in Equation 4 may be violated for class

Si. Let a = b
∑

(τ,c)∈Si
zc(τ)c (before changing zc(τ)) and

first assume that b
∑

(τ,c)∈Si
zc(τ)c remains equal to a. Then

the strategies that just have been changed may now have∑
(τ,c)∈Si

D(τ, c) = a+ 2, which is not allowed.
In order to fix this we match these strategies to strategies

that fulfill
∑

(τ,c)∈Si
D(τ, c) = a. For each strategy D there

must exist a (τ, c) such that D(τ, c) > D′(τ, c), where D′

denotes the strategy that D is matched to. We decrease
D(τ, c) by 1 and increase D′(τ, c) by 1. This only induces an
expected cost of O(ε). The case in which b

∑
(τ,c)∈Si

zc(τ)c
changes is analogous.

Also the decrement operation can be implemented this way.
When zc(τ) decreases we select an ε-measure of strategies
that fulfill D(τ, c) > 0 and decrease D(τ, c) for them. Then
we do a re-balancing step.

Maintaining µ3

Here we maintain a strengthened version of Property 3. Let
(τ1, c1), (τ2, c2), . . . denote the sequence of (τ, c)-pairs from
S, in decreasing order of wc(sc, τ). Let (τr, cr) denote the
first pair in this sequence that is not in L (note that this may
not exist; then we define r as |S|+ 1 since L = S). Define
a function ` on the (τ, c)-pairs that is zero for all (τi, ci),
i > r; one for all (τi, ci), i < r and zcr − (

∑r
i=1 zci(τi)− (λ+

1))/zcr (τr) for (τr, cr). For all (τi, ci), i 6= r ` simply is the
characteristic function of the set L; only for r it measures
the fraction by which (τr, cr) needs to be included into L in
order that the zc(τ)-values in L sum up to exactly (1 + λ)
(recall that during the construction of L we were aiming for
it to contain a total z-weight of λ+ 1. When we overshoot
we remove the last element).

We maintain the constraint that⌊∑
(τ,c)∈S

zc(τ)`(τ, c)
⌋
≤
∑

(τ,c)∈L
D(τ, c)

≤
⌈∑

(τ,c)∈S
zc(τ)`(τ, c)

⌉
,

which is a strengthening of Property 3. In addition we
maintain

∑
DD(τ, c)µ3(D) = zc(τ)`(τ, c).

Suppose that a zc(τ)-value increases and that (τ, c) ∈ L
(otherwise we don’t need to do anything; observe that if zcr is
increased or decreased by ε the value of zcr (τr)`(τr, cr) stays
constant). We increase D(τ, c) for an ε-measure of strategies
that have D(τ, c) < 3. In addition we decrease D(τr, cr) for
an ε-measure of strategies (only if r is defined, i.e., if L 6= S).

Now, there may be an ε-fraction of strategies that has a
value of

∑
(τ,c)∈LD(τ, c) that is too large by 1, and there

may exist an ε-measure of strategies for which this value is
by one too low. As before we can perform re-balancing steps
in order to fix this at an expected cost of O(ε).

6. REFERENCES
[1] Amjad Aboud. Correlation clustering with penalties

and approximating the reordering buffer management
problem. Master’s thesis, Computer Science Department,
The Technion — Israel Institute of Technology, 2008.

[2] Anna Adamaszek, Artur Czumaj, Matthias Englert,
and Harald Räcke. Almost tight bounds for reordering
buffer management. In Proceedings of the 43rd ACM
Symposium on Theory of Computing (STOC), pages
607–616, 2011.

[3] Anna Adamaszek, Artur Czumaj, Matthias Englert, and
Harald Räcke. An O(log k)-competitive algorithm for
generalized caching. In Proceedings of the 23rd ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 1681–1689, 2012.

[4] Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. NP-
hardness of the sorting buffer problem on the uniform
metric. Unpublished manuscript, 2010.

[5] Noa Avigdor-Elgrabli and Yuval Rabani. An improved
competitive algorithm for reordering buffer management.
In Proceedings of the 21st ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 13–21, 2010.

[6] Noa Avigdor-Elgrabli and Yuval Rabani. A constant
factor approximation algorithm for reordering buffer
management. arXiv:1202.4504, 2012.

[7] Nikhil Bansal, Niv Buchbinder, Aleksander Ma̧dry, and
Joseph Naor. A polylogarithmic-competitive algorithm
for the k-server problem. In Proceedings of the 52nd
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 267–276, 2011.

[8] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A
primal-dual randomized algorithm for weighted paging.
In Proceedings of the 48th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 507–517,
2007.

[9] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Ran-
domized competitive algorithms for generalized caching.
In Proceedings of the 30th ACM Symposium on Theory
of Computing (STOC), pages 235–244, 2008.

[10] Reuven Bar-Yehuda and Jonathan Laserson. Exploiting
locality: Approximating sorting buffers. In Proceedings
of the 3rd Workshop on Approximation and Online Al-
gorithms (WAOA), pages 69–81, 2005.

[11] Dan Blandford and Guy Blelloch. Index compression
through document reordering. In Proceedings of the Data
Compression Conference (DCC), pages 342–351, 2002.

[12] Niv Buchbinder and Joseph Naor. Online primal-dual
algorithms for covering and packing problems. In Pro-
ceedings of the 13th European Symposium on Algorithms
(ESA), pages 689–701, 2005.

[13] Ho-Leung Chan, Nicole Megow, Rob van Stee, and René
Sitters. The sorting buffer problem is NP-hard. CoRR,
abs/1009.4355, 2010.

[14] Matthias Englert, Harald Räcke, and Matthias Wester-
mann. Reordering buffers for general metric spaces. In
Proceedings of the 39th ACM Symposium on Theory of
Computing (STOC), pages 556–564, 2007.

[15] Matthias Englert, Heiko Röglin, and Matthias West-
ermann. Evaluation of online strategies for reordering
buffers. ACM Journal of Experimental Algorithmics,
14:3:3.3–3:3.14, 2009.

[16] Matthias Englert and Matthias Westermann. Reordering
buffer management for non-uniform cost models. In
Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pages
627–638, 2005.

[17] Iftah Gamzu and Danny Segev. Improved online algo-
rithms for the sorting buffer problem. In Proceedings of
the 24th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 658–669, 2007.

[18] Kai Gutenschwager, Sven Spiekermann, and Stefan
Voß. A sequential ordering problem in automotive paint
shops. International Journal of Production Research,
42(9):1865–1878, 2004.

[19] Rohit Khandekar and Vinayaka Pandit. Online and
offline algorithms for the sorting buffers problem on the
line metric. Journal of Discrete Algorithms, 8(1):24–35,
2010.

[20] Jens S. Kohrt and Kirk Pruhs. A constant factor ap-
proximation algorithm for sorting buffers. In Proceedings
of the 6th Latin American Symposium on Theoretical
Informatics (LATIN), pages 193–202, 2004.

[21] Jens Krokowski, Harald Räcke, Christian Sohler, and
Matthias Westermann. Reducing state changes with
a pipeline buffer. In Proceedings of the 9th Interna-
tional Fall Workshop Vision, Modeling, and Visualiza-
tion (VMV), pages 217–224, 2004.

[22] Harald Räcke, Christian Sohler, and Matthias Wester-
mann. Online scheduling for sorting buffers. In Proceed-
ings of the 10th European Symposium on Algorithms
(ESA), pages 820–832, 2002.

APPENDIX
A. FINDING A VIOLATED CONSTRAINT
We want to find a vector ~s minimizing∑

c

∑
τ≤t

w̃c(~s, τ, t) · xc(τ)− (W (~s, t)− k) .

If the minimum is smaller than 0, it means that we found a vi-
olated constraint, if the minimum is at least 0, all constraints
are satisfied.

First, notice that the value W (~s, t) is an integer between k
and n. Therefore it is enough to find for each ` ∈ {k, . . . , n}
a vector ~s such that W (~s, t) = ` and ~s minimizes the value

of the expression
∑
c

∑
τ≤t min{wc(~s, τ), `− k} · xc(τ).

For each color c, we define a function fc : N → R+. The
value of fc(y) is defined as follows. Set sc to the largest
time step, such that wc(sc, t) = y. This gives fc(y) :=∑
τ≤t min{wc(sc, τ), `− k} · xc(τ).
With this notation, we have to find values yc such that∑
c fc(yc) is minimized and

∑
c yc = `. The following lemma

shows that this can be done in polynomial time.

Lemma A.1. Given n functions f1, . . . , fn : N→ R+ and
a value `, we can find, in polynomial time, values x1, . . . , xn
such that

∑
i fi(xi) is minimized and

∑
i xi = `.

Proof. We solve the problem using dynamic program-
ming. For a pair of integers (j, γ) (each between 0 and n), we
compute values x1, . . . , xj such that f1(x1) + · · ·+ fj(xj) is
minimized and x1 + · · ·+ xj = γ. The solutions for (1, γ) for
all values of γ are trivial to compute. Now, in phase i > 1,
we compute the solution for (i, γ) for any fixed γ as follows.

For each integer k between 0 and γ, lookup (i − 1, γ −
k), amend that solution by setting xi := k and compute
f1(x1) + · · ·+ fi(xi). Choose the k that leads to the solution
minimizing this sum and store it as the solution for (i, γ).

In the end, the solution (n, `) is the solution we were
looking for.

