
Experimental Supplements to the Theoretical Analysis
of EAs on Problems from Combinatorial Optimization

Patrick Briest, Dimo Brockhoff, Bastian Degener, Matthias Englert, Christian Gunia,
Oliver Heering, Thomas Jansen, Michael Leifhelm, Kai Plociennik, Heiko Röglin,

Andrea Schweer, Dirk Sudholt, Stefan Tannenbaum, and Ingo Wegener?

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany

<firstname.lastname>@uni-dortmund.de

Abstract. It is typical for the EA community that theory follows experiments.
Most theoretical approaches use some model of the considered evolutionary algo-
rithm (EA) but there is also some progress where the expected optimization time
of EAs is analyzed rigorously. There are only three well-known problems of com-
binatorial optimization where such an approach has been performed for general
input instances, namely minimum spanning trees, shortest paths, and maximum
matchings. The theoretical results are asymptotic ones and several questions for
realistic dimensions of the search space are open. We supplement the theoret-
ical results by experimental ones. Many hypotheses are confirmed by rigorous
statistical tests.

1 Introduction

Evolutionary algorithms (EAs) are heuristics with many applications to problems from
combinatorial optimization. Most knowledge on EAs is based on intensive experiments
but there are also theoretical results. Many of them consider artificial fitness functions
in order to understand the search behavior of EAs. Moreover, one has to distinguish
two types of theoretical results. Most of the results investigate “models of EAs” and the
results have to be “verified” by experiments. Examples are the investigation of popula-
tions of infinite size, most results from schema theory, the assumption of populations in
linkage equilibrium, and many more. In recent years, there is a growing interest in the
rigorous analysis of the random variable describing the number of fitness evaluations
until an optimal search point is evaluated. After a series of papers on artificial func-
tions and typical fitness landscapes there are now three papers determining the asymp-
totic expected optimization time of mutation-based EAs on well-known problems from
combinatorial optimization:

– minimum spanning trees (Neumann and Wegener (2004)),
– single source shortest paths (Scharnow, Tinnefeld, and Wegener (2002)),
– maximum matchings (Giel and Wegener (2003)).

? Supported in part by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

No such results are known for EAs with crossover.
These theoretical results give new insights into the behavior of the considered EAs

and realistic problems. Nevertheless, they do not answer all questions. Asymptotic re-
sults may not describe the situation of problem dimensions considered today. Upper
and lower bounds can differ and the results are concerned with the worst case and not
with the typical case. For the problems listed above, we investigate properties of EAs
not captured by the theoretical results and supplement the theoretical knowledge.

Section 2 introduces the investigated heuristics, mainly randomized local search
(RLS) and the well-known (1+1) EA. Sections 3, 4, and 5 contain the results for the
three problems and we finish with some conclusions.

The considered hypotheses have been derived from preliminary experiments which
then have been tested by independent experiments. We use different statistical tests
depending on the type of hypothesis under consideration. The statistical tests are carried
out using the software SPSS (Version 11.5, see www.spss.com). Regression analysis
is done using gnuplot (Version 3.7, see www.gnuplot.info), using the standard
settings.

The statistical tests used are the Wilcoxon signed rank test (WSRT) and the Mann-
Whitney test (MWT). Both are nonparametric tests to confirm the hypothesis that one
random variable “systematically” produces larger values than another one. WSRT pairs
the samples, takes their differences, ranks the absolute values and considers the sum
of the ranks belonging to positive differences. MWT ranks all values and compares the
rank sums for both samples.

Due to space limitations, we cannot present all the data (tables of data or plots). We
report whether the hypotheses have been confirmed on a good significance level. More
precisely, we state our results in the form “Hypothesis H has been confirmed on the
significance level α” which means that the probability of producing our data if H is not
true is bounded by α where α is the result of the SPSS package rounded to 3 digits.
Hence, smaller values of α correspond to better results. Results are called significant, if
α ≤ 0.05, very significant, if α ≤ 0.01, and highly significant, if α ≤ 0.001. Note that
experiments can confirm hypotheses only for the problem dimensions n considered in
the experiments and not for all n.

2 Randomized Local Search and the (1+1) EA

Most of the theoretical results for the problems listed above are for RLS and the (1+1) EA
and some are for the (1+λ) EA. Therefore, we describe these algorithms. The algorithms
work with “populations” of size 1, i. e., with single individuals or search points x. The
first search point x is chosen uniformly at random. Then the offspring x′ is obtained
from x by mutation. Selection chooses x′ iff f(x′) ≥ f(x) in the case of maximization
(“≤” in the case of minimization). The mutation operator of RLS chooses a position of
the string x uniformly at random and replaces it with a different randomly chosen value.
In the case of bit strings, the bit is flipped. In the case of strings from {1, . . . , k}n, one
of the k − 1 different values is chosen according to the uniform distribution. The muta-
tion operator of the (1+1) EA changes each position independently from the others with
probability 1/n. The number of chosen positions is asymptotically Poisson distributed

with λ = 1 and it is a slight variant to determine first the number of positions which
will be changed according to this distribution.

RLS is a hill climber with a small neighborhood and can get stuck in local optima.
Indeed, RLS in its pure form is useless for spanning trees and matchings. Therefore,
we have chosen for these problems a larger neighborhood of up to two local changes.
RLSp changes one randomly chosen position with probability 1 − p and two randomly
chosen positions, otherwise. We use the notation RLS for RLS1/2.

We assume that the reader is familiar with the basic theory on the considered prob-
lems (see Atallah (1999)).

3 Minimum Spanning Trees

Minimum spanning trees can be computed efficiently by the well-known algorithms
of Kruskal and Prim. Each non-optimal spanning tree can be improved by inserting a
missing edge of a minimum spanning tree and excluding a more expensive edge from
the cycle created by the edge insertion. Hence, there is a sequence of at most n − 1
“insertion plus deletion” steps which produces a minimum spanning tree with n − 1
edges.

These steps are local in the representation by edge sets. For graphs with m edges, the
search space equals {0, 1}m and x describes the selection of all edges ei where xi = 1.
The search space includes non-connected graphs and connected graphs with cycles.
The fitness function has to penalize non-connected graphs. Let c(x) be the number of
connected components of the graph G(x) consisting of the edge set described by x. Let
a(x) be the number of edges of G(x) and b(x) be the total weight of all chosen edges
(weights are positive integers). We distinguish two fitness functions v and w for edge
sets which are introduced by Neumann and Wegener (2004). Let

– w(x) ≤ w(x′) iff (c(x) < c(x′)) or (c(x) = c(x′) and (a(x) < a(x′)) or (c(x) =
c(x′), a(x) = a(x′), and (b(x) ≤ b(x′)) and

– v(x) ≤ v(x′) iff (c(x) < c(x′)) or (c(x) = c(x′) and b(x) ≤ b(x′)).

The fitness functions force the search to create trees. Another possibility is to allow only
trees. Prüfer numbers (see Raidl and Julstrom (2003)) are elements of {1, . . . , n}n−2

and a one-to-one coding of trees. The coding of T ′ obtained by an insertion and deletion
of edges from T can be very different from the coding of T and it has been argued that
Prüfer numbers are no useful coding. This is confirmed by experiments on graphs with
n = 10 and random weights from {1, . . . , 2i}, 1 ≤ i ≤ 25. For each i, 10 000 random
graphs have been considered. Runs with Prüfer numbers are stopped if the number of
steps is by a factor of 10 larger than the average optimization time of the (1+1) EA
with edge sets and fitness function v. Runs are called successful if they find a minimum
spanning tree before this time bound.

Result 1 (MWT): For i = 1, Prüfer numbers lead to smaller run times, for all other
considered i, edge sets with fitness function v are better (highly significant). The ob-
served success probability is less than 0.3 for i ≥ 8.

For i = 1, there are many minimum spanning trees and Prüfer numbers have the
advantage to produce only trees. It has been reported in discussions (Rothlauf (2002))
that Prüfer numbers are useful if the unique minimum spanning tree is a star, i. e., all
edges adjacent to vertex 1 have weight 1, all other edges have a larger weight (random
values). This has been investigated for 10 ≤ n ≤ 15.

Result 2 (MWT): For all considered n and star-like minimum spanning trees, the av-
erage run time is smaller for edge sets and the median of the run times is smaller for
Prüfer numbers (highly significant).

Mean and median often yield the same kind of result. The significant differences
here suggest a larger variance of run times for Prüfer numbers.

Choosing edge sets we still have the choice between the two fitness functions v and
w. We have investigated the (1+1) EA on v and w for random graphs on 4i, 3 ≤ i ≤ 12,
vertices. Each edge exists with probability 1/2 and the weights of existing edges are
chosen randomly from {1, . . . , n}. For each n, we have considered 500 random graphs.
The average numbers of fitness evaluations do not differ much, they are smaller for v
with the exception of n = 24 and n = 44. Only the result for n = 32 was confirmed as
significant (MWT). Nevertheless, we conjecture that v is the better fitness function. We
have chosen the value n = 24 (which was the worst for v in the first experiment) and
have repeated the experiment with a larger number of approximately 25 000 random
graphs.

Result 3 (MWT): For n = 24 and the (1+1) EA, the number of fitness evaluations is
smaller for the fitness function v (highly significant).

After finding some spanning tree, it is typically improved by exchanging one edge in
the tree with some edge currently not in the tree. Waiting for such mutations takes some
time. The fitness function v allows the algorithm to add additional edges in those steps
thereby increasing their probability. Removing the additional edges from the tree can be
done by mutations of single bits which are found much faster. Thus, we conjecture the
same result for all other values of n but corresponding experiments are time consuming.
Based on these experiments, all later experiments use the fitness function v.

Neumann and Wegener (2004) have proved a bound of O(m2(log n + log w∗))
on the worst-case expected optimization time for graphs on m edges where weights
are chosen from {1, . . . , w∗}. We have investigated the (1+1) EA for 5 ≤ n ≤ 40
on random graphs where each edge exists with probability 1/2 independently from
the others and weights are chosen randomly from {1, . . . , w∗}. We have considered
six values for w∗ depending on the expected number of edges m := n(n − 1)/4:
w∗ ∈ {1, 2, logm, m1/2, m, m2} where log m and m1/2 are rounded. The experiments
are based on 1 000 random graphs for each w∗.

Result 4 (MWT): For all considered n, the average run time of the (1+1) EA is larger
for larger values of w∗ (highly significant with two exceptions, the comparison between
log m and m1/2 for n ≤ 15 and the comparison between m and m2).

The values of log m and m1/2 are very close for n ≤ 12. If there are enough weights
(say m) such that most edges have different weights, further possible weight values

have not much influence. We conjecture that the asymptotic bound can be improved
to O(m2 log n). We have investigated by regression analysis whether the data can be
represented best by functions of types cm1/2, cm, cm3/2, cm2 or cm2 log m. This is
indeed cm2 log m for w∗ ∈ {m1/2, m, m2} and cm2 for w∗ = log m. Only the other
cases are much easier than the worst-case bound, namely cm3/2 for w∗ = 1 and cm for
w∗ = 2.

Theory on minimum spanning trees leads to the conjecture that 2-bit flips are essen-
tial, some 1-bit flips are necessary to obtain the correct number of edges and k-bit flips,
k ≥ 3, are almost useless. The probability of a 2-bit flip is 1/2 for RLS and approxi-
mately 1/(2e) for (1+1) EA. Therefore, we expect that RLS beats the (1+1) EA by a
factor of nearly e ≈ 2.7 and RLS0.99 beats the (1+1) EA by a factor of nearly 2e ≈ 5.4.
This has been tested for 1 000 random graphs each on n vertices, 5 ≤ n ≤ 36, and
w∗ = n.

Result 5 (MWT): For all considered n, the quotient of the run times of the (1+1) EA
and RLS is in [2.4, 2.8] (significant for n ≥ 15 and n 6= 30) and for the (1+1) EA and
RLS0.99 in [5.2, 5.9] (significant for n ≥ 22 and n 6= 36).

There seem to be some special effects for small n and we have to expect some
negative test results among many tests. In any case, it is highly significant (MWT) that
RLS0.99 is faster than RLS which is faster than the (1+1) EA.

Neumann and Wegener (2004) have proved that the expected number of fitness
evaluations for the worst-case instance is asymptotically the same for the (1+λ) EA as
long as λ ≤ m2/n. The (1+λ) EA is faster on parallel computers. Our experiments
confirm that larger values of λ increase the number of fitness evaluations but the effect
tends to vanish for larger n.

Result 6 (MWT): For all considered n, the average number of fitness evaluations of
the (1+1) EA is smaller than for the (1+10) EA but these differences are not significant.
For n ≤ 20, the (1+1) EA is faster than the (1+100) EA (highly significant) and for
larger n, the effect gets less significant.

An always essential question is whether a theoretical worst-case analysis captures
the typical case. Neumann and Wegener (2004) present a family of graphs (with only
three different weight values) where RLS and the (1+1) EA need an expected number
of Θ(m2 log n) fitness evaluations. We have investigated the worst-case graphs on n =
4i + 1 vertices, 1 ≤ i ≤ 10, which have 2i2 + 4i edges (240 edges for the largest
graph). Then we have compared 1 000 runs of the (1+1) EA for each n with 1 000
runs on random graphs with the same values of n and m and random weights from
{1, . . . , 1 000}.

Result 7 (MWT): For all considered n, the (1+1) EA is faster on the “asymptotic
worst-case instance” than on random graphs (highly significant).

A regression analysis proves that cm2 log n describes the data for random graphs
better than cm, cm logm, cm2 or cm3 as is shown in Figure 1. The observable differ-
ences are in accordance with differences in mean square errors. This holds for other

places where we present the results of regression analyses, too. Here, we arrive at the
interesting conjecture that Θ(m2 log n) is the typical run time of the (1+1) EA for the
computation of minimum spanning trees.

 0

 100000

 200000

 300000

 400000

 500000

 0 50 100 150 200 250

La
uf

ze
it

Dimension (Kantenzahl)

Zufällige Graphen
Ingo’s Graph

m^3
m^2 log(n)

m^2
m log(m)

m3

m2log m
m2

m log m
ru

n
tim

e

random graphs
worst case graphs

number of edges

Fig. 1. Regression analysis of average run times of the (1+1) EA for the MST on random graphs.

4 Single Source Shortest Paths

The problem is to compute for a complete graph and a distinguished vertex s short-
est paths from s to all other vertices. This problem is solved by Dijkstra’s algorithm.
Scharnow, Tinnefeld, and Wegener (2002) have investigated the search space {1, . . . ,
n}n−1 where xi is the predecessor of vertex i and s = n. Dijkstra’s algorithm computes
solutions which can be described by trees rooted at n and have such a representation.
The search space contains also graphs with cycles. There are two fitness functions,
a single-criterion function measuring the sum of the distances of all n-i-paths and a
multi-criteria function with the vector of all n-i-path lengths. Then we are interested in
the unique Pareto optimal fitness vector and “≤” means “≤” for all vector positions.
Scharnow et al. have shown that the single-criterion case contains instances with a be-
havior like the needle in a haystack if non-existing paths are penalized by ∞. They
proved an O(n3) bound for the multi-criteria case which is tight for worst-case in-
stances. For graphs where shortest paths do not contain too many edges, one can expect
an O(n2 log n) bound. Here, we penalize a non-existing path by a distance which is
larger than the length of a longest path.

The multi-criteria fitness function contains more information but f(x′) ≥ f(x)
holds only if no n-i-path for x′ is longer than for x. The question is which fitness func-
tion supports better the optimization by the (1+1) EA. We have investigated graphs
on n = 10i vertices, 1 ≤ i ≤ 15, where the weights are chosen randomly from
{1, . . . , k}, k = 2j , 1 ≤ j ≤ b2 lognc + 1.

Result 8 (MWT): For all considered n and k, the (1+1) EA is faster with the single-
criterion fitness function (highly significant).

For both fitness functions, a regression analysis for functions an3 + bn2 log n+ cn2

leads to a good fit with a-values very close to 0.
For the shortest paths problem as well as for the problem of computing minimum

spanning trees, we have compared how our heuristics work on two different fitness
functions. In both cases, the algorithms work better for the fitness function containing
less information. This seems to be a remarkable result since it is in contrast to the
plausible idea that the fitness function should contain as much information as possible.

5 Maximum Matchings

Given a graph, an edge set is a matching iff no two edges share a vertex. We use a
representation by edge sets and non-matchings are penalized according to the number
of conflicts, i. e., the number of edge pairs which share a vertex. Otherwise, the fit-
ness describes the size of the matching. Matchings cannot be improved always locally
but along so-called augmenting paths leading from a free vertex (not matched by the
chosen edge set) to another free vertex where non-chosen and chosen edges alternate
(see Figure 2). Giel and Wegener (2003) have proved that RLS and the (1+1) EA are

chosen edge
non-chosen edge

Fig. 2. An example of a graph with an augmenting path of length 5.

polynomial-time randomized approximation schemes, i. e., for each constant ε > 0, a
matching M whose size is at least (1 − ε) · |Mopt| for a maximum matching Mopt

is obtained in expected polynomial time. However, the degree of the polynomial de-
pends on 1/ε. There are worst-case examples where both algorithms need on average
exponential time to compute an optimal matching. Moreover, they have analyzed the
expected optimization time on simple graphs. Graphs which are consisting of one path
of length n are of special interest since, despite of their simpleness, one may expect
to obtain augmenting paths of linear length. Based on results for the gambler’s ruin
problem (Feller (1968)), Giel and Wegener (2003) have proved an O(n4)-bound for the
expected optimization time of RLS and the (1+1) EA. This bound is tight if we obtain
a search point containing an augmenting path of linear length.

As in the case of minimum spanning trees, 2-bit flips seem to be the essential steps
to shorten augmenting paths and 1-bit flips can improve the matching if a free edge (an
edge between two free vertices) exists. Hence, we expect that RLS is better than the
(1+1) EA. We have investigated paths on 10i vertices, 1 ≤ i ≤ 10, and have performed
1 000 runs for each n.

Result 9 (MWT): For all considered n, RLS is faster than the (1+1) EA on a path
(highly significant).

Again, we may expect a gain by a factor of approximately e. The average factor
falls into [2.3, 3.1] for n ≥ 30 but the variance is too large to obtain significant results.

A regression analysis with functions an4 + bn3 + cn2 + dn shows that the n4-term
is necessary for a good fit. However, the n4-term has a quite small value (as also the
n3-term). This supports the observation that there are long (linear length) augmenting
paths but they are essentially shorter than n. Paths are so simple that one may conjec-
ture that a GA with diversity-preserving methods may beat the (1+1) EA. This may
be the case for two-point crossover which can replace a subpath from one individual
by the corresponding subpath of another individual. However, this crossover operator is
specialized to paths and not appropriate for more general graphs. Since we are not inter-
ested in this paper in problem-specific search operators, we do not discuss experiments
with crossover.

Paths are special trees. Giel and Wegener (2003) have shown an O(n6) bound on
the expected optimization time of RLS for finding a maximum matching on trees with
n vertices but conjecture an O(n4) bound for RLS and the (1+1) EA. Trees may have
a smaller diameter than paths with the same number of vertices and the size of the
maximum matching typically is smaller than for paths. However, there are situations
where, for trees, it is more likely to lengthen augmenting paths than to shorten them (see
Figure 3). For paths, this cannot happen. Random trees can be generated by choosing

non-chosen edge
chosen edge

v0 v1

v8 v9

v7v6

v5v2 v3 v4

Fig. 3. An augmenting path p = v2, . . . , v5 where RLS has at v2 one possibility to lengthen p

and one possibility to shorten p and at v5 one possibility to shorten p and two possibilities to
lengthen p.

randomly a Prüfer number. For n = 10i, 1 ≤ i ≤ 10, we have compared 1 000 runs of
the (1+1) EA on the path with the (1+1) EA on 1 000 random trees.

Result 10 (MWT): For all considered n, the (1+1) EA is faster on random trees than
on paths (highly significant).

It can be even confirmed that the (1+1) EA is faster on random trees on 200 vertices
than on paths with 100 vertices. Regression analysis shows that the data for random
trees can be well expressed by a polynomial of degree 3 while the data for paths needs
an n4-term.

Giel and Wegener (2002) have proved an O(n3.5) bound for k-ary trees which are
rooted trees of minimal depth if the number of children is k (at most k on the last two
levels). Since the depth decreases with k, also the diameter and the maximal length of
augmenting paths decrease with k which should lead to decreased run times. We have
investigated random trees and k-ary trees on 10i vertices, 1 ≤ i ≤ 20. The data con-
firms the following list of increasing difficulties for the (1+1) EA: 5-ary, 4-ary, ternary,
binary, random. However, many comparisons were not significant. Indeed the run times
for k-ary trees do not increase with n. There are significant decreases. All results de-
pend on the positions of the leaves on the last level (see Figure 4). Assigning them from
left to right leads to much smaller maximum matchings than assigning them randomly.
Smaller maximum matchings can be found faster. More vertices concentrated in a small

Fig. 4. Examples for the two strategies to assign the position of the leaves on the last level.

subtree may not increase the size of a maximum matching but may increase the num-
ber of maximum matchings which can simplify the optimization task. This has to be
examined further and is beyond the scope of this paper.

Finally, we have followed a quite new research direction in theoretical computer
science, namely the investigation of semirandom problem instances. The idea is to in-
vestigate problem instances of the following kind. First, an optimal solution is planted
into the problem instance and then, randomly, further objects are added to the problem
instance, see Feige and Kilian (2000) for a survey on these problem types and Feige and
Krauthgamer (2000) for the problem of finding a large hidden clique in a semirandom
graph.

In our case, we fix the number n of vertices and the number m of edges. Then we
deterministically choose the edges of a perfect matching and, afterwards, we choose
randomly m − bn/2c further edges. Since the dimension of the search space is m, we
compare different values of n for fixed m. If n is large, the “planted” perfect match-
ing typically is the only maximum one and the few further edges do not prevent an
efficient search. If n is small, the many further edges produce many perfect matchings
and it is easy to find one of them. Hence, it is expected, that the expected run times of
the (1+1) EA are first increasing with n and decreasing after its maximal value. The
experiments have considered the cases m = 50i, 1 ≤ i ≤ 4, and 100 runs for the
different values of n. The differences between neighbored values of n are too small to
be determined as very significant. It is convenient to compare values n and n′ of small
difference.

Result 11 (WSRT): For the considered m, the average run time of the (1+1) EA on
semirandom graphs is increasing with n until a maximum value is reached and then
decreasing (significant, many subresults are very or even highly significant, the results
are not significant close to the maximum value).

Close to the maximum value, the gradient of the function has small absolute value
and it is not surprising to obtain ambiguous results in this range. These experiments
should lead to further theoretical studies in order to obtain asymptotic values for various
parameter constellations described by functions between m and n, e. g., n = mα, 1/2 <
α < 1.

Conclusions

The theoretical analysis of simple heuristics on some of the best-known problems from
combinatorial optimization has given a coarse picture which has been refined by our ex-
periments. For minimum spanning trees and shortest paths, we have decided (for small
dimensions of the search space) which fitness function is better suited. For many cases,
we have decided which heuristic is better. In some cases, we have classified problem
instances according to their difficulty for the considered heuristics. For minimum span-
ning trees, our experiments lead to the conjecture that worst case and typical case are
asymptotically of equal difficulty. Finally, we have started experiments on semirandom
problem instances, a promising research direction for experiments and theory.

References

1. Atallah, M. J. (Ed.) (1999). Algorithms and Theory of Computation Handbook. CRC Press.
2. Feige, U. and Kilian, J. (2000). Heuristics for semirandom graph problems. Journal of Com-

puter and System Sciences 63, 639–671.
3. Feige, U. and Krauthgamer, R. (2000). Finding and certifying a large hidden clique in a semi-

random graph. Random Structures and Algorithms 16, 195–208.
4. Feller, W. (1968). An Introduction to Probability Theory and Its Applications. John Wiley &

Sons.
5. Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching prob-

lem. Proc. of 20th Symp. on Theoretical Aspects of Computer Science (STACS), LNCS 2607,
415–426.

6. Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO 2004), LNCS 3102, 713–724.

7. Raidl, G. R. and Julstrom, B. A. (2003). Edge sets: an effective evolutionary coding of span-
ning trees. IEEE Trans. on Evolutionary Computation 7, 225–239.

8. Rothlauf, F. (2002). Representations for Genetic and Evolutionary Algorithms. Physica-
Verlag.

9. Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on sorting
and shortest paths problems. Proc. of the 7th Conf. on Parallel Problem Solving from Nature
(PPSN-VII), LNCS 2439, 54–63.

