
An O(log k)-competitive algorithm for
Generalized Caching∗

Anna Adamaszek† Artur Czumaj† Matthias Englert†

Harald Räcke‡

In the generalized caching problem, we have a set of pages and a cache of size k. Each
page p has a size wp ≥ 1 and fetching cost cp for loading the page into the cache. At any
point in time, the sum of the sizes of the pages stored in the cache cannot exceed k. The
input consists of a sequence of page requests. If a page is not present in the cache at the
time it is requested, it has to be loaded into the cache incurring a cost of cp .

We give a randomized O(logk)-competitive online algorithm for the generalized
caching problem, improving the previous bound of O(log2 k) by Bansal, Buchbinder,
and Naor (STOC’08). This improved bound is tight and of the same order as the known
bounds for the classic problem with uniform weights and sizes. We use the same LP
based techniques as Bansal et al. but provide improved and slightly simplified methods
for rounding fractional solutions online.

∗Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), University of Warwick, EPSRC
award EP/D063191/1, and EPSRC grant EP/F043333/1.

†Department of Computer Science and Centre for Discrete Mathematics and its Applications (DIMAP), University of
Warwick. {A.M.Adamaszek, A.Czumaj, M.Englert}@warwick.ac.uk.

‡Institut für Informatik, Technische Universität München. raecke@informatik.tu-muenchen.de.

1 Introduction

We consider the generalized caching problem in the online setting using the framework of competitive
analysis. In the basic two-level caching problem we are given a collection of n pages and a cache (a
fast access memory). The cache has a limited capacity and can store up to k pages. At each time
step a request to a specific page arrives and can be served directly if the corresponding page is in the
cache; in that case no cost is incurred. If the requested page is not in the cache, a page fault occurs
and in order to serve the request the page must be fetched into the cache possibly evicting some
other page and a cost of one unit is incurred. The goal is to design an algorithm that specifies which
page to evict in case of a fault such that the total cost incurred on the request sequence is minimized.

This classic problem can be naturally extended to the Generalized Caching Problem that we study,
by allowing pages to have non-uniform fetching costs and to have non-uniform sizes. This is well
motivated by caching of web pages, as these typically have non-uniform size and also non-uniform
fetching cost due to their different locations in the network (for a more detailed discussion, see e.g.,
[BBN08, Ira02]).

In the general model we are given a collection of n pages. Each page p is described by a fetching
cost cp ≥ 0 and a size wp ≥ 1. The cache has limited capacity and can only store pages up to a total
size of at most k. In this paper, we present a randomized O(logk)-competitive algorithm for this
problem, which is asymptotically optimal as already for the problem with uniform page sizes and
uniform fetching costs there is a lower bound ofΩ(logk) on the competitive ratio of any randomized
online algorithm [FKL+91].

1.1 Related work

The study of the caching problem with uniform sizes and costs (the paging problem) in the online
setting has been initiated by Sleator and Tarjan [ST85] in their work that introduced the framework
of competitive analysis. They show that well-known paging rules like LRU or FIFO are k-competitive,
and that this is the best competitive ratio that any deterministic algorithm can achieve.

Fiat et al. [FKL+91] extend the study to the randomized setting and design a randomized 2Hk -
competitive algorithm, where Hk is the k-th Harmonic number. They also prove that no random-
ized online paging algorithm can be better than Hk -competitive. Subsequently, McGeoch and
Sleator [MS91], and Achlioptas et al. [ACN00] designed randomized online algorithms that achieve
this competitive ratio.

Weighted caching, where pages have uniform sizes but can have arbitrary cost, has been studied
extensively because of its relation to the k-server problem. The results for the k-server problem on
trees due to Chrobak et al. [CKPV91] yield a tight deterministic k-competitive algorithm for weighted
caching. The randomized complexity of weighted caching has been resolved only recently, when
Bansal et al. [BBN07] designed a randomized O(logk)-competitive algorithm.

The caching problem with non-uniform page sizes seems to be much harder. Already the offline-
version is NP-hard [Ira02], and there was a sequence of results [Ira02, AAK99, CK99] that lead to the
work of Bar-Noy et al. [BNBYF+01] which gives a 4-approximation for the offline problem.

For the online version, the first results consider special cases of the problem. Irani [Ira02] in-
troduces the Bit Model in which each page p has a cost cp = wp (i.e., minimizing fetching cost

1

corresponds to minimizing network traffic), and the Fault Model in which the fetching costs are
uniform and only the page sizes vary (i.e., cp = 1 for every page p). She shows that in the deterministic
case LRU is (k +1)-competitive for both models. Cao and Irani [CI97], and Young [You02], extend
this result to the generalized caching problem.

In the randomized setting, Irani [Ira02] gives an O(log2 k)-competitive algorithm for both models,
but for the generalized caching problem no o(n)-competitive ratio was known until the recent work
of Bansal et al. [BBN08]. They showed how to obtain a competitive ratio of O(log2 k) for the general
model, and also a competitive ratio of O(logk) for the Bit Model and the Fault Model.

1.2 Result and Techniques

We give a randomized O(logk)-competitive online algorithm for the generalized caching problem,
improving the previous bound of O(log2 k) by Bansal et al. [BBN08]. This improved bound unifies
all earlier results for special cases of the caching problem: it is asymptotically tight and of the same
order as the known bounds for the classical problem with uniform weights and sizes.

Our approach is similar to the approach used by Bansal et al. in their results on weighted
caching [BBN07] and generalized caching [BBN08]. In both these papers the authors first formulate
a packing/covering linear program that forms a relaxation of the problem. They can solve this linear
program in an online-manner by using the online primal-dual framework for packing and covering
problems introduced by Buchbinder and Naor [BN05]. However, using the framework as black-box
only guarantees an O(logn)-factor between the cost of the solution obtained online and the cost of
an optimal solution. They obtain an O(logk)-guarantee by tweaking the framework for the special
problem using ideas from the primal-dual scheme. Note that this O(logk)-factor is optimal, i.e., in
general one needs to loose a factor ofΩ(logk) when solving the LP online.

In the second step, they give a randomized rounding algorithm to transform the fractional solution
into a sequence of integral cache states. Unfortunately, this step is quite involved. In [BBN08] they
give three different rounding algorithms for the general model and the more restrictive Bit and Fault
Models, where in particular the rounding for the Fault Model is quite complicated.

We use the same LP as Bansal et al. [BBN08] and also the same algorithm for obtaining an online
fractional solution. Our contribution is a more efficient and also simpler method for rounding the
fractional solution online. We first give a rounding algorithm for monotone cost models (where
wp ≥ wp ′ implies cp ≥ cp ′) and then extend it to work for the General Model. Our rounding algorithm
only looses a constant factor and, hence, we obtain an O(logk)-competitive algorithm for generalized
caching.

2 The Linear Program

This section describes an LP for the generalized caching problem. It also shows how to generate
good variable assignments which are used in the rounding algorithm of the next section. Although
there are some minor notational differences, this largely follows the work by Bansal, Buchbinder,
and Naor [BBN08] and is only included to make the paper more self contained.

2

We assume that cost is incurred when a page is evicted from the cache, not when it is loaded into
the cache. This means we will not pay anything for the pages remaining in the cache at the end.1

We begin with describing an integer program IP for the generalized caching problem. The IP has
variables xp (i) indicating if page p has been evicted from the cache after the page has been requested
for the i -th time, i.e., if xp (i) = 1, page p was evicted after the i -th request to page p and has to be
loaded back into the cache when the page is requested for the (i +1)-th time. The total cost is then∑

p
∑

i cp xp (i).
Let B(t) denote the set of pages that have been requested at least once until and including time

t and let r (p, t) denote the number of requests to page p until and including time t . In a time
step t in which page pt is requested, the total size of pages other than pt in the cache can be at
most k −wpt . Thus, we require

∑
p∈B(t)\{pt } wp (1−xp (r (p, t))) ≤ k −wpt . Rewriting this constraints

gives
∑

p∈B(t)\{pt } wp xp (r (p, t)) ≥ ∑
p∈B(t) wp − k. To shorten notation, we define the total weight

W (S) :=∑
p∈S wp of a set of pages S. Altogether, this results in the following IP formulation for the

generalized caching problem:

min
∑

p
∑

i cp xp (i)

s.t. ∀t :
∑

p∈B(t)\{pt } wp xp (r (p, t)) ≥W (B(t))−k

∀p, i : xp (i) ∈ {0,1}

(IP 1)

To decrease the integrality gap of our final LP relaxation, we add additional, redundant constraints to
this IP.

min
∑

p
∑

i cp xp (i)

s.t. ∀t ∀S ⊆ B(t) with W (S) > k :∑
p∈S\{pt } wp xp (r (p, t)) ≥W (S)−k

∀p, i : xp (i) ∈ {0,1}

(IP 2)

Unfortunately, even the relaxation of this IP formulation can have an arbitrarily large integrality
gap. However, in an integral solution any wp > W (S)− k cannot give any additional advantage
over wp = W (S)−k for a constraint involving set S. Therefore, it is possible to further strengthen
the constraints without affecting an integral solution. For this, we define w̃S

p := min{W (S)−k, wp }.
Relaxing the integrality constraint, we obtain an LP. As shown in Observation 2.1 of Bansal et
al. [BBN08], we can assume without loss of generality that xp (i) ≤ 1. This results in the final LP

1We may assume that the last request is always to a page of size k and zero cost. This does not change the cost of any
algorithm in the original cost model. However, it does ensure that the cost in our alternate cost model matches the cost
in the original model.

3

Procedure 1 fix-set(S, t , x, y)

Input: The current time step t , current variable assignments x and y , a minimal set S.
Output: New assignments for x and y . Return if S becomes non-minimal or constraint t ,S in primal-

LP is satisfied.

1: while
∑

p∈S\{pt } w̃S
p · xp (r (p, t)) <W (S)−k do

2: // constraint for set S and time t is not fulfilled

3: infinitesimally increase yS(t)
4: for each p ∈ S do
5: v :=∑

t |τ∈(r (p,t),t]
∑

S3p w̃S
p · yS(t)− cp

// v violates dual constraint for xp (r (p, t))

6: if v ≥ 0 then xp (r (p, t)) := 1
k exp

(v
cp

)
7: if xp (r (p, t)) = 1 then

return // S is not minimal anymore

8: end for
9: end while

10: return
// the primal constraint for step t and set S is fulfilled

formulation.

min
∑

p
∑

i cp xp (i)

s.t. ∀t ∀S ⊆ B(t) with W (S) > k :∑
p∈S\{pt } w̃S

p xp (r (p, t)) ≥W (S)−k

∀p, i : xp (i) ≥ 0

(primal-LP)

The dual of primal-LP is

max
∑n

t=1
∑

S⊆B(t)(W (S)−k) yS(t)

s.t. ∀t , p :
∑
τ | t∈(r (p,τ),τ]

∑
S3p w̃S

p yS(τ) ≤ cp

∀t ,S : yS(t) ≥ 0 .

(dual-LP)

Procedure 1 will be called by our online rounding algorithm to generate assignments for the LP
variables. Note that the variable assignments will not necessarily result in a feasible solution to
primal-LP but will have properties which are sufficient to guarantee that our rounding procedure
produces a feasible solution. We assume that all primal and dual variables are initially zero.

For a time step t , we say a set of pages S is minimal if, for every p ∈ S, xp (r (p, t)) < 1. We note that
by Observation 2.1 of Bansal et al. [BBN08], whenever there is a violated constraint t ,S in primal-LP,
there also is a violated constraints t ,S′ ⊆ S for a minimal set S′. The idea behind Procedure 1 is that it
is called with a minimal set S. The procedure then increases the primal (and dual) variables of the

4

current solution in such a way that one of two things happen: either the set S is not minimal anymore
because xp (r (p, t)) reaches 1 for some page p ∈ S or the constraint t ,S is not violated anymore. At
the same time, the following theorem guarantees that the primal variables are not increased too
much, that is, that the final cost is still bounded by O(logk) times the cost of an optimal solution. Its
proof follows exactly the proof of Theorem 3.1 from Bansal et al. [BBN08].

Theorem 2.1 The total cost incurred by successive calls to the Procedure 1 is at most O(logk) times the
cost of an optimal solution to the caching problem. In other words, let OPT be the cost of an optimal
solution to the caching problem, then

∑n
p=1

∑n
t=1 cp xp (t) ≤O(logk) ·OPT, where the xp (t) are the final

variable assignments generated by calls to Procedure 1.

3 The Online Algorithm

The online algorithm for the generalized caching problem works as follows. It computes primal
and dual assignments for LPs primal-LP and dual-LP, respectively, by repeatedly finding violated
primal constraints and passing the constraint together with the current primal and dual solution to
Procedure 1. Algorithm 2 gives the outline of a single step of the online algorithm.

Note that the primal “solution” may not be feasible but may only fulfill a subset of the constraints,
which, however, will be sufficient for our rounding procedure.

In addition to these fractional solutions, the online algorithm maintains a probability distribution
µ over cache states. More concretely, µ will be the uniform distribution over k2 subsets—each subset
D specifying a set of pages that are currently evicted from the cache. A randomized algorithm then
chooses a random number r from [1, . . . ,k2] and behaves according to the r -th subset, i.e., whenever
the r -th subset changes it performs the corresponding operations.

We will design µ in such a way that it closely mirrors the primal fractional solution x. Then we can
use results from the previous section to show that each set in the support of µ is a valid complement
of a cache-state, i.e., it fulfills size constraints and has the currently requested page in the cache.

Algorithm 2 online-step(t)
1: x(pt ,r (pt , t)) := 0 // put page pt into the cache

2: // buffer constraints may be violated

3: S := {p ∈ B(t) | γ · x(p,r (p, t)) < 1}
4: while constraint for S is violated do
5: fix-set(S, t , x, y) // change the current solution

6: adjust distribution µ to mirror new x
7: // recompute S

8: S := {p ∈ B(t) | γ · x(p,r (p, t)) < 1}
9: end while

10: // buffer constraints are fulfilled

We will show the following

1. Each set D in the support of the distribution µ is a valid complement of a cache-state.

5

2. A change in the fractional solution of the LP that increases the fractional cost by ε is accompa-
nied by a change in the distribution µ with (expected) cost at most O(ε).

3.1 Ensuring that cache-states are valid

In order to show the first part we will set up some constraint for the sets D that will guarantee that
they describe valid complements of cache-states. In order to define these constraints we introduce
the following notation.

Let t denote the current time-step and and set xp := x(p,r (p, t)). Let γ≥ 2 denote a scaling factor
to be chosen later, and define zp := min{γxp ,1}. The variable zp is a scaling of the primal fractional
solution xp . We also introduce a rounded version of this: we define z̄p := bk · zpc/k, which is simply
the zp -value rounded down to the nearest multiple of 1/k. Note that due to the way the LP-solution
is generated zp > 0 implies that zp ≥ γ/k. Therefore, rounding down can only change the zp -value by
a small factor. More precisely, we have z̄p ≥ (1−1/γ) · zp .

We use S to denote the set of pages that are fractional in the scaled solution, i.e., have zp < 1 (or
equivalently z̄p < 1). We divide these pages into classes as follows. The class Si contains pages whose
size falls into the range [2i ,2i+1).

We construct a set L ⊆ S of “large pages” by selecting pages from S in decreasing order of size
(ties broken according to page-id) until either the z̄-values of selected pages add up to at least 1, or
all pages in S have been selected. We use w` to denote the size of the smallest page in L, and i` to
denote its class-id. Note that this construction guarantees that either 1 ≤∑

p∈L z̄p ≤ 2 or L = S. The
following claim shows that the second possibility only occurs when the weight of S is small or while
the online algorithm is serving a request (for example when the online algorithm iterates through
the while-loop of Algorithm 2).

Claim 3.1 After a step of the online algorithm, we either have 1 ≤∑
p∈L z̄p ≤ 2 or W (S) ≤ k.

Proof. If W (S) ≤ k there is nothing to prove. Otherwise, we have to show that we do not run out of
pages during the construction of the set L. Observe that after the while-loop of Algorithm 2 finishes,
the linear program enforces the following condition for subset S:∑

p∈S
min{W (S)−k, wp } · xp ≥W (S)−k .

In particular, this means that
∑

p∈S xp ≥ 1 and hence
∑

p∈S z̄p ≥ (1−1/γ)γ ≥ 1, as γ ≥ 2. Since the
z̄-values of pages in S sum up to at least 1 we will not run out of pages when constructing L.

Let D denote a subset of pages that are evicted from the cache. With a slight abuse of notation we
also use D to denote the characteristic function of the set, i.e., for a page p we write D(p) = 1 if p
belongs to D and D(p) = 0 if it does not. We are interested whether at time t the set D describes a
valid cache state.

Definition 3.2 We say that a subset D of pages γ-mirrors the fractional solution x if:

1. ∀p ∈ B(t) : z̄p = 0 implies D(p) = 0 (i.e., p is in the cache).

6

2. ∀p ∈ B(t) : z̄p = 1 implies D(p) = 1 (i.e., p is evicted from the cache).

3. For each class Si : b∑p∈Si
z̄pc ≤∑

p∈Si
D(p).

4. b∑p∈L z̄pc ≤∑
p∈L D(p).

Here z̄ is the solution obtained after scaling x by γ and rounding down to multiples of 1/k.

We will refer to the constraints in the first two properties as integrality constraints, to the constraints
in the third property as class constraints, and the constraint in the fourth property is called the large
pages constraint.

Lemma 3.3 A subset D of pages that γ-mirrors the fractional solution x to the linear program, de-
scribes a valid complement of a cache state for γ≥ 16.

Proof. Let D denote a set that mirrors the fractional solution x. In order to show that D is a valid
complement of a cache-state we need to show that the page pt that is accessed at time t is not
contained in D , and we have to show that the size of all pages that are not in D sums up to at most k.

Observe that the fractional solution is obtained by applying Procedure 1. Therefore, at time t
the variable xpt , x(pt ,r (pt , t)) will be 0. (It is set to 0 when Algorithm 2 is called for time t , and it
is not increased by Procedure 1 until time t +1.) Hence, we have z̄pt = 0 and therefore Property 1
guarantees that pt will not be in D .

It remains to show that there are enough pages evicted in D . This means we have to show∑
p∈B(t)\{pt }

wp D(p) ≥W (B(t))−k . (1)

Because of Property 1 and Property 2 we have∑
p∈B(t)\{pt }

wp D(p)

= ∑
p∈B(t)\S

wp D(p)+ ∑
p∈S\{pt }

wp D(p)

= ∑
p∈B(t)\S

wp + ∑
p∈S

wp D(p)

=W (B(t))−W (S)+ ∑
p∈S

wp D(p) .

Therefore it suffices to show
∑

p∈S wp D(p) ≥W (S)−k, in order to obtain Equation 1. For the case
that W (S) ≤ k this is immediate, since the left hand side is always non-negative. Therefore in the
following we can assume that W (S) > k, and, hence, 1 ≤∑

p∈L z̄p ≤ 2 due to Claim 3.1.

If 2i` ≥W (S)−k, then ∑
p∈S

wp D(p) ≥ ∑
p∈L

wp D(p)

≥ 2i`
∑
p∈L

D(p) ≥ 2i` ≥W (S)−k ,

7

where the third inequality follows from Property 4, and the fact that
∑

p∈L z̄p ≥ 1.

In the remainder of the proof we can assume 2i` <W (S)−k. We have∑
p∈S

wp D(p) ≥ ∑
i≤i`

∑
p∈Si

wp D(p)

≥ ∑
i≤i`

2i · ∑
p∈Si

D(p)

≥ ∑
i≤i`

2i ·
(∑

p∈Si

z̄p −1
)

= 1

2

∑
i≤i`

∑
p∈Si

2i+1 z̄p − ∑
i≤i`

2i

≥ 1

2

∑
i≤i`

∑
p∈Si

wp z̄p −2i`+1

≥ γ

4

∑
i≤i`

∑
p∈Si

w̃S
p xp −2(W (S)−k) .

(2)

Here the second inequality follows since wp ≥ 2i for p ∈ Si ; the third inequality follows from Prop-
erty 3; the fourth inequality holds since wp ≤ 2i+1 for p ∈ Si . The last inequality uses the fact that
z̄p ≥ (1−1/γ)γxp ≥ γ/2 · xp for every p ∈ S, and that wp ≥ w̃S

p .
Using the fact that z̄p ≥ γ/2 · xp we get

γ

4

∑
p∈L\Si`

w̃S
p xp ≤ 1

2

∑
p∈L

w̃S
p z̄p

≤ 1

2
(W (S)−k)

∑
p∈L

z̄p ≤W (S)−k ,

where the last inequality uses the fact that
∑

p∈L z̄p ≤ 2. Adding the inequality 0 ≥ γ
4

∑
p∈L\Si`

w̃S
p xp −

(W (S)−k) to Equation 2 gives∑
p∈S

wp D(p) ≥ γ

4

∑
p∈S

w̃S
p xp −3(W (S)−k)

≥ (γ/4−3)(W (S)−k) ≥W (S)−k ,

for γ≥ 16. Here the second inequality holds because after serving a request the online algorithm
guarantees that the constraint

∑
p∈S w̃S

p xp ≥W (S)−k is fulfilled for the current set S (if the set has at
least weight k, of course).

3.2 Updating the distribution in an online-manner

We have to show how to update the distribution µ over cache-complements in such a way that we
can relate the update cost to the cost of our linear programming solution. We show that in each
step the subsets in the support mirror the current linear programming solution. Then Lemma 3.3
guarantees that we have a distribution over complements of valid cache states.

8

However, directly ensuring all properties in Definition 3.2 leads to a very complicated algorithm.
Therefore, we partition this step into two parts. We first show how to maintain a distribution µ1 over
subsets D that fulfill the first three properties in Definition 3.2 (i.e., the integrality constraints and the
class constraints). Then we show how to maintain a distribution µ2 over subsets that fulfill Property 1
and Property 4.

From these two distributions we obtain our distribution µ as follows. We sample a subset D1 from
the first distribution and a subset D2 from the second distribution, and compute D = D1 ∪D2 (or
D = max{D1,D2} if D is viewed as the characteristic function of the set).

Clearly, if both sets D1 and D2 fulfill Property 1 then the union fulfills Property 1. Furthermore, if
one of D1, D2 fulfills one of the properties 2, 3, or 4, then the corresponding property is fulfilled by
the union as these properties only specify a lower bound on the characteristic function D .

We will construct µ1 and µ2 to be uniform distributions over k subsets. Then the combined
distribution µ is a uniform distribution over k2 subsets (note however that some of the subsets may
actually be identical).

In the following we assume that the z̄p -values change in single steps by 1/k. This is actually not
true. Consider, for example Line 1 of Algorithm 2, for a page pt that is requested at time t (after t is
increased). As xpt is a shorthand for the variable x(pt ,r (pt , t)), these two statements may cause a
drop in the variable z̄pt that is larger than 1/k. However, we can simulate larger changes by several
consecutive changes of value 1/k.

3.2.1 Maintaining distribution µ1

In order to be able to maintain the distribution µ1 at a small cost we strengthen the conditions that
the sets D in the support have to fulfill. For each size class Si we introduce cost classes C 0

i ,C 1
i , . . . ,

where C s
i = {p ∈ Si : cp ≥ 2s}. For the subsets D in the support of µ1 we require

A. For each subset D , for each size class Si , and for all cost classes C s
i⌊∑

p∈C s
i

z̄p

⌋
≤∑

p∈C s
i

D(p) ≤
⌈∑

p∈C s
i

z̄p

⌉
.

B. For each page p ∑
D D(p) ·µ1(D) = z̄p .

Note that the second constraint above ensures that the integrality constraints are fulfilled, and that
the first set of constraints ensures that the class constraints are fulfilled (because C 0

i = Si).

Increasing z̄p . Suppose that the z̄p value for some page p increases by 1/k. Assume that p ∈ Si

and cp ∈ [2r ,2r+1), i.e., p ∈C 0
i , . . . ,C r

i . As we have to satisfy the property
∑

D D(p)µ1(D) = z̄p , we have
to add the page p to a set D∗ in the distribution µ1, which currently does not contain p (i.e., we have
to set D∗(p) = 1 for this set). We choose this set arbitrarily.

However, after this step the constraints b∑p∈C s
i

z̄pc ≤ ∑
p∈C s

i
D(p) ≤ d∑p∈C s

i
z̄pe, for s ≤ r may be

violated for some sets. We repair the violated constraints step by step from s = r to 0.
Fix s and assume that the constraints hold for all s′ > s but some are violated for s. We first assume

that the change of z̄p did not change the value of a := d∑p∈C s
i

z̄pe. Then D may now have a +1 pages

9

from C s
i , which is not allowed (for all other sets the constraint for s did not change and is still valid).

However,
∑

p∈C s
i

z̄p =∑
D

∑
p∈C s

i
D(p) ·µ1(D) is equal to the average number of pages from C s

i that a
set in the support of µ1 has. This is at most a and D has a +1 pages. Therefore there must exist a set
D ′ with positive support in µ1 that has at most a −1 pages from C s

i . The constraint for s +1 tells us
that the number of pages in class C s+1

i differs at most by 1 between D and D ′. Hence, there must
exist a page in C s

i \C s+1
i that is in D but not in D ′. We move this page to D ′ which incurs an expected

cost of at most 2s+1/k. Now, the constraint for s is satisfied and the constraints for values s′ > s are
still satisfied.

For the case that a increased, observe that D∗ is now the only set with a = d∑p∈C s
i

z̄pe pages from
cost class C s

i . Furthermore, note that after the change a > ∑
p∈C s

i
z̄p as otherwise there would not

have been a change. Therefore, there cannot be a set with less than a −1 = b∑p∈C s
i

z̄pc pages. Hence,
all constraints are fulfilled.

Performing the above procedure incurs expected cost of 2s+1/k for s from r to 0. In total we have
expected cost O(2r /k). The increase of z̄p increases the LP-cost by at least 2r /k. Therefore, the cost
in maintaining the distribution µ1 can be amortized against the increase in LP-cost.

Decreasing z̄p . When the z̄p -value for a page p with cp ∈ [2r ,2r+1) decreases then we have to
delete the page p from a set D in the support of µ1 that currently contains it. The analysis for this
case is completely analogous to the case of an increase in z̄p . The resulting cost of O(2r /k) can be
amortized against the LP-cost. (At a loss of a constant factor we can amortize O(2r /k) against the
LP-cost when z̄p increases and the same value when z̄p decreases.)

Change of set S. The class constraints depend on the set S that is dynamically changing. Therefore
we have to check whether they are fulfilled if a page enters or leaves the set S. When a page p with
cp ∈ [2r ,2r+1) increases its z̄p -value to 1 we first add it to the only set in the support ofµ1 that does not
contain it. This induces an expected cost of at most 2r+1/k. Then we fix Constraint A, as described
in the procedure for increasing a z̄p -value. This also induces expected cost O(2r /k). After that we
remove the page from the set S. Constraint A will still be valid because every cost-class that contains
p changes

∑
p∈C s

i
z̄p and

∑
p∈C s

i
D(p) by exactly 1.

3.2.2 Maintaining distribution µ2.

For this part we only have to guarantee that a set in the support ofµ2 fulfills the large pages constraint
and does not evict any page for which z̄p = 0.

In the following we introduce an alternative way of thinking about this problem. A variable z̄p

can be in k +1 different states {0,1/k,2/k, . . . ,1−1/k,1}. We view the k −1 non-integral states as
points. We say that the `-th point for page p appears (becomes active) if the variable z̄p changes from
(`−1)/k to `/k. Points can disappear for two reasons: Suppose the `-th point for page p is active.
We say that it disappears (becomes inactive) if either the z̄p -value of p decreases form `k to (`−1)/k,
or when the z̄p -value reaches 1.

Note that a z̄p -value of 1 means that the page is not in the set S, and that it only enters S once
its z̄p -value is decreased to 0 again. The appearance of a point for page p corresponds to a cost of

10

cp /k of the LP-solution. At a loss of a factor of 2 we can also amortize cp /k against the cost of the
LP-solution when a point for page p disappears.

Observation 3.4 The set of pages with active points is the set of pages in S with non-zero z̄p -value.

The above observation says that if we guarantee to only evict pages that have an active point we
guarantee our first constraint that no page with z̄p = 0 is evicted.

We assign priorities to the points, according to the size of the corresponding page (large pages
have highest priorities). Ties are broken according to page-ids and point-numbers (in this order). Let
at any point in time the set Q denote the set of the k active points with largest priority (or all active
points if there are less than k). The following observation follows directly from the definition of Q
and L as we used the same tie-breaking mechanisms for both constructions.

Observation 3.5 For any time-step, the set of pages in L that have a non-zero z̄p -value is exactly the
set of pages that have at least one point in Q.

We assign labels from {1, . . . ,k} to active points, with the meaning that if a point a has label `, then
the `-th set in the support of µ2 has the page corresponding to a evicted. At each point in time the
`-th set consists of pages for which one of the corresponding points has label `. In general we will
allow a point to have several labels. Note that this definition of the sets in the support of µ2, directly
ensures that a page that has z̄p = 0 cannot be evicted in any set, because a page with this property
does not have any active points.

Adding a label to a point a increases the expected cost of the online algorithm by at most cp /k,
where p is the page corresponding to a. Deleting a label is for free, and in particular if a point
disappears (meaning its labels also disappear) the online algorithm has no direct cost while we still
can amortize cp /k against the LP-cost.

The following observation forms the basis for our method of maintaining µ2.

Observation 3.6 If the points in Q have different labels, then all sets in the support of the distribution
µ2 fulfill the large pages constraint (Property 4 in Definition 3.2).

This means that we only have to show that there is a labeling scheme that on the one hand has a
small re-labeling cost, i.e., the cost for re-labeling can be related to the cost of the LP-solution, and
that on the other hand guarantees that at any point in time no two points from Q have the same label.
We first show that a very simple scheme exists if the cost-function is monotone in the page-size, i.e.,
wp ≤ wp ′ implies cp ≤ cp ′ for any two pages p, p ′. Note that the bit-model and the fault-model that
have been analyzed by Bansal et al. [BBN08] form monotone cost functions. Therefore, the following
section gives an alternative proof for an O(logk)-competitive algorithm for these cost models.

Maintaining µ2 for monotone cost

We show how to maintain a labeling of the set Q such that all labels assigned to points are different.
Assume that currently every point in the set Q has a single unique label.

11

Appearance of a point q . Suppose that a new point q arrives. If q does not belong to the k points
with largest priority, it will not be added to Q and we do not have to do anything.

If the set Q currently contains strictly less than k points, then the new point will be contained in
the new set Q, but at least one of the k labels has been unused before and we can label q with it. In
the new set Q all points have different labels. The online algorithm paid a cost of cp(q)/k, where p(q)
denotes the page corresponding to point q .

If Q already contains k pages, then upon appearance of q , a point q ′ with lower priority is removed
from Q and q is added. We can assign the label of q ′ to the new point q , and then all points in the
new set Q have different labels. Again the online algorithm pays a cost of cp(q)/k.

In all cases the online algorithm pays at most cp(q)/k whereas the LP-cost is cp(q)/k.

Disappearance of a point q . Now, suppose that a point q in the current set Q is deleted. This
means that a point q ′ with smaller priority than q may be added to the set Q (if there are at least k
points in total). We give q ′ the label that q had. This incurs a cost of cp(q ′)/k ≤ cp(q)/k, where the
inequality holds due to the monotonicity of the cost function. Since we can amortize cp(q)/k against
the cost of the LP-solution we are competitive.

Maintaining µ2 for general cost.

We want to assign labels to points in Q in such a way that we are guaranteed to see k different labels
(if Q contains at least k points). In the last section we did this by always assigning different labels to
points in Q. For the case of general cost functions we proceed differently.

Let Qi denote the k active points with largest priority that correspond to pages with cost at least 2i

(in case there are less than k such points, Qi contains all active points corresponding to pages with
cost at least 2i).

Essentially our goal is to have a labeling scheme with small re-labeling cost that guarantees that a
set Qi sees at least |Qi | different labels. Since Q =Q0 this gives the result. However, for the case of
general cost, it will not be sufficient anymore to assign unique labels to points, but we will sometimes
be assigning several different labels to the same point. At first glance, this may make a re-labeling
step very expensive in case a point with a lot of labels disappears.

To avoid this problem we say that a set Qi has to commit to a unique label for every point q
contained in it (and the chosen label must be from the set of labels assigned to q). The constraint for
Qi is that it commits to different labels for all points contained in it. If a point currently has labels `
and `′, then a set Qi may either commit to ` or `′, but furthermore during an update operation it
may change the label it commits to for free (i.e., no cost is charged to the online-algorithm). (Recall
that if a point for a page p has several labels then all sets corresponding to these labels have the page
p evicted; therefore committing to a different label is for free as no page has to be evicted from any
set.)

Appearance of a point q . Suppose that a point q corresponding to a page p with cp ∈ [2r ,2r+1)
appears. We assign an arbitrary label to this point and make all subsets Qs that contain q commit
to this label for q . Sets Qs , s > r are not affected by the appearance of q at all, and their constraints
remain valid. We only have to fix the condition for sets Qs , s ≤ r ,.

12

Assume that the condition holds for all sets Qs′ , s′ > s but is violated for s. We call a label `
a duplicate label for Qs if there exist two points in Qs for which Qs commits to `. We call the
corresponding points duplicate points. We call a label ` free for Qs if currently there is no point in
Qs for which Qs commits to `. When we start processing Qs there exists exactly one duplicate label
namely the label that we assigned to q and to which Qs committed.

Since the total number of labels is k and there are at most k points in Qs there must exist a free
label `free. We could fix the condition for Qs by re-labeling one of the duplicate points with `free.
However, this would create a cost that depends on the cost of the page corresponding to the chosen
point. This may be too large, as our aim is to only pay O(2s/k) for fixing the condition for set Qs .
Therefore, we will successively change the labels that Qs commits to until the cost of one of the
duplicate points is in [2s ,2s+1). During this process we will maintain the invariant that there are at
most two duplicate points for Qs . Hence, in the end we can re-label a duplicate point with cost at
most 2s+1 and arrive at a set Qs that fulfills the condition that it commits to a different label for each
of its points.

The process for changing the commitments of set Qs is as follows. Suppose that currently ` denotes
the duplicate label and that the two duplicate points both correspond to pages with cost at least 2s+1.
This means that both points are in set Qs+1. As the constraint for Qs+1 is fulfilled we know that Qs+1

commits to different labels for these points. One of these labels must differ from `. Let q ′ denote the
duplicate point for which Qs+1 commits to a label `′ 6= `. We switch the commitment of set Qs for
point q ′ from ` to `′. (Now, `′ may be the new duplicate label for set Qs)

The above process can be iterated. With each iteration the number of points in the intersection of
Qs and Qs+1 for which both sets commit to the same label increases by one. Hence, after at most k
iterations we either end up with a set Qs that fulfills the condition (i.e., has no duplicate points) or
one of the duplicate points corresponds to a page with cost at most 2s+1.

As we only pay cost 2s+1/k for fixing Qs the total payment summed over all sets Qs , s ≤ r is O(2r /k),
which can be amortized to the LP-cost.

Disappearance of a point q . Now, suppose that a point q corresponding to a page p with cp ∈
[2r ,2r+1) is deleted. Then a new point may enter the sets Qs , s ≤ r (the only case for which this does
not happen is when Qs already contains all active points corresponding to pages with cost at least 2s).
For each Qs we commit to an arbitrary label for this point (recall this doesn’t induce any cost). Now,
for each Qs we have the same situation as in the case when a point appears. The set either fulfills its
condition or has exactly two duplicate points. As before we can fix the condition for set Qs at cost
O(2s/k).

References

[AAK99] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general
caching problems. In Proceedings of the 10th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 31–40, 1999.

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of random-
ized paging algorithms. Theoretical Computer Science, 234(1-2):203–218, 2000.

13

[BBN07] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm
for weighted paging. In Proceedings of the 48th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 507–517, 2007.

[BBN08] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms
for generalized caching. In Proceedings of the 30th ACM Symposium on Theory of
Computing (STOC), pages 235–244, 2008.

[BN05] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing problems. In Proceedings of the 13th European Symposium on Algorithms
(ESA), pages 689–701, 2005.

[BNBYF+01] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A
unified approach to approximating resource allocation and scheduling. Journal of the
ACM, 48(5):1069–1090, 2001.

[CI97] Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. In USENIX
Symposium on Internet Technologies and Systems, pages 193–206, 1997.

[CK99] Edith Cohen and Haim Kaplan. Lp-based analysis of greedy-dual-size. In SODA, pages
879–880, 1999.

[CKPV91] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results
on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699,
1991.

[Ira02] Sandy Irani. Page replacement with multi-size pages and applications to web caching.
Algorithmica, 33(3):384–409, 2002.

[MS91] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

[You02] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

14

