
Evaluation of Online Strategies

for Reordering Buffers⋆

Matthias Englert, Heiko Röglin, and Matthias Westermann

Department of Computer Science
RWTH Aachen, D-52056 Aachen, Germany

{englert,roeglin,marsu}@cs.rwth-aachen.de

Abstract. A sequence of objects which are characterized by their color
has to be processed. Their processing order influences how efficiently they
can be processed: Each color change between two consecutive objects
produces costs. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange this sequence
online in such a way that the total costs are reduced. This concept is
useful for many applications in computer science and economics.
The strategy with the best known competitive ratio is MAP. An upper
bound of O(log k) on the competitive ratio of MAP is known and a
non-constant lower bound on the competitive ratio is not known [2].
Based on theoretical considerations and experimental evaluations, we
give strong evidence that the previously used proof techniques are not
suitable to show an o(

√
log k) upper bound on the competitive ratio of

MAP. However, we also give some evidence that in fact MAP achieves a
competitive ratio of O(1).
Further, we evaluate the performance of several strategies on random
input sequences experimentally. MAP and its variants RC and RR clearly
outperform the other strategies FIFO, LRU, and MCF. In particular,
MAP, RC, and RR are the only known strategies whose competitive
ratios do not depend on the buffer size. Furthermore, MAP achieves the
smallest constant competitive ratio.

1 Introduction

Frequently, a number of tasks has to be processed and their processing order
influences how efficiently they can be processed. Hence, a reordering buffer can
be expedient to influence the processing order. This concept is useful for many
applications in computer science and economics. In the following, we give an
example (for further examples see [1–5, 7]).

In computer graphics, a rendering system displays 3D scenes which are com-
posed of primitives. In current rendering systems, the state changes performed
by the graphics hardware are a significant factor for the performance. A state
change occurs when two consecutively rendered primitives differ in their attribute

⋆ The first and the last author are supported by the DFG grant WE 2842/1. The
second author is supported by the DFG grant VO 889/2.

values, e. g., in their texture or shader program. These state changes slow down
a rendering system. To reduce the costs of the state changes, a reordering buffer
can be included between application and graphics hardware. Such a reordering
buffer which is a random access buffer with limited memory capacity can be used
to rearrange the incoming sequence of primitives online in such a way that the
costs of the state changes are reduced [6].

1.1 The Model

An input sequence σ = σ1σ2 · · · of objects which are only characterized by a
specific attribute has to be processed. To simplify matters, we suppose that
the objects are characterized by their color, and, for each object σi, let c(σi)
denote the color of σi. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange the input sequence in
the following way.

The first object of σ that is not handled yet can be stored in the reordering
buffer, or objects currently stored in the reordering buffer can be removed. These
removed objects result in an output sequence σπ−1 = σπ−1(1)σπ−1(2) · · · which
is a permutation of σ. We suppose that the reordering buffer is initially empty
and, after processing the whole input sequence, the buffer is empty again.

For an input sequence σ, let CA(σ) denote the costs of a strategy A, i. e., the
number of color changes in the output sequence. The goal is to minimize the
costs CA(σ).

The notion of an online strategy is intended to formalize the realistic scenario,
where the strategy does not have knowledge about the whole input sequence
in advance. The online strategy has to serve the input sequence σ one after
the other, i. e., a new object is not issued before there is a free location in
the reordering buffer. Online strategies are typically evaluated in a competitive
analysis. In this kind of analysis the costs of the online strategy are compared
with the costs of an optimal offline strategy. For an input sequence σ, let COPT(σ)
denote the costs produced by an optimal offline strategy. An online strategy is
denoted as α-competitive if it produces costs at most α · COPT(σ) + κ, for each
sequence σ, where κ is a term that does not depend on σ. The value α is also
called the competitive ratio of the online strategy.

1.2 The Strategies

We only consider lazy strategies, i. e., strategies that fulfill the following two
properties.

– An active color is selected, and, as long as objects with the active color are
stored in the buffer, a lazy strategy does not make a color change.

– If an additional object can be stored in the buffer, a lazy strategy does not
remove an object from the buffer.

Hence, a lazy strategy has only to specify how to select a new active color. Note
that every (in particular every optimal offline) strategy can be transformed into
a lazy strategy without increasing the costs.

First-In-First-Out (FIFO). This strategy assigns time stamps to each color
stored in the buffer. Initially, the time stamps of all colors are undefined. When
an object is stored in the buffer and the color of this object has an undefined
time stamp, the time stamp is set to the current time. Otherwise, it remains
unchanged. FIFO selects as new active color the color with the oldest time
stamp and resets this time stamp to undefined. This is a very simple strategy
that does not analyze the input stream. The buffer acts like a sliding window
over the input stream in which objects with the same color are combined.

Least-Recently-Used (LRU). Similar to FIFO, this strategy assigns time
stamps to each color stored in the buffer. Initially, the time stamps of all colors
are undefined. When an object is stored in the buffer, the time stamp of its color
is set to the current time. LRU selects as new active color the color with the
oldest time stamp and resets this time stamp to undefined. LRU and also FIFO
tend to remove objects from the buffer too early [7].

Most-Common-First (MCF). This fairly natural strategy tries to clear as
many locations as possible in the buffer, i. e., it selects as new active color a color
that is most common among the objects currently stored in the buffer. MCF also
fails to achieve good performance guarantees since it keeps objects with a rare
color in the buffer for a too long period of time [7]. This behavior wastes valuable
storage capacity that could be used for efficient buffering otherwise.

Maximum-Adjusted-Penalty (MAP). This strategy, which is introduced
and analyzed in a non-uniform variant of our model [2], provides a trade-off
between the storage capacity used by objects with the same color and the chance
to benefit from future objects with the same color. We present an adapted version
of MAP for our uniform model which is similar to the Bounded-Waste strategy
[7]. A penalty counter is assigned to each color stored in the buffer. Informally,
the penalty counter for color c is a measure for the storage capacity that has been
used by all objects of color c currently stored in the buffer. Initially, the penalty
counters for all colors are set to 0. MAP selects as new active color a color with
maximal penalty counter and the penalty counters are updated as follows: The
penalty counter for each color c is increased by the number of objects of color c
currently stored in the buffer, and the penalty counter of the new active color is
reset to 0.

Random-Choice (RC). Since the computational overhead of MAP is rela-
tively large, we present more practical variants of MAP. RC which is a ran-
domized version of MAP selects as new active color the color of an uniformly
at random chosen object from all objects currently stored in the buffer. Note
that RC can also be seen as a randomized version of MCF. Even if RC is much
simpler than MAP, random numbers have to be generated.

Round-Robin (RR). This strategy is a very efficient variant of RC. It uses
a selection pointer which points initially to the first location in the buffer. RR
selects as new active color the color of the object the selection pointer points to
and the selection pointer is shifted in a round robin fashion to the next location
in the buffer. We suppose that RR has the same properties on typical input
sequences as RC.

1.3 Previous Work

Räcke, Sohler, and Westermann [7] show that several standard strategies are
unsuitable for a reordering buffer, i. e., the competitive ratio of FIFO and LRU
is Ω(

√
k) and the competitive ratio of MCF is Ω(k), where k denotes the buffer

size. Further, they present the deterministic Bounded-Waste strategy (BW) and
prove that BW achieves a competitive ratio of O(log2 k).

Englert and Westermann [2] study a non-uniform variant of our model: Each
color change to color c produces non-uniform costs bc. As main result, they
present the deterministic MAP strategy and prove that MAP achieves a com-
petitive ratio of O(log k).

The offline variant of our model is studied in [1, 5]. However, the goal is to
maximize the number of saved color changes. Note that an approximation of the
minimum number of color changes is preferable, if it is possible to save a large
number of color changes. Kohrt and Pruhs [5] present a polynomial-time offline
algorithm that achieves an approximation ratio of 20. Further, they mention that
optimal algorithms with running times O(nk+1) and O(nm+1) can be obtained
by using dynamic programming, where k denotes the buffer size and m denotes
the number of different colors. Bar-Yehuda and Laserson [1] study a more general
non-uniform maximization variant of our model. They present a polynomial-time
offline algorithm that achieves an approximation ratio of 9.

Khandekar and Pandit [4] consider reordering buffers on a line metric. This
metric is motivated by an application to disc scheduling: Requests are categorized
according to their destination track on the disk, and the costs are defined as the
distance between start and destination track. For a disc with n uniformly-spaced
tracks, they present a randomized strategy and show that this strategy achieves
a competitive ratio of O(log2 n) in expectation against an oblivious adversary.

Krokowski et al. [6] examine the previously mentioned rendering application.
They use a small reordering buffer (storing less than hundred references) to
rearrange the incoming sequence of primitives online in such a way that the
number of state changes is reduced. Due to its simple structure and its low
memory requirements, this method can easily be implemented in software or
even hardware. In their experimental evaluation, this method typically reduces
the number of state changes by an order of magnitude and the rendering time
by roughly 30%. Furthermore, this method typically achieves almost the same
rendering time as an optimal, i. e., presorted, sequence without a reordering
buffer.

1.4 Our Contributions

In Section 2, we study the worst case performance of MAP. Recall that an
upper bound of O(log k) on the competitive ratio of MAP is known and a non-
constant lower bound on the competitive ratio is not known [2]. Hence, a natural
question is whether it is possible to improve the upper bound on the competitive
ratio of MAP. The proof of the upper bound consists of two parts. First, it
is shown that the competitive ratio of MAP4k against OPTk is 4, where An

denotes the strategy A with buffer size n and OPT denotes an optimal offline
strategy. Finally, it is proven that the competitive ratio of OPTk against OPT4k

is O(log k). As we see, the logarithmic factor is lost solely in the second part of
the proof.

Based on theoretical considerations and experimental results, we give strong
evidence that the competitive ratio of OPTk against OPT4k is Ω(

√
log k). This

implies that the previously used proof techniques are not suitable to prove an
o(
√

log k) upper bound on the competitive ratio of MAP. However, we also give
some evidence that in fact MAP achieves a competitive ratio of O(1).

In Section 3, we evaluate the performance of several strategies on random
input sequences experimentally. MAP and its variants RC and RR clearly out-
perform the other strategies FIFO, LRU, and MCF. In particular, MAP, RC,
and RR are the only known strategies whose competitive ratios do not depend
on the buffer size.

2 Worst Case Performance of MAP

In Section 2.1, we give an alternative proof that the competitive ratio of OPTk

against OPT4k is O(log k) in our uniform model. This proof is based on a poten-
tial function. In Section 2.2, we exploit properties of this potential function to
generate deterministic input sequences that give strong evidence that this result
cannot be improved much. In more detail, based on our experimental evaluation
in Section 2.3, we conjecture that the competitive ratio of OPTk against OPT4k

is Ω(
√

log k). As a consequence, the proof technique in [2], which is also implic-
itly contained in the proof of [7], is not suitable to show an o(

√
log k) upper

bound on the competitive ratio of MAP.

2.1 Theoretical Foundations

In this section, we give an alternative proof for the following theorem.

Theorem 1. The competitive ratio of OPTk against OPT4k is O(log k).

Proof. Fix an input sequence σ and an optimal offline strategy OPT4k. Let σπ−1

denote the output sequence of OPT4k. Suppose that σπ−1 consists of m color
blocks B1, . . . Bm, i. e., σπ−1 = B1 · · ·Bm and all objects in each color block have
the same color and the objects in each color block Bi have a different color than
the objects in color block Bi+1. Let c(Bi) denote the color of the objects in color

block Bi. W. l. o. g. assume that c(B1) = 1, c(B2) = 2, . . . c(Bm) = m, i. e., the
color of each color block is different from the colors of the other color blocks.
This does not change the costs of OPT4k and can obviously only increase the
costs of OPTk.

Consider the execution of a strategy A. Fix a time step. We denote a color
c as finished if all objects of color c have occurred in the output sequence of
A. Otherwise, color c is denoted as unfinished. Let f = min{c|c is unfinished}
denote the first unfinished color, and let d(c) = c − f denote the distance of

color c. Then, the potential of color c is defined as Φ(c) = n(c) · d(c), where
n(c) denotes the number of objects of color c currently stored in the buffer of
A. For each color c, we define a counter p(c), initially set to 0. Intuitively, the
counter p(c) indicates how many objects with a color strictly larger than c have
occurred in the output sequence of A. Whenever A moves an object of color c
to the output sequence, for each f ≤ i < c, p(i) is increased by one.

Now, we describe the simple algorithm GREEDYk (f , d(c), n(c), Φ(c), and
p(c) are defined w. r. t. GREEDYk). Note that the accumulated potential Φ which
is initially set to 0 is introduced but not used in the algorithm.

1. Calculate the first unfinished color f . As long as n(f) 6= 0, move objects of
color f to the output sequence.

2. Calculate a color q = argmaxc Φ(c) with maximum potential. Move n(q)
objects of color q to the output sequence. Increase the accumulated potential
Φ by Φ(q). Proceed with step 1.

Observe that GREEDYk is an offline algorithm since it has to know the output
sequence of OPT4k. In the following, it is shown that the competitive ratio of
GREEDYk against OPT4k is O(log k).

The following lemma provides an upper bound on the counters. It implies
for the accumulated potential Φ ≤ 8k ·m since the accumulated potential Φ can
also be expressed as Φ =

∑
c p(c).

Lemma 2. For each color c, p(c) ≤ 8k.

Proof. Observe that p(f) ≥ p(f + 1) ≥ · · · ≥ p(m) and that counters for colors
less than f do not change their values anymore. Hence, it suffices to show that
p(f) ≤ 8k. This is done by induction over the iterations of GREEDYk. Fix an
iteration of GREEDYk. We distinguish the following two cases.

– Suppose that p(f) ≤ 7k at the beginning of this iteration.
Then, p(f) ≤ 8k at the end of this iteration since p(f) is increased by at
most k in step 2. Note that the counters are only increased in step 2.

– Suppose that p(f) > 7k at the beginning of this iteration.
Then, GREEDYk has moved more than 7k objects with a color larger than
f to its output sequence. Due to its buffer size, OPT4k has moved more
than 3k of these objects to its output sequence. However, this implies that
OPT4k has moved the last object of color f to its output sequence more
than 3k time steps ago. Hence, the last object of color f has already entered
the buffer of GREEDYk. As a consequence, the unfinished color f becomes
finished in step 1 of this iteration. ⊓⊔

Due to the following lemma, each iteration of GREEDYk increases the accu-
mulated potential Φ by at least k

1+ln k .

Lemma 3. If n(f) = 0 and the buffer contains k objects, maxc Φ(c) ≥ k
1+ln k .

Proof. First of all, observe that
∑

c>f n(c) = k, since for each color c ≤ f ,
n(c) = 0 and the buffer contains k objects. Define q = maxc Φ(c). Obviously, for
each i ≥ 1, n(f + i) ≤ ⌊q/i⌋. In particular, for each i > q, n(f + i) = 0. Hence,

k =

q∑

i=1

n(f + i) ≤
q∑

i=1

q

i
= q · Hq ,

where Hq =
∑q

i=1
1
i denotes the q-th harmonic number.

Suppose that q < k
1+ln k . Then

k ≤ q · Hq < q · Hk ≤ q · (1 + ln k) < k

which is a contradiction. ⊓⊔

Combining the results of the two lemmata above yields that there are at
most 8m · (1 + ln k) iterations of GREEDYk while its buffer contains k objects.
Since each iteration generates two color changes, GREEDYk generates at most
16m · (1 + ln k) + k color changes. Recall that OPT4k generates m − 1 color
changes. This concludes the proof of the theorem. ⊓⊔

2.2 Generating Input Sequences

In this section, we describe our approach to generate deterministic input se-
quences for which MAP⌊k/4⌋+1 loses a logarithmic factor compared to OPT2k+1.
To some extend, the buffers sizes are chosen arbitrarily. Our construction can
be generalized canonically to MAPa and OPTb, for each a < b.

The main idea is to use the accumulated potential Φ defined in the proof of
Theorem 1. The generated input sequences consist of objects with m different
colors, and at most 2k objects of each of the m colors. The sequences are intended
to have the property that MAP⌊k/4⌋+1 can increase the accumulated potential Φ
by only O(k/ log k) with each color change, and the accumulated potential Φ is
Ω(m·k) after the sequences are processed. As a consequence, MAP⌊k/4⌋+1 makes
Ω(m · log k) color changes for these input sequences. However, OPT2k+1 is able
to rearrange these input sequences in such a way that the objects of each color
form a consecutive block, i. e., the number of color changes made by OPT2k+1

is m − 1. Hence, MAP⌊k/4⌋+1 loses a Ω(log k) factor compared to OPT2k+1.
The following algorithm for generating deterministic input sequences is based

on the proof of Lemma 3. The first 2k objects are, for each 1 ≤ i ≤ Θ(k/ log k),
⌈q/i⌉ objects of color i, with q = 2k/ log k. Then, the algorithm proceeds in
phases corresponding to the last unfinished color f . At the beginning of phase f ,
let n(c) denote the number of objects of color c currently stored in the buffer of

MAP⌊k/4⌋+1, and let s(c) denote the number of objects of color c included in the
input sequence so far. In phase f , s(f) objects of colors larger than f followed
by the last object of color f are appended to the input sequence.

At the beginning of phase f , the algorithm tries to restore a situation in which
the accumulated potential Φ can only be increased by O(k/ log k) and OPT2k+1

is still able to rearrange the input sequence properly. At the beginning of phase
f , the length of the input sequence created so far is 2k+s(1)+s(2)+· · ·+s(f−1).
Observe that s(1)+s(2)+ · · ·+s(f −1) of these objects have colors smaller than
f and 2k of these objects have colors larger or equal to f . Hence, the number of
objects having a color larger than f so far is 2k − s(f). Due to the restriction
that OPT2k+1 is able to rearrange the input sequence into an output sequence
with only m−1 color changes, at most 2k objects with a color larger than f can
precede the last object of color f . Hence, at most s(f) objects of colors larger
than f can be appended before the last object of color f is appended to the
input sequence.

According to Lemma 3, the algorithm should achieve n(f + i) ≈ q/i. Hence,
max{0, ⌈q⌉−n(f +1)} objects of color f +1 are appended to the input sequence,
max{0, ⌈q/2⌉−n(f+2)} objects of color f+2 are appended to the input sequence,
. . . until altogether s(f) objects have been appended in this phase. Then, the
phase is finished by appending the last object of color f to the input sequence.

We expect that the accumulated potential Φ is Ω(m · k) after the input
sequence has been processed by MAP⌊k/4⌋+1. To see this, define the potential of
a color c slightly differently by Φ(c) = n′(c) · d(c). This potential is not based on
the number n(c) of objects of color c currently stored in the buffer, but on the
number n′(c) of objects of color c which are moved to the output sequence when
changing to color c. Observe that n(c) and n′(c) differ only if during moving
the objects of color c to the output sequence additional objects of this color
arrive. Recall that, for each color f , the last object of color f is preceded by
2k objects of colors larger than f . Hence, GREEDYk has to move at least k of
these objects to the output sequence before moving the last object of color f to
the output sequence, and, as a consequence, p(f) ≥ k. Then, after the sequence
has been processed, the accumulated potential Φ is Ω(m ·k). We expect that for
the generated input sequences n(c) and n′(c) usually do not differ much.

2.3 Experimental Evaluation

Figure 1 depicts the competitive ratios of MAP⌊k/4⌋+1 against OPT2k+1 on
the generated input sequences for buffer sizes k1, . . . k92 with k1 = 540 and
ki = ⌊ki−1 ·11/10⌋+1. A regression analysis with functions of the type a · ln k+b
results in 0.92127 · ln k + 1.30714 where the sum of the squared residuals is
0.0705539. Using functions of the type a · ln k + b · ln ln k + c yields 0.837668 ·
ln k + 0.857676 · ln ln k + 0.19425 where the sum of the squared residuals is only
0.0185538.

Further, Figure 1 depicts the competitive ratios of MAPk against OPT2k+1

on the generated input sequences for buffer sizes k1, . . . k79. Unfortunately, there
are periodic fluctuations in these competitive ratios which makes a small sum

 4

 6

 8

 10

 12

 14

 16

 1000 10000 100000 1e+06

co
m

pe
tit

iv
e

ra
tio

k

buffer size k/4 +1
buffer size k

Fig. 1. Competitive ratios of MAP⌊k/4⌋+1 and MAPk against OPT2k+1 on the gener-
ated input sequences and resulting functions for regression analysis with a · ln k + b ·
ln ln k + c.

of squared residuals impossible. However, a regression analysis with functions of
the type a · ln k+b · ln ln k+c results in 0.418333 · lnk+1.40659 · ln ln k−0.337541
where the sum of the squared residuals is 1.63387 and no residual is greater than
0.266742476.

Based on the experimental evaluation, we conjecture the following.

Conjecture 4. The competitive ratio of MAP4k against OPT32k is Ω(log k).

Now, we can conclude the following theorem. If we take the experimental
evaluation for smaller factors between the buffer sizes into account, we can make
the stronger conjecture that the competitive ratio of MAP4k against OPT8k is
Ω(log k), and then the o(3

√
log k) term in the theorem improves to o(

√
log k).

Theorem 5. OPTk cannot achieve a competitive ratio of o(3
√

log k) against

OPT4k if Conjecture 4 holds.

Proof. Suppose for contradiction that the competitive ratio of OPTk against
OPT4k is o(3

√
log k). Then, the competitive ratio of OPTk against OPT64k is

o(log k). In the first part of the proof of Theorem 4 in [2] it is shown that the
competitive ratio of MAP4k against OPTk is 4. As a consequence, the com-
petitive ratio of MAP4k against OPT64k is o(log k) which is a contradiction to
Conjecture 4. ⊓⊔

Our actual interest is the competitive ratio of MAP. Is it possible to show a
non-constant lower bound on the competitive ratio of MAP or to improve the
upper bound? Based on our experimental evaluation, the proof technique in [2,
7] is not suitable to show an o(

√
log k) upper bound on the competitive ratio of

MAP since this would require a competitive ratio of OPTk against OPT4k of
o(
√

log k).

However, we have evidence that MAP achieves in fact a competitive ratio of
O(1) in our uniform model. MAP is always optimal, i. e., it achieves a compet-
itive ratio of 1, for the generated input sequences. In addition to the following
observations, this indicates a small competitive ratio of MAP. Each Ω(

√
log k)

lower bound on the competitive ratio of MAP implies an Ω(
√

log k) lower bound
on the competitive ratio of OPTk against OPT4k. Hence, the input sequences
used in such a lower bound have to assure that the potential gained in step 2
of GREEDYk is not too large. However, our sequences are constructed to have
exactly this property. As a consequence, any major modification to our gener-
ated input sequences will probably fail to show an Ω(

√
log k) lower bound on

the competitive ratio of MAP.

3 Random Input Sequences

In this section, we evaluate the performance of several strategies on random
input sequences experimentally. Since an efficient optimal offline algorithm is
not known, we cannot simply generate random input sequences and evaluate the
performance of the strategies by comparing their number of color changes with
the optimal number of color changes. Hence, we first introduce a technique to
generate random input sequences with known optimal number of color changes.
Finally, the experimental evaluation is presented in detail.

3.1 Input Sequences with Known Optimum

Fix an input sequence σ and an optimal offline strategy OPTk. Let σπ−1 denote
the output sequence of OPTk. Suppose that σπ−1 consists of m color blocks
B1, . . . Bm, i. e., σπ−1 = B1 · · ·Bm and all objects in each color block have the
same color and the objects in each color block Bi have a different color than the
objects in color block Bi+1. W. l. o. g. assume that the color of each color block
is different from the colors of the other color blocks. This does not change the
costs of OPTk and can obviously only increase the costs of any other strategy.

The following result is given in [2]: For each input sequence σ, the permuta-
tion σπ−1 of σ is an output sequence of a strategy with buffer size k if and only if
π−1(i) < i+k, for each i. Hence, a random input sequences with known optimal
number of color changes can be generated as follows. First, we determine an out-
put sequence σopt of OPTk. This output sequence is completely characterized
by the number of color blocks m and the color block lengths l1, . . . lm, i. e., li de-
notes the number of objects in the i-th color block. Then, a permutation π with
π−1(i) < i+k, for each i, is chosen uniformly at random among all permutations
with this property. This way, we get a random input sequence σopt

π for which
OPTk makes m − 1 color changes. Observe that usually different permutations
lead to the same input sequence.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000 10000

co
m

pe
tit

iv
e

ra
tio

k

MCF
LRU
FIFO

RC
RR

MAP

Fig. 2. Competitive ratios on random input sequences with uniformly chosen color
block lengths.

3.2 Experimental Evaluation

We evaluate the performance of MCF, LRU, FIFO RC, RR, and MAP on dif-
ferent kinds of random input sequences experimentally.

Constant color block lengths. We evaluate the competitive ratios of the
strategies for buffer sizes k1, . . . , k139 with k1 = 10 and ki = ⌊ki−1 ·21/20⌋+1 on
generated input sequences with m = 2ki and color block lengths l1 = · · · = lm =
2ki. For each buffer size, we average over 50 runs. The variances are very small
and decreasing with increasing buffer sizes. For buffer sizes larger than 1000, the
variances are below 0.002.

The competitive ratios of LRU and FIFO increase with the buffer size on
these non-malicious inputs. RC and RR achieve small constant competitive ra-
tios. A regression analysis with functions of the type a − b · exp(−kc) results in
1.14098−0.43676·exp(−k0.486582) for RC where the sum of the squared residuals
is 0.00435474 and in 1.14157−0.350151·exp(−k0.465377) for RR where the sum of
squared residuals is 0.00401949. Hence, RC and RR achieve a competitive ratio
of 1.14. MCF and MAP achieve the best competitive ratios. MCF is optimal for
all buffer sizes, and, for buffer sizes greater than 250, MAP is also optimal.

Uniformly chosen color block lengths. Figure 2 depicts the competitive ra-
tios of the strategies for buffer sizes k1, . . . , k131 on the following generated input
sequences. Let u1, u2, . . . denote a sequence of independent random variables dis-
tributed uniformly between 1 and 2k. Then, m = maxi{u1 + · · ·+ ui < 4k2}+ 1
and, for 1 ≤ i < m, li = ui and lm = 4k2 − (u1 + · · · + um−1). For each buffer

size, we average over 50 runs. The variances, except for MCF, are very small
and decreasing with increasing buffer sizes. For buffer sizes larger than 1000, the
variances, except for MCF, are below 0.004.

The competitive ratios of LRU, FIFO, and, in contrast to the first set of
input sequences, MCF increase with the buffer size on these non-malicious in-
put sequences. RC, RR, and MAP achieve small constant competitive ratios.
A regression analysis with functions of the type a − b · exp(−kc) results in
2.33508 − 4.78793 · exp(−k0.200913) for RC where the sum of squared residu-
als is 0.0461938, in 2.32287 − 4.90995 · exp(−k0.229328) for RC where the sum
of squared residuals is 0.022163, and in 1.88434 − 3.02955 · exp(−k0.186283) for
MAP where the sum of the squared residuals is 0.0401868. Hence, RC, RR, and
MAP achieve competitive ratios of 2.33, 2.32, and 1.88, respectively.

Different buffer sizes. We evaluate the competitive ratio of MAP⌊ki/4⌋ against
OPT2ki+1 for k1, . . . , k132 on generated input sequences with m = 2ki and color
block lengths l1 = · · · = lm = 2ki. For each buffer size, we average over 25 runs.
The variances are very small and decreasing with increasing buffer sizes. For
buffer sizes larger than 1000, the variances are below 0.014.

These experiments justify the sophisticated generation of deterministic input
sequences we used to obtain Conjecture 4, as they show that random input
sequences do not suffice for that purpose. A regression analysis with functions of
the type a− b · exp(−kc) results in 13.8829− 42.4326 · exp(−k0.254565) for MAP
where the sum of the squared residuals is 3.08368. Hence, MAP⌊k/4⌋+1 achieves
a constant competitive ratio against OPT2k+1.

References

1. R. Bar-Yehuda and J. Laserson. 9-approximation algorithm for sorting buffers. In
Proceedings of the 3rd Workshop on Approximation and Online Algorithms, 2005.

2. M. Englert and M. Westermann. Reordering buffer management for non-uniform
cost models. In Proceedings of the 32st International Colloquium on Automata,
Languages and Programming (ICALP), pages 627–638, 2005.

3. K. Gutenschwager, S. Spieckermann, and S. Voss. A sequential ordering problem in
automotive paint shops. International Journal of Production Research, 42(9):1865–
1878, 2004.

4. R. Khandekar and V. Pandit. Online sorting buffers on line. In Proceedings of
the 23th Symposium on Theoretical Aspects of Computer Science (STACS), pages
584–595, 2006.

5. J. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers.
In Proceedings of the 6th Latin American Symposium on Theoretical Informatics
(LATIN), pages 193–202, 2004.

6. J. Krokowski, H. Räcke, C. Sohler, and M. Westermann. Reducing state changes
with a pipeline buffer. In Proceedings of the 9th International Fall Workshop Vision,
Modeling, and Visualization (VMV), pages 217–224, 2004.

7. H. Räcke, C. Sohler, and M. Westermann. Online scheduling for sorting buffers. In
Proceedings of the 10th European Symposium on Algorithms (ESA), pages 820–832,
2002.

